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Surfaces, curves, metric balls: how are they related?
I FPP: first passage percolation. Random metric on graph obtained by

weighting edges with i.i.d. weights. See Eden’s model.

I DLA: diffusion limited aggregation (Witten-Sander 1981). Model for crystal
growth, mineral deposits, Hele-Shaw flow, electrodeposition, lichen growth,
lightning paths, coral, etc. Very heavily studied/simulated (see Google
scholar/images). Poorly understood mathematically.

I GFF: Gaussian free field, random h defined on lattice or continuum.
I LQG: Liouville quantum gravity. “Random surface” described by conformal

structure plus area measure eγh(z)dz for γ ∈ [0, 2).
I RPM: Random planar map. Various types (triangulations, quadrangulations,

etc.). Many believed to converge to forms of LQG.
I KPZ: Kardar-Parisi-Zhang, 1986. Equation describing (among other things)

how ball boundaries should evolve after FPP-type metric perturbation.
I KPZ: Knizhnik-Polyakov-Zamolodchikov, 1988. Equation describing how

scaling dimensions change after LQG-type metric perturbation.
I TBM: the Brownian map. Random metric space with area measure, built

from Brownian snake. Equivalent to LQG when γ =
√

8/3?
I SLE: Schramm Loewner evolution. Random fractal curve related to LQG and

GFF, and to various discrete random paths. Defined for real κ ≥ 0.
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A couple of big questions
I LQG is a conformal structure with an area measure, and TBM is a metric

with an area measure. Is there a natural way to put a conformal structure on
TBM, or a metric space structure on LQG, that would give a coupling
between these two objects?

I Can one say anything at all about any kind of scaling limit of any kind of
DLA? Note: throughout this talk we use DLA to refer to external DLA. The
so-called internal DLA is a process that grows spherically with very small (log
order) fluctuations, smaller than those of KPZ growth processes. There has
been more mathematical progress on internal DLA. (I was part of recent
IDLA paper series with Levine and Jerison.)

I For fun, I browsed through the first 500 (of 11, 700) articles on “diffusion
limited aggregation” listed at scholar.google.com. I found only four in math
journals. Three about internal DLA (works by Lawler; Lawler, Bramson,
Griffeath; Blachere, Brofferio) and one about DLA on a tree (Barlow,
Pemantle, Perkins).

I More math papers listed at mathscinet, including Kesten’s n2/3 upper bound
on diameter after n steps. In his ICM paper, Schramm called this “essentially
the only theorem concerning two-dimensional DLA”.
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Can we generalize DLA and FPP?
I When FPP weights are exponential, growth process selects new edges from

counting measure on cluster-adjacent edges. Eden’s model.

I DLA is the same but with counting measure replaced by harmonic measure
viewed from a special point.

I Hybrid growth model: If µ is counting measure and ν is harmonic measure,
consider µ weighted by (∂ν/∂µ)α.

I Equivalently, can consider ν weighted by (∂µ/∂ν)1−α.

I Call the corresponding growth process α-DLA. So 0-DLA is FPP and 1-DLA
is regular DLA.

I 1-DLA Scaling limit believed to have dimension about 1.71 in isotropic
formulations. (Might be different universality class of DLA, with lower
dimensional scaling limit, for heavily anisotropic lattices.) Scaling limit of
0-DLA should have dimension 2. (Shape of growing balls is lattice dependent
but deterministic to first order; fluctuations should be of KPZ type.)

I Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning
bolts, etc. whose growth rate is non-linear (power-law) function of harmonic
exposure?
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Complicating life further

I Can we make sense of α-DLA on a γ-LQG? There is a way to tile an LQG
surface with diadic squares of “about the same size” (see next slide) so we
could to DLA on this set of squares and try to take a fine mesh limit.

I Or we could try α-DLA on corresponding RPM, which one would expect to
behave similarly....

I Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning
bolts, etc. whose growth rates are affected by a random medium (something
like LQG)? The simulations look similar but have a bit more personality when
γ is larger (as we will see). They look like Chinese dragons.

I We will ultimately want to construct a candidate for the scaling limit, which
we will call (for reasons explained later) quantum Loewner evolution:
QLE(γ2, α).

I But first let’s look at some simulations/animations.
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QLE(γ2, α).

I But first let’s look at some simulations/animations.
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Constructing the random metric

Let hε(z) denote the mean value of h on the circle of radius ε centered
at z. This is almost surely a locally Hölder continuous function of (ε, z)
on (0,∞)×D. For each fixed ε, consider the surface Mε parameterized
by D with metric eγhε(z)(dx2 + dy2).

We define M = limε→0 Mε, but what does that mean?

PROPOSITION: Fix γ ∈ [0, 2) and define h, D, and µε as above.
Then it is almost surely the case that as ε→ 0 along powers of two, the
measures µε := εγ

2/2eγhε(z)dz converge weakly to a non-trivial limiting
measure, which we denote by µ = µh = eγh(z)dz.



Area/4096 square decomposition of eγhd2z for γ = 0



Area/4096 square decomposition of eγhd2z for γ = 1/2



Area/4096 square decomposition of eγhd2z for γ = 1



Area/4096 square decomposition of eγhd2z for γ = 2



Area/4096 square decomposition of eγhd2z for γ = 10



Is there a scaling limit of α-DLA on γ-LQG?

I Can apply conformal map to obtain process on a disc growing inward toward
origin.

I One can define normalizing maps gt that map the complement of the closure
Kt of the set explored by time t back to the unit disc (sending the origin to
itself, with positive derivative).

I These maps should be described by a variant of SLE in which the Markovian
point-valued driving function (Brownian motion on the circle) is replaced by
an appropriate Markovian measure-valued driving function.

I This measure-valued driving function is not as easy to define as Brownian
motion.

I The growth process at any time should be a so-called “local set” of the GFF.

I Let’s recall how SLE was defined.
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A canonical measure on non-self-crossing paths

Given a simply connected planar domain D with boundary points a and b and a
parameter κ ∈ [0,∞), the Schramm-Loewner evolution SLEκ is a random
non-self-crossing path in D from a to b.

b

a

η

D

The parameter κ roughly indicates how “windy” the path is. Would like to argue
that SLE is in some sense the “canonical” random non-self-crossing path. What
symmetries characterize SLE?
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Conformal Markov property of SLE

b

a

η

D

φ

D̃ φ ◦ η

φ(a)

φ(b)

If φ conformally maps D to D̃ and η is an SLEκ from a to b in D, then φ ◦ η is an
SLEκ from φ(a) to φ(b) in D̃.
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Markov Property

b

a

η

D

b

D

Given η up to a
stopping time t...

law of remainder is SLE in
D \ η[0, t] from η(t) to b.

η(t)
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Chordal Schramm-Loewner evolution (SLE)

I THEOREM [Oded Schramm]: Conformal invariance and the Markov
property completely determine the law of SLE, up to a single parameter
which we denote by κ ≥ 0.

I Explicit construction: An SLE path γ from 0 to ∞ in the complex upper
half plane H can be defined in an interesting way: given path γ one can
construct conformal maps gt : H \ γ([0, t])→ H (normalized to look like
identity near infinity, i.e., limz→∞ gt(z)− z = 0). In SLEκ, one defines gt via
an ODE (which makes sense for each fixed z):

∂tgt(z) =
2

gt(z)−Wt
, g0(z) = z ,

where Wt =
√
κBt =LAW Bκt and Bt is ordinary Brownian motion.
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SLE phases [Rohde, Schramm]

κ ≤ 4 κ ∈ (4, 8) κ ≥ 8
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Radial Schramm-Loewner evolution (SLE)

I Radial SLE: ∂gt(z) = gt(z) ξt+gt(z)
ξt−gt(z) where ξt = e i

√
κBt .

I Radial measure-driven Loewner evolution: ∂gt(z) =
∫

gt(z) x+gt(z)
x−gt(z) dmt(x)

where, for each g , mt is a measure on the complex unit circle.
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Measure-driving Loewner evolution
I Space of measure-driven Loewner evolutions (unlike space of point-driven

Loewner evolutions) is compact.

I Related to fact that space of Lipschitz functions is compact, and any
Lipschitz function is integral of its a.e. defined derivative.

I Space of probability measures on compact space is weakly compact.

I Should we take subsequential limit of α-DLA on γ-RPM (or some
isotropic/Markovian variant) and define that to be QLE(γ2, α)?

I Maybe, but aside from uniqueness issue, this wouldn’t tell us what kind of
measure-valued driving function we have, whether limit process is “simple” in
sense that it doesn’t absorb positive area “bubbles’ in zero time, whether all
space is ultimately absorbed, what the quantum dimension of the “trace”
should be, what stationary law of the random measure is, whether the
evolving random measure is a Markovian process on the space of measures
(as one would expect).

I Can we give a more explicit construction of QLE that would address these
questions?

I Yes, at least for (γ2, α) pairs. Surprising connection to SLE.
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Three important QLE families

γ2

α

0

1

−1

1 2 3 4

(2, 1)

(8/3, 0)

(1, 5/2)

(3/2, 3/2)

(3, 1/2)

(4, 1/4)
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FPP vs. percolation interface, DLA vs. LERW

I Imagine doing the percolation exploration on a random triangulation (with
vertices randomly colored one of two colors), starting from a seed point on
the boundary.

I This process has a kind of Markovian property. We only have to keep track of
length of boundary and location of seed.

I Suppose we “rerandomize” the of boundary seed (according to counting
measure on exposed edges) at every step.

I Sequence of “bubbles” observed has same law for rerandomized version as for
original. The rerandomized version is type of FPP.

I Consider a random planar graph with n edges, and a distinguished spanning
tree, and distinguished seed and target points (connected by branch of tree).

I We can explore connecting branch. What happens when we rerandomize
starting location at each step?

I We switch from LERW to DLA.

I Scaling limits should be QLE(8/3, 0) and QLE(2, 1).
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Quantum zipper with seed rerandomization

I The procedure described above has a quantum analog.

I We understand very well how to draw an SLE coupled with a random surface
for a fixed amount of quantum time, and then resample the seed origin from
the appropriate geometric combination of µ and ν (harmonic and quantum
measures).

I These results are related to the radial form of the so-called “quantum
zipper”, which comes from drawing whole plane SLE, targeted at an interior
point, on top of an LQG.
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What is a random surface?

I Discrete approach: Glue together unit squares or unit triangles in a random
fashion. (Random quadrangulations, random triangulations, random planar
maps, random matrix models.)

I Continuum approach: As described above, use conformal maps to reduce to
a problem of constructing a random real-valued function on a planar domain
or a sphere. Using the Gaussian free field for the random function yields
(critical) Liouville quantum gravity.
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Discrete construction: gluing squares
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Discrete uniformizing maps

a

b

φ

φ(b) = ∞

φ(a) = 0

Planar map with one-chord-wired spanning tree (solid edges), plus image under
conformal map to H (sketch).
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How about the continuum construction? Defining Liouville quantum gravity?
Takes some thought because h is distribution not function.
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Changing coordinates

I We could also parameterize the same surface with a different domain D̃.

I Suppose ψD̃ → D is a conformal map.

I Write h̃ for the distribution on D̃ given by h ◦ ψ + Q log |ψ′| where
Q := 2

γ + γ
2 .

I Then µh is almost surely the image under ψ of the measure µh̃. That is,

µh̃(A) = µh(ψ(A)) for A ⊂ D̃.

I Similarly, the boundary length νh is almost surely the image under ψ of the
measure νh̃.
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Defining quantum surfaces

I DEFINITION: A quantum surface is an equivalence class of pairs (D, h)
under the equivalence transformations
(D, h)→ (ψ−1D, h ◦ ψ + Q log |ψ′|) = (D̃, h̃).

I Area, boundary length, and conformal structure are well defined for such
surfaces.
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Glue two random surfaces: interface is random path

Theorem [S.]: If you glue two appropriate independent random quantum surfaces
along their boundaries (in a length preserving way) and conformally map the new
surface you get back to the half plane, then the image of the interfaces becomes
an SLE.

Boundary arcs identified

Combined random surface
conformally mapped

to upper half plane

One random surface
Another random surface

One random surface Another random surface
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Stationarity and matching quantum lengths

η

h

I Sketch of interface path η with marks spaced at intervals of equal νh length.

I The random pair (h, η) is stationary with respect to zipping up or down by a
unit of (capacity) time.

I In this pair, h and η are (surprisingly) actually independent of each other.
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Quantum zipper with seed rerandomization

I An important fact about the quantum zipper is that we can stop it at a
“typical time” and completely understand the law of the unexplored quantum
surface, as well as the law of the location of the seed given that surface.

I Try rerandomizing the seed every ε units of time and take a limit as ε tends
to zero.

I The stationary law of h is given by a free boundary GFF. The Loewner
driving measure is a certain quantum gravity measure defined from h.

I The planar map versions of QLE(8/3, 0) and QLE(2, 1) described earlier
should correspond to κ = 6 and κ = 2.

I It seems that all of the mass is at the tip when κ ≤ 1, suggesting that this
procedure just produces an an ordinary path in that case. Kind of makes
sense.
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What happens when γ2 = 8/3 and α = 0?

I The QLE(8/3, 0) should correspond to breadth-first distance exploration of a√
8/3-LQG.

I By branching toward all interior points, we define the “distance” from any
point to the boundary.

I Use bidirectional explorations and symmetries to argue that in fact this
distance is uniquely determined by the field and turns LQG into a metric
space with the law of a Brownian map.

I One can also define a reverse of QLE(8/3, 0), in which Poisson tree of
bubbles is produced.

I One can take sequence of necklaces and independently spin them around like
bicycle lock or slot machine.

I This construction also produces geodesics.
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Results (in various stages...)
I Construction of QLE as local set of GFF: For (α, γ2) pairs along the

curves shown, one can explicitly write down the stationary law of the
Loewner driving measure on the circle boundary and show that this law is
exactly preserved by both ε-time-jump approximations and their limits.

I Description of stationary law: Taking ε to zero, we have a local set with
the property that at almost all time, the not-yet-explored quantum surface
looks like a free boundary GFF, and the growth process is described by an
appropriate Liouville boundary measure.

I Removability: Outer boundary of QLE trace at time t is a removable set.
I Holes: The trace in the κ < 4 family is a.s. Lebesgue measure zero and

“simple” in sense that no holes are cut out. When κ′ ∈ (4, 8) there are holes
cut out, and almost all points are ultimately part of a hole, and the holes
individually look like quantum discs. For larger κ′ one has a space-filling QLE.

I More on holes: Reversing QLE process (for κ′ ∈ (4, 8)): One can produce
quantum disc by zipping in Poisson series of quantum discs of same type.

I An at-long-last TBM/LQG link: We think we can show that the (8/3, 0)
case produces a metric with the same law as the TBM, and that TBM
structure is a.s. determined by the LQG.
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GFF References

I The harmonic explorer and its convergence to SLE(4), Ann. Prob.
[Schramm, S]

I Local sets of the Gaussian free field, Parts I,II, and III, Online lecture
series: www.fields.utoronto.ca/audio/05-06 [S]

I Contour lines of the two-dimensional discrete Gaussian free field, Acta
Math [Schramm, S]

I A contour line of the continuum Gaussian free field, PTRF [Schramm, S]
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Liouville quantum gravity References

I Liouville quantum gravity and KPZ, arXiv [Duplantier, S]

I Duality and KPZ in Liouville quantum gravity, PRL [Duplantier, S]

I Conformal weldings of random surfaces: SLE and the quantum gravity
zipper, arXiv [S]

I Schramm-Loewner evolution and Liouville quantum gravity, PRL
[Duplantier, S]

Jason Miller and Scott Sheffield (MIT) QLE August 1, 2013 36 / 37


