RANDOM PLANAR GEOMETRY, LENT 2020, EXAMPLE SHEET 1

Please send corrections to [jpmiller@statslab.cam.ac.uk

Problem 1.
(i) Show that the cardinality of the set T} of plane trees with k& edges is the kth Catalan number

1 2k
Cp=—— .
Pk ( k )
[Hint: recall that the Catalan numbers satisfy the recursion Cyyq = Z?:o CiCr—;.]
(ii) Show that the Dyck paths of length 2k are in bijection with T} via the contour function map.

Problem 2. Suppose that 7 is a Galton-Watson tree with Geometric(1/2) offspring distribution,
viewed as a plane tree. Show that the conditional law of 7 given that |7| = k is uniformly distributed
on Tk.

Problem 3. Let pj(z,y) = pi(x,y) — pi(x, —y) where pi(x,y) is the transition density for a
standard Brownian motion. Show that p; is the transition density for the process Bix, where
B is a standard Brownian motion with By > 0 and 7 = inf{t > 0 : B, = 0}. That is, for
each 0 < t; < --- < tg and z1,...,x > 0 show that the law of (B ar, ..., Bi,ar) has density
pi, (Bo,x1)py, 4, (x1,72) - - pf, 4, (Tx—1,21). (The process Bis, is Brownian motion killed upon
hitting 0.) [Hint: use the reflection principle.]

Problem 4. Show that the Brownian excursion is well-defined using the following steps.

(i) The densities BE;, 4 on le_ define probability measures which are consistent. That is, show
that for each 0 <t < --- <tpy1 < 1,1 <5 <k —+1 we have that

(e.)
BEtl,...,tj_l,tj+1,...,tk+1 (:1;17 s 7$j—17 xj-i-l) s 7$k+1) = / BEtl,...,tk_;,_l (:131, s 7xk+1)dxj
0

and fooo cee fooo BEtl,...,tk (.1‘1, . ,ZL’k)d.’L'l e d:Bk =1.
(ii) There exists a unique continuous process e: [0, 1] — R whose finite dimensional distributions
are given by BE. [Hint: use the Kolmogorov-Centsov continuity criterion.]

Explain further why e is Hélder-(3 — €) continuous for each € > 0.

Problem 5. Show that the tree (7, d,) encoded by a continuous function g: [0,1] — [0, 00) is an
R-tree.

Problem 6. Suppose that e is a Brownian excursion, let (7,d) be the associated CRT, and let
m: [0,1] — T be the associated projection map. Prove that the following statements hold a.s.

(i) The set of ¢t € [0, 1] so that 7(t) is a leaf in 7 has full Lebesgue measure. [Hint: show that for
each t € (0,1) and € > 0 there a.s. exists s € (t —¢€,t) so that e(s) < e(t) and also s € (t,t+ ¢)
so that e(s) < e(t).]
(ii) Every a € T has multiplicity at most 3. [Hint: Show that the set of local minima of e is
countable and distinct.]
(iii) The set of a € T with multiplicity 3 is countable.

Problem 7.
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(i) Prove that every compact metric space can be isometrically embedded into /., (the space
of bounded real sequences equipped with the metric d((ay), (by)) = sup,, |an — by|). [Hint:
let (xz,,) be a countable dense subset of (X,d) and consider the map X — flo defined by

x — (d(z,zy))02,. Check that this map defines an isometry on (x,) hence extends to an

isometry on X.J
(ii) Deduce the triangle inequality for the Gromov-Hausdorff distance.

Problem 8. Suppose that (X, d), (X’,d’) are compact metric spaces. Show that
. ...
den(X, X') = 3 1%f dis(R)

where the infimum is over all correspondences R in X x X’ and

dis(R) = sup{|d(z, y) — d'(",y/)| : (z,2"), (y,9) € R}
is the distortion of R using the following steps.
(i) Show that dgu (X, X’) = inf{Dy (X, X’) : D is a metric on X [[ X’ with D|x = d, D|x =
d'} where X [] X’ denotes the disjoint union of X and X'.
(ii) Deduce that if dgu(X, X’) < e then R = {(x,2) : D(z,2’) < €} where D is a metric on X [ X’
as above defines a correspondence with dis(R) < 2e. Conclude that 3dis(R) < dau(X, X').
(iii) Also show that if dis(R) < 2¢ then D|x =d, D|x: = d’, and
D(z,2") = inf{d(z,y) + d'(z',y') + €: (y,y/) e R} for z€ X, 2'e€X
defines a metric on X [[ X’ with di(X, X’) < e. Conclude that dgu(X, X') < 5dis(R).

Problem 9. Prove the following version of the local central limit theorem using Stirling’s formula.
Suppose that S(n) = 3", & where the (§,) are i.i.d. with P[§ = 1] = P[§; = —1] = 1/2. Using
Stirling’s formula, prove that for every e > 0

lim sup sup |v/aP [S([ns]) = [ov/n) or lzv/n) +1] - 2p,(0,2)] = 0

n—=00 2R s>e
where ps(x,y) is the transition kernel for Brownian motion.

Problem 10. Suppose that C} is the contour function for 7 chosen uniformly at random from
Tj. Show that the family of functions [0, 1] — R,y defined by ¢ — Cy(2kt)/v/2k is tight using the
following steps. Suppose that i,j € {0,...,2k} with j > i.

(i) Explain why [Ck(j) — Cr(7)| < Cr(j) + Cr(i) — 2min;<,<; Cr(¥)

(ii) Explain why C(j) + Ck(i) — 2min;<<; C(¥) 4 Ci(j — i) [Hint: re-root T so that the ith
vertez in the contour exploration becomes the root.]

(iii) Show that for each p > 1 there exists a constant ¢, > 0 so that E[(Ck(i))?"] < cpi?. [Hint:
use the formula for P[Cy(i) = x] derived in the proof of the convergence of the first order
marginal.]

(iv) Conclude that there exists a constant ¢, > 0 so that for each 0 < s <t < 1 we have that
E[|(C1(2Kt) — Ch(2ks))/VIR) < eyt — 5.

Problem 11. Prove Euler’s formula. That is, show that if m is a map then
4V (m) — #B(m) + #F(m) = 2.

[Hint: consider how V(m), E(m), and F(m) change when removing an edge.]
Deduce that m is a quadrangulation with n faces then #V(m) =n + 2.

Problem 12. Prove that ¢ if is a quadrangulation then it is bipartite.



