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This thesis concerns the analysis of high-dimensional and large-scale data that have become ubiq-

uitous in today’s information-driven age. It consists of four main chapters. The first studies the

problem of variable selection, where out of potentially thousands of measured variables, one wishes

to select just a few that are relevant for a particular phenomenon of interest. Here, we develop

further methodology and theory for Stability Selection, an important variable selection technique

introduced in Meinshausen and Bühlmann (2010) that provides an upper bound on the expected

number of irrelevant variables selected. Unfortunately the bound requires a strong exchangeability

condition and it can be rather weak at times. We introduce a version of the bound that does

not require exchangeability assumptions, and in addition, under some mild conditions, we obtain

tighter bounds that can be used by practitioners to yield more true discoveries for the same level

of error tolerance.

In Chapter 2 we consider the problem of high-dimensional regression when there may be in-

teracting variables. We introduce a new method that searches for interactions in a hierarchical

fashion. The procedure is very general: it can be incorporated into many high-dimensional regres-

sion algorithms for fitting only additive models. It is computationally fast, making use of parallel

processing, and can deal with situations where there may be thousands of variables or more. We

also study some theoretical properties of our method when used in conjunction with the Lasso

(Tibshirani, 1996).

In Chapter 3, we return to the problem of detecting interactions, but this time in the context

of classification with sparse binary data. We develop a method that is able to uncover high order

interactions without requiring that some of their lower order interactions are also informative.

The computational complexity of our procedure is of order pκ, where p is the number of predictor

variables and the value of κ can reach values as low as 1 for very sparse data; in many more general

settings, it will still beat the exponent s obtained when using a brute force search constrained to

order s interactions.

In Chapter 4 we study large-scale regression analysis with sparse data where both the number

of variables and the number of observations may be large and in the order of millions or more.

Our approach for dealing with this data is based on b-bit min-wise hashing (Li and König, 2011),

a dimensionality reduction technique for sparse binary matrices. We propose a variant that also

handles the real-valued case and allows for the construction of variable importance measures. For

linear and logistic models, we give finite-sample bounds on the prediction error of procedures that

perform regression in the new lower-dimensional space after applying our dimension reduction. We

also show that ordinary least squares or ridge regression applied to the reduced data can allow us

to capture interactions in the original data.
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Chapter 1

Variable selection with error

control: Another look at Stability

Selection

1.1 Introduction

The problem of variable selection has received a huge amount of attention over the last 15 years,

motivated by the desire to understand structure in massive datasets that are now routinely en-

countered across many scientific disciplines. It is now very common, e.g. in biological applications,

image analysis and portfolio allocation problems as well as many others, for the number of variables

(or predictors) p that are measured to exceed the number of observations n. In such circumstances,

variable selection is essential for model interpretation.

In a notable recent contribution to the now vast literature on this topic, Meinshausen and

Bühlmann (2010) proposed Stability Selection as a very general technique designed to improve

the performance of a variable selection algorithm. The basic idea is that instead of applying one’s

favourite algorithm to the whole dataset to determine the selected set of variables, one instead

applies it several times to random subsamples of the data of size bn/2c, and chooses those variables

that are selected most frequently on the subsamples. Stability Selection is therefore intimately

connected with bagging (Breiman, 1996, 1999) and subagging (Bühlmann and Yu, 2002).

A particularly attractive feature of Stability Selection is the error control provided by an upper

bound on the expected number of falsely selected variables (Meinshausen and Bühlmann, 2010,

Theorem 1). Such control is typically unavailable when applying the original selection procedure

to the whole dataset, and allows the practitioner to select the threshold τ for the proportion of

subsamples for which a variable must be selected in order for it to be declared significant.

However, the bound does have a couple of drawbacks. Firstly, it applies to the ‘population

version’ of the subsampling process, i.e. to the version of the procedure that aggregates results

over the non-random choice of all
(

n
bn/2c

)
subsamples. Even for n as small as 15, it is unrealistic

to expect this version to be used in practice, and in fact choosing around 100 random subsamples

is probably typical. More seriously, the bound is derived under a very strong exchangeability

assumption on the selection of noise variables (as well as a weak one on the quality of the original

selection procedure, namely that it is not worse than random guessing).

1



2 CHAPTER 1. VARIABLE SELECTION WITH ERROR CONTROL

In this chapter, we develop the methodology and conceptual understanding of Stability Selection

in several respects. We introduce a variant of Stability Selection, where the subsamples are drawn

as complementary pairs from {1, . . . , n}. Thus the subsampling procedure outputs index sets

{(A2j−1, A2j) : j = 1, . . . , B}, where each Aj is a subset of {1, . . . , n} of size bn/2c, and A2j−1 ∩
A2j = ∅. We call this variant Complementary Pairs Stability Selection (CPSS).

The modified procedure has the advantage that the Meinshausen–Bühlmann bound holds re-

gardless of the number of complementary pairs B chosen — even with B = 1. In addition, we show

that there is a corresponding bound for the number of important variables excluded by CPSS.

Our results have no conditions on the original selection procedure, and in particular do not

require the strong exchangeability assumption on the selection of noise variables. Indeed, we argue

that even a precise definition of ‘signal’ and ‘noise’ variables is not helpful in trying to understand

the properties of CPSS, and we instead state the bounds in terms of the expected number of

variables chosen by CPSS that have low selection probability under the base selection procedure,

and the expected number of high selection probability variables that are excluded by CPSS. See

Section 1.2 for further discussion.

The bound on the number of low selection probability variables chosen by CPSS can be signifi-

cantly sharpened under mild shape restrictions (e.g. unimodality or r-concavity) on the distribution

of the proportion of times a variable is selected in both A2j−1 and A2j . We discuss these conditions

in detail in Sections 1.3.2 and 1.3.3 respectively, and compare both the original and new bounds

to demonstrate the marked improvement.

Our improved bounds are based on new versions of Markov’s inequality that hold for random

variables whose distributions are unimodal or r-concave. However, it is important to note at this

point that the results are not just a theoretical contribution; they allow the practitioner to reduce τ

(and therefore select more variables) for the same control of the number of low selection probability

variables chosen by CPSS. In Section 1.3.4, we give recommendations on how a practitioner can

make use of the bounds in applying CPSS.

In Section 1.4.1, we present the results of an extensive simulation study designed to illustrate

the appropriateness of our shape restrictions, and to compare Stability Selection and CPSS with

their base selection procedures. Section 1.4.2 gives an application of the methodology to a colon

cancer dataset.

A review of some of the extensive literature on variable selection can be found in Fan and Lv

(2010). Work related more specifically to Stability Selection includes Bach (2008), who studied the

Bolasso (short for Bootstrapped enhanced Lasso). This involves applying the Lasso (Tibshirani,

1996) to bootstrap (with replacement) samples from the original data, rather than subsampling

without replacement. A final estimate is obtained by applying the Lasso to the intersection of the

set of variables selected across the bootstrap samples.

After the work in this chapter had been completed, there have very recently been a number of

proposals for constructing confidence intervals and finding p-values in high-dimensional regression

settings based on the Lasso and related procedures. These include Zhang and Zhang (2013),

Bühlmann (2013), van de Geer et al. (2013), Javanmard and Montanari (2013), Lockhart et al.

(2013) and Meinshausen (2013).

Various authors, particularly in the machine learning literature, have considered the stability of

a feature selection algorithm, i.e. the insensitivity of the output of the algorithm to variations in

the training set; such studies include Lange et al. (2003), Kalousis et al. (2007), Kuncheva (2007),

Loscalzo et al. (2009) and Han and Yu (2010). Saeys et al. (2008) consider obtaining a final feature
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ranking by aggregating the rankings across bootstrap samples.

1.2 Complementary Pairs Stability Selection

In order to keep our discussion rather general, we only assume that we have vector-valued data

z1, . . . , zn which we take to be a realisation of independent and identically distributed random

elements Z1, . . . , Zn. Informally, we think of some of the components of Zi as being ‘signal vari-

ables’, and others as being ‘noise variables’, though for our purposes it is not necessary to define

these notions precisely. Formally, we let S ⊆ {1, . . . , p} and N := {1, . . . , p} \ S, thought of as the

index sets of the signal and noise variables respectively. A variable selection procedure is a statistic

Ŝn := Ŝn(Z1, . . . , Zn) taking values in the set of all subsets of {1, . . . , p}, and we think of Ŝn as an

estimator of S. As a typical example, we may often write Zi = (Xi, Yi) with the covariate Xi ∈ Rp

and the response Yi ∈ R, and our (pseudo) log-likelihood might be of the form

n∑
i=1

L(Yi, X
T
i β), (1.1)

for some β ∈ Rp. In this context, we regard S := {k : βk 6= 0} as the signal indices, N = {k : βk =

0} as noise indices. Examples from graphical modelling can also be cast within our framework.

Note however that we do not require a (pseudo) log-likelihood of the form (1.1).

We define the selection probability of a variable index k ∈ {1, . . . , p} under Ŝn as

pk,n := P(k ∈ Ŝn) = E(1{k∈Ŝn}). (1.2)

We take the view that for understanding the properties of Stability Selection, the selection proba-

bilities pk,n are the fundamental quantities of interest. Since an application of Stability Selection

is contingent on a choice of base selection procedure Ŝn, all we can hope is that it selects variables

having high selection probability under the base procedure, and avoids selecting those variables

with low selection probability. Indeed this turns out to be the case; see Theorem 1 below.

Of course, 1{k∈Ŝn} has a Bernoulli distribution with parameter pk,n, so we may view 1{k∈Ŝn} as

an unbiased estimator of pk,n (though pk,n is not a model parameter in the conventional sense). The

key idea of Stability Selection is to improve on this simple estimator of pk,n through subsampling.

For a subset A = {i1, . . . , i|A|} ⊂ {1, . . . , n} with i1 < · · · < i|A|, we shall write

Ŝ(A) := Ŝ|A|(Zi1 , . . . , Zi|A|).

Definition 1 (Complementary Pairs Stability Selection). Let {(A2j−1, A2j) : j = 1, . . . , B} be

randomly chosen independent pairs of subsets of {1, . . . , n} of size bn/2c such that A2j−1∩A2j = ∅.
For τ ∈ [0, 1], the Complementary Pairs Stability Selection version of a variable selection procedure

Ŝn is ŜCPSS
n,τ := {k : Π̂B(k) ≥ τ}, where the function Π̂B : {1, . . . , p} → {0, 1

2B ,
1
B , . . . , 1} is given

by

Π̂B(k) :=
1

2B

2B∑
j=1

1{k∈Ŝ(Aj)}. (1.3)

Note that Π̂B(k) is an unbiased estimator of pk,bn/2c, but, in general, a biased estimator of

pk,n. However, by means of the averaging involved in (1.3), we hope that Π̂B(k) will have reduced

variance compared with 1{k∈Ŝn}, and that this increased stability will more than compensate
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for the bias incurred. Indeed, this is the case in other situations where bagging and subagging

have been successfully applied, such as classification trees (Breiman, 1996) or nearest neighbour

classifiers (Biau et al., 2010; Hall and Samworth, 2005; Samworth, 2012).

An alternative to subsampling complementary pairs would be to use bootstrap sampling as in

Bach (2008). We have found that this gives very similar estimates of pk,n, though most of our

theoretical arguments do not apply when the bootstrap is used (the approach in Section 1.3.3.1

is an exception in this regard). In fact, taking subsamples of size bn/2c can be thought of as the

subsampling scheme that most closely mimics the bootstrap (e.g. Dümbgen et al., 2012).

It is convenient at this stage to define another related selection procedure based on sample

splitting.

Definition 2 (Simultaneous Selection). Let {(A2j−1, A2j) : j = 1, . . . , B} be randomly chosen

independent pairs of subsets of {1, . . . , n} of size bn/2c such that A2j−1 ∩ A2j = ∅. For τ ∈ [0, 1],

the Simultaneous Selection version of Ŝn is ŜSIM
n,τ := {k : Π̃B(k) ≥ τ}, where

Π̃B(k) :=
1

B

B∑
j=1

1{k∈Ŝ(A2j−1)}1{k∈Ŝ(A2j)}. (1.4)

For our purposes, Simultaneous Selection is a tool for understanding the properties of CPSS.

However, the special case of B = 1 of Simultaneous Selection was studied by Fan et al. (2009),

and a variant involving all possible disjoint pairs of subsets was considered in Meinshausen and

Bühlmann (2010).

1.3 Theoretical properties

1.3.1 Worst-case bounds

In Theorem 1 below, we show that the expected number of low selection probability variables

chosen by CPSS is controlled in terms of the expected number chosen by the original selection

procedure, with a corresponding result for the expected number of high selection probability vari-

ables not chosen by CPSS. The appealing feature of these results is their generality: they require

no assumptions on the underlying model or on the quality of the original selection procedure, and

they apply regardless of the number B of complementary pairs of subsets chosen.

For θ ∈ [0, 1], let Lθ := {k : pk,bn/2c ≤ θ} denote the set of variable indices that have low

selection probability under Ŝbn/2c, and let Hθ := {k : pk,bn/2c > θ} denote the set of those that

have high selection probability.

Theorem 1. (i) If τ ∈ ( 1
2 , 1], then

E|ŜCPSS
n,τ ∩ Lθ| ≤

θ

2τ − 1
E|Ŝbn/2c ∩ Lθ|.

(ii) Let N̂CPSS
n,τ := {1, . . . , p} \ ŜCPSS

n,τ and N̂n := {1, . . . , p} \ Ŝn. If τ ∈ [0, 1
2 ), then

E|N̂CPSS
n,τ ∩Hθ| ≤

1− θ
1− 2τ

E|N̂bn/2c ∩Hθ|.

In many applications, and for a good base selection procedure, we imagine that the set of

selection probabilities {pk,bn/2c : k = 1, . . . , p} is positively skewed in [0, 1], with many selection
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probabilities being very low (predominantly noise variables), and with just a few being large (in-

cluding at least some of the signal variables). To illustrate Theorem 1(i), consider a situation with

p = 1000 variables and where the base selection procedure chooses 50 of them. Then Theorem 1(i)

shows that on average CPSS with τ = 0.6 selects no more than a quarter of the below average

selection probability variables chosen by Ŝbn/2c.

Our Theorem 1(i) is analogous to Theorem 1 of Meinshausen and Bühlmann (2010). The

differences are that we do not require the condition that {1{k∈Ŝbn/2c} : k ∈ N} is exchangeable,

nor that the original procedure is no worse than random guessing, and our result holds for all

B. The price we pay is that the bound is stated in terms of the expected number of low selection

probability variables chosen by CPSS, rather than the expected number of noise variables, which we

do for the reasons described in Section 1.2. If the exchangeability and random guessing conditions

mentioned above do hold, then, writing q := E|Ŝbn/2c|, we recover

E|ŜCPSS
n,τ ∩N | ≤ 1

2τ − 1

(q
p

)
E|Ŝbn/2c ∩ Lq/p| ≤

1

2τ − 1

(q2

p

)
.

The final bound here was obtained in Theorem 1 of Meinshausen and Bühlmann (2010) for the

population version of Stability Selection.

1.3.2 Improved bounds under unimodality

Despite the attractions of Theorem 1, the following observations suggest there may be scope for

improvement. Firstly, we expect we should be able to obtain tighter bounds as B increases.

Secondly, and more importantly, examination of the proof of Theorem 1(i) shows that our bound

relies on first noting that

1 + Π̃B(k) ≥ 2Π̂B(k), (1.5)

and then applying Markov’s inequality to Π̃B(k). For equality in Markov’s inequality, Π̃B(k) must

be a mixture of point masses at 0 and 2τ−1, but Figure 1.1 suggests that the distribution of Π̃B(k),

which is supported on {0, 1
B ,

2
B , . . . , 1}, can be very different from this. Indeed, our experience,

based on extensive simulation studies, is that when θ is close to q/p (which is where the bound in

Theorem 1(i) is probably of most interest), the distribution of Π̃B(k) over k ∈ Lθ is remarkably

consistent over different data generating processes, and Figure 1.1 is typical. It is therefore natural

to consider placing shape restrictions on the distribution of Π̃B(k) that encompass what we see in

practice, and that yield stronger versions of Markov’s inequality. As a first step in this direction,

we consider the assumption of unimodality.

Theorem 2. Suppose that the distribution of Π̃B(k) is unimodal for each k ∈ Lθ. If τ ∈ { 1
2 +

1
B ,

1
2 + 3

2B ,
1
2 + 2

B , . . . , 1}, then

E|ŜCPSS
n,τ ∩ Lθ| ≤ C(τ,B) θE|Ŝbn/2c ∩ Lθ|,

where, when θ ≤ 1/
√

3,

C(τ,B) =


1

2(2τ − 1− 1/2B)
if τ ∈ (min( 1

2 + θ2, 1
2 + 1

2B + 3
4θ

2), 3
4 ]

4(1− τ + 1/2B)

1 + 1/B
if τ ∈ ( 3

4 , 1].
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Fig. 1. Typical example of (a)–(c) the full probability mass function and (e)–(g) zoomed in from 0.2 onwards of
Π̃25.k/ for k 2Lq=p ( ), alongside (a), (e) the unrestricted, (b), (f) unimodal and (c), (g) � 1

2 -concave distribu-
tions ( ), which have maximum tail probability beyond 0.2 (this situation corresponds to selecting τ D0.6), and
(d) the observed mass function (�) and the extremal � 1

2 -concave mass function (×) on the x�1=2-scale and
(h) tail probabilities from 0.2 onwards for each of the distributions

Figure 1.1: Typical example of (a)–(c) the full probability mass function and (e)–(g) zoomed
in from 0.2 onwards of Π̃25(k) for k ∈ Lq/p (black); alongside (a), (e) the unrestricted; (b), (f)
unimodal; and (c), (g) −1/2-concave distributions respectively (grey), which have maximum tail
probability beyond 0.2. This situation corresponds to selecting τ = 0.6. Shown in (d) are the
observed mass function (circles) and the extremal −1/2-concave mass function (crosses) on the
x−1/2 scale; in (h) tail probabilities from 0.2 onwards for each of the distributions.
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The proof of Theorem 2 is based on a new version of Markov’s inequality (Theorem 9 in the

appendix) for random variables with unimodal distributions supported on a finite lattice. There is

also an explicit expression for C(τ,B) when θ > 1/
√

3, which follows from Theorem 9 in the same

way, but we do not present it here because it is a little more complicated, and because we anticipate

the bound when θ is (much) smaller than 1/
√

3 being of most use in practice. See Section 1.3.4

for further discussion.

Figure 1.2 compares the bounds provided by Theorems 1 and Theorem 2 as a function of τ , for

the illustration discussed after the statement of Theorem 1.Another Look at Stability Selection 61

Fig. 2. Comparison of the bounds on EjŜCPSS
n,τ \Lq=pj for various values of the threshold τ : – – –, original

bound from theorem 1 of Meinshausen and Bühlmann (2010); � - � - �, our worst-case bound; . . . . . . ., unimodal
bound; - - - - - - - , r -concave bound (8); , true value of EjŜCPSS

n,τ \ Lq=pj for a simulated example (in this
case pD1000, qD50 and the number of signal variables was 8)

but we do not present it here because it is a little more complicated, and because we anticipate
the bound when θ is (much) smaller than 1=

√
3 being of most use in practice. See Section 3.4

for further discussion.
Fig. 2 compares the bounds that are provided by theorem 1 and theorem 2 as a function of

τ , for the illustration discussed after the statement of theorem 1.

3.3. Further improvements under r-concavity
The unimodal assumption allows for a significant improvement in the bounds that are attainable
from a naive application of Markov’s inequality. However, Fig. 1 suggests that further gains
may be realized by placing tighter constraints on the family of distributions for Π̃B.k/ that we
consider, to match better the empirical distributions that we see in practice.

A very natural constraint to impose on the distribution of Π̃B.k/ is log-concavity. By this,
we mean that, if f denotes the probability mass function of Π̃B.k/, then the linear interpol-
ant to {.i, f.i=B// : i= 0, 1, . . . , B} is a log-concave function on [0, 1]. Log-concavity is a shape
constraint that has received a large amount of attention recently (e.g. Walther (2002), Dümb-
gen and Rufibach (2009) and Cule et al. (2010)), and at first sight it seems reasonable in our
context, because, if the summands in expression (4) were independent, then we would have
Π̃B.k/∼ .1=B/ Bin.B, p2

k,�n=2�/, which is log-concave.
It is indeed possible to obtain a version of Markov’s inequality under log-concavity that leads

to another improvement in the bound on E|ŜCPSS
n,τ ∩ Lθ|. However, we found that, in practice,

the dependence structure of the summands in expression (4) meant that the log-concavity con-
straint was a little too strong. We therefore consider instead the class of r-concave distributions,
which we claim defines a continuum of constraints that interpolate between log-concavity and
unimodality (see propositions 1 and 2 below). This constraint has also been studied recently
in the context of density estimation by Seregin and Wellner (2010) and Koenker and Mizera
(2010); see also Dharmadhikari and Joag-Dev (1988).

To define the class, we recall that the rth generalized mean Mr.a, b;λ/ of a, b�0 is given by

Mr.a, b;λ/={.1−λ/ar +λbr}1=r

Figure 1.2: Comparison of the bounds on E|ŜCPSS
n,τ ∩ Lq/p| for different values of the threshold τ :

the original bound from Theorem 1 of Meinshausen and Bühlmann (2010) (long dashes), our worst
case bound (dots and dashes), the unimodal bound (dots) and the r-concave bound (1.8) (short
dashes). The solid line is the true value of E|ŜCPSS

n,τ ∩ Lq/p| for a simulated example. In this case
p = 1000, q = 50 and the number of signal variables was 8.

1.3.3 Further improvements under r-concavity

The unimodal assumption allows for a significant improvement in the bounds attainable from a

naive application of Markov’s inequality. However, Figure 1.1 suggests that further gains may be

realised by placing tighter constraints on the family of distributions for Π̃B(k) that we consider,

in order to match better the empirical distributions that we see in practice.

A very natural constraint to impose on the distribution of Π̃B(k) is log-concavity. By this,

we mean that, if f denotes the probability mass function of Π̃B(k), then the linear interpolant

to {(i, f(i/B)) : i = 0, 1, . . . , B} is a log-concave function on [0, 1]. Log-concavity is a shape

constraint that has received a great deal of attention recently (e.g. Cule et al. (2010); Dümbgen

and Rufibach (2009); Walther (2002)), and at first sight it seems reasonable in our context, because

if the summands in (1.4) were independent, then we would have Π̃B(k) ∼ 1
BBin(B, p2

k,bn/2c), which

is log-concave.

It is indeed possible to obtain a version of Markov’s inequality under log-concavity that leads

to another improvement in the bound on E|ŜCPSS
n,τ ∩ Lθ|. However, we found that in practice,

the dependence structure of the summands in (1.4) meant that the log-concavity constraint was

a little too strong. We therefore consider instead the class of r-concave distributions, which we

claim defines a continuum of constraints that interpolate between log-concavity and unimodality
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(see Propositions 3 and 4 below). This constraint has also been studied recently in the context

of density estimation by Seregin and Wellner (2010) and Koenker and Mizera (2010); see also

Dharmadhikari and Joag-Dev (1988).

To define the class, we recall that the rth generalised mean Mr(a, b;λ) of a, b ≥ 0 is given by

Mr(a, b;λ) = {(1− λ)ar + λbr}1/r

for r > 0. This is also well-defined for r < 0 if we take Mr(a, b;λ) = 0 when ab = 0, and define

0r =∞. In addition, we may define

M0(a, b;λ) := lim
r→0

Mr(a, b;λ) = a1−λbλ

M−∞(a, b;λ) := lim
r→−∞

Mr(a, b;λ) = min(a, b).

We are now in a position to define r-concavity.

Definition 3. A non-negative function f on an interval I ⊂ R is r-concave if for every x, y ∈ I
and λ ∈ (0, 1), we have

f((1− λ)x+ λy) ≥Mr(f(x), f(y);λ).

Definition 4. A probability mass function f supported on {0, 1
B ,

2
B , . . . , 1} is r-concave if the

linear interpolant to {(i, f(i/B)) : i = 0, 1, . . . , B} is r-concave.

When r < 0, it is easy to see that f is r-concave if and only if fr is convex. Let Fr denote the

class of r-concave probability mass functions on {0, 1
B ,

2
B , . . . , 1}. Then each f ∈ Fr is unimodal,

and as Mr(a, b;λ) is non-decreasing in r for fixed a and b, we have Fr ⊃ Fr′ for r < r′. Furthermore,

f is unimodal if it is −∞-concave, and f is log-concave if it is 0-concave. The following two results

further support the interpretation of r-concavity for r ∈ [−∞, 0] as an interpolation between

log-concavity and unimodality.

Proposition 3. A function f is log-concave if and only if it is r-concave for every r < 0.

Proposition 4. Let f be a unimodal probability mass function supported on {0, 1
B ,

2
B , . . . , 1} and

suppose both that f(0) < . . . < f( lB ) = f( l+1
B ) = . . . = f( uB ) and that f( uB ) > f(u+1

B ) > . . . > f(1),

for some l ≤ u. Then f is r-concave for some r < 0.

In Proposition 11 in the appendix of this chapter, we present a result that characterises those

r-concave distributions that attain equality in a version of Markov’s inequality for random variables

with r-concave distributions on {0, 1
B ,

2
B , . . . , 1}. If we assume that the distribution of Π̃B(k) is

r-concave for all k ∈ Lθ, using (1.5), for these variables we can obtain a bound of the form

P(Π̂B(k) ≥ τ) ≤ D(p2
k,bn/2c, 2τ − 1, B, r) ≤ D(θ2, 2τ − 1, B, r) (1.6)

where D(η, t, B, r) denotes the maximum of P(X ≥ t) over all r-concave random variables sup-

ported on {0, 1
B ,

2
B , . . . , 1} with E(X) ≤ η. Although D does not appear to have a closed form, it

is straightforward to compute numerically, as we describe in Section 1.5.4. The lack of a simple

form means a direct analogue Theorem 2 is not available. We can nevertheless obtain the following

bound on the expected number of low selection probability variables chosen by CPSS:

E|ŜCPSS
n,τ ∩ Lθ| =

∑
k∈Lθ

P(Π̂B(k) ≥ τ) ≤ D(θ2, 2τ − 1, B, r)|Lθ|. (1.7)
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Our simulation studies suggest that r = −1/2 is a sensible choice to use for the bound. In

other words, if f denotes the probability mass function of Π̃B(k), then the linear interpolant

to {(i, f(i/B)−1/2) : i = 0, 1, . . . , B} is typically well approximated by a convex function. This

is illustrated in the bottom left panel of Figure 1.1 (note that the right-hand tail in this plot

corresponds to tiny probabilities).

1.3.3.1 Lowering the threshold τ

The bounds obtained thus far have used the relationship (1.5) to convert a Markov bound for Π̃B(k)

into a corresponding one for the statistic of interest, Π̂B(k). The advantage of this approach is

that E(Π̃B(k)) = p2
k,bn/2c is much smaller than E(Π̂B(k)) = pk,bn/2c for variables with low selection

probability, so the Markov bound is quite tight. However, for τ close to 1/2, the inequality (1.5)

starts to become weak, and bounds can only be obtained for τ > 1/2 in any case.

To solve this problem, we can apply our versions of Markov’s inequality directly to Π̂B(k).

We have found, through our simulations, that for variables with low selection probability, the

distribution of Π̂B(k) can be modelled very well as a −1/4-concave distribution (see Figure 1.3).

That the distribution of Π̂B(k) is closer to log-concavity than that of Π̃B(k) is intuitive because

although the summands in (1.3) are not independent, terms involving subsamples which have little

overlap will be close to independent. If we assume that Π̃B(k) is −1/2-concave and that Π̂B(k) is

−1/4-concave for all k ∈ Lθ, we can obtain our best bound

E|ŜCPSS
n,τ ∩ Lθ| ≤ min{D(θ2, 2τ − 1, B,−1/2), D(θ, τ, 2B,−1/4)}|Lθ|, (1.8)

which is valid for all τ ∈ (θ, 1], provided we adopt the convention that D(·, t, ·, ·) = 1 for t ≤ 0.

The resulting improvements in the bounds can been seen in Figure 1.2. Note the kink in Figure 1.2

for the r-concave bound (1.8) just before τ = 0.6. This corresponds to the transition from where

D(θ, τ, 2B,−1/4) is smaller to where D(θ2, 2τ − 1, B,−1/2) is smaller.

We applied the algorithm described in Section 1.5.4 to produce tables of values of

min{D(θ2, 2τ − 1, 50,−1/2), D(θ, τ, 100,−1/4)}

over a grid of θ and τ values; see Table 1.2 and Table 1.3.

1.3.4 How to use these bounds in practice

The quantities |Lθ| and E|Ŝbn/2c ∩Lθ|, which appear on the right hand sides of the bounds, will in

general be unknown to the statistician. Thus when using the bounds, they will typically need to

be replaced by p and q respectively. In addition, several parameters must be selected, and in this

section we go through each of these in turn and give guidance on how to choose them. Below, we

also outline how to use the r-concave bound to obtain an upper bound on the p-value for the null

hypothesis Hk
0 : k ∈ Lθ. These surrogates for p-values can then be used as part of a multiple testing

procedure or reported as a measure of significance of each individual variable. Our discussion will

focus primarily on the r-concave bound (1.8), though much of what is said will be equally valid

for the worst case or unimodal bounds.
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Fig. 3. Typical example of the probability mass function of Π̂25.k/ for k 2Lq=p ( , �), alongside the � 1
4 -con-

cave distribution ( , �), which has maximum tail probability beyond 0.4

approach is that E{Π̃B.k/}= p2
k,�n=2� is much smaller than E{Π̂B.k/}= pk,�n=2� for variables

with low selection probability, so the Markov bound is quite tight. However, for τ close to 1
2 ,

inequality (5) starts to become weak, and bounds can only be obtained for τ > 1
2 in any case.

To solve this problem, we can apply our versions of Markov’s inequality directly to Π̂B.k/.
We have found, through our simulations, that, for variables with low selection probability, the
distribution of Π̂B.k/ can be modelled very well as a − 1

4 -concave distribution (Fig. 3). That the
distribution of Π̂B.k/ is closer to log-concavity than that of Π̃B.k/ is intuitive because, although
the summands in expression (3) are not independent, terms involving subsamples which have
little overlap will be close to independent. If we assume that Π̃B.k/ is − 1

2 concave and that Π̂B.k/

is − 1
4 concave for all k ∈Lθ, we can obtain our best bound

E|ŜCPSS
n,τ ∩Lθ|�min{D.θ2, 2τ −1, B,−1

2 /, D.θ, τ , 2B, − 1
4 /}|Lθ|, .8/

which is valid for all τ ∈ .θ, 1], provided that we adopt the convention that D.·, t, · , ·/ = 1 for
t � 0. The resulting improvements in the bounds can been seen in Fig. 2. Note the kink in
Fig. 2 for the r-concave bound (8) just before τ = 0:6. This corresponds to the transition from
where D.θ, τ , 2B, − 1

4 / is smaller to where D.θ2, 2τ −1, B, − 1
2 / is smaller.

We applied the algorithm that is described in Appendix A.4 to produce tables of values of

min{D.θ2, 2τ −1, 50,−1
2 /, D.θ, τ , 100,− 1

4 /}

over a grid of θ- and τ -values; see Table 1 and Table 2.

3.4. How to use these bounds in practice
The quantities |Lθ| and E|Ŝ�n=2� ∩Lθ|, which appear on the right-hand sides of the bounds, will
in general be unknown to the statistician. Thus, when using the bounds, they will typically need
to be replaced by p and q respectively. In addition, several parameters must be selected, and in
this section we go through each of these in turn and give guidance on how to choose them.

3.4.1. Choice of B
We recommend B = 50 as a default value. Choosing B larger than this increases the computa-
tional burden, and may lead to the r-concavity assumptions being violated.

Figure 1.3: A typical example of the probability mass function of Π̂25(k) for k ∈ Lq/p (black bars
and circles), alongside the −1/4-concave distribution (grey bars and crosses), which has maximum
tail probability beyond 0.4.

1.3.4.1 Choice of parameters

Choice of B. We recommend B = 50 as a default value. Choosing B larger than this increases

the computational burden, and may lead to the r-concavity assumptions being violated.

Choice of θ. As mentioned at the beginning of Section 1.3.2, θ = q/p is a natural choice. In

other words, we regard the below average selection probability variables as the irrelevant variables.

Other choices of θ are possible, but the use of (1.6) and (1.7) to construct the bound suggests that

the inequality will be tightest when most of the variables have a selection probability close to θ.

Choice of q and threshold τ . One can regard the choice of q = E(|Ŝbn/2c|) (which is usually

fixed through a tuning parameter λ) as part of the choice of the base selection procedure. One

option is to fix q by varying λ at each evaluation of the selection procedure until it selects q

variables. However, if the number of variables selected at each iteration is unknown in advance

(e.g. if λ is fixed, or if cross-validation is used to choose λ at each iteration), then q can be

estimated by
∑p
k=1 Π̂B(k).

An important point to note is that although choosing λ or q is usually crucial when carrying out

variable selection, this is not the case when using CPSS. Our experience is that the performance

of CPSS is surprisingly insensitive to the choice of q (see also Meinshausen and Bühlmann (2010)).

That is to say, Lq/p does not vary much as q varies, and also the final selected sets for different

values of q tend to be similar (where different thresholds are chosen to control the selection of

variables in Lq/p at a pre-specified level). Thus, when using CPSS, it is the threshold τ that plays

a role similar to that of a tuning parameter for the base procedure. The great advantage of CPSS is

that our bounds allow one to choose τ to control the expected number of low selection probability

variables selected.

To summarise: we recommend as a sensible default CPSS procedure taking B = 50 and θ = q/p.

We then choose τ using the bound (1.8) with |Lθ| replaced by p to control the expected number

of low selection probability variables chosen.
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1.3.4.2 Obtaining upper bounds on p-values

Assume that Π̃B(k) is −1/2-concave and Π̂B(k) is −1/4-concave for all k ∈ Lθ, and let Hk
0 denote

the hypothesis that k ∈ Lθ (i.e. that pk,bn/2c ≤ θ). To carry out the significance test for Hk
0 , we

use Π̂B(k) as a test statistic. Writing π̂B(k) for the observed value of the test statistic, we have

that

sup
pk,bn/2c≤θ

Ppk,bn/2c(Π̂B(k) ≥ π̂B(k)) ≤ min{D(θ2, 2τ − 1, B,−1/2), D(θ, τ, 2B,−1/4)},

and thus the right-hand side is an upper bound on a p-value for Hk
0 .

1.4 Numerical properties

1.4.1 Simulation Study

In this section we investigate the performance and validity of the bounds derived in the previous

section by applying CPSS to simulated data. We consider both linear and logistic regression and

different values of p and n. In each of these settings, we first generate independent explanatory

vectors X1, . . . , Xn with each Xi ∼ Np(0,Σ). We use a Toeplitz covariance matrix Σ with entries

Σij = ρ||i−j|−p/2|−p/2,

and we look at various values of ρ in [0, 1). So the correlation between the components decays

exponentially with the distance between them in Zp.
For linear regression, we generate a vector of errors ε ∼ Nn(0, σ2I) and set

Y = Xβ + ε,

where the design matrix X has ith row XT
i . The error variance σ2 is chosen to achieve different

values of the signal-to-noise ratio (SNR), which we define here by

SNR2 =
E‖Xβ‖2
E‖ε‖2 .

For logistic regression, we generate independent responses

Yi ∼ Bin(1, pi), i = 1, . . . , n,

where

log

(
pi

1− pi

)
= γXT

i β.

Here γ is a scaling factor which is chosen to achieve a particular Bayes error rate.

In both cases, we fix the p-dimensional vector of coefficients β to have s � p non-zero com-

ponents, s/2 of which we choose as equally spaced points within [−1,−0.5] with the remaining

s/2 equally spaced in [0.5, 1]. The indices of the non-zero components, S, are chosen to follow

a geometric progression up to rounding, with first term 1 and (s + 1)th term p + 1. The values

are then randomly assigned to each index in S, but this choice is then fixed for each particular

simulation setting.
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With ρ > 0, this setup will have several signal variables correlated amongst themselves, and also

some signal correlated with noise. In this way, the framework above includes a very wide variety

of different data generating processes on which we can test the theory of the previous section.

By varying the base selection procedure, its tuning parameters, the values of ρ, n, p, s and

also the SNR and Bayes error rates, we have applied CPSS in several hundred different simulation

settings. For reasons of space, we present only a subset of these numerical experiments below, but

the results from those omitted are not qualitatively different.

In the graphs which follow, we look at CPSS applied to the Lasso (Tibshirani, 1996), which

we implemented using the package glmnet (Friedman et al., 2010) in R (R Development Core

Team, 2005). We follow the original stability selection procedure put forward in Meinshausen

and Bühlmann (2010) and compare this to the method suggested by our r-concave bound (1.8).

Thus we first choose the level l at which we wish to control the expected number of low selection

probability variables (so we aim to have E|ŜCPSS
n,τ ∩ Lq/p| ≤ l). Then we fix q =

√
0.8lp and set

the threshold τ at 0.9. This ensures that, according to the original worst case bound, we control

the expected number of low selection probability variables selected at the required level. In the

r-concave case, we take our threshold as

τ̃ = min{τ ∈ {0, 1/2B, . . . , 1} : min{D(q2/p2, 2τ − 1, B,−1/2), D(q/p, τ, 2B,−1/4)} ≤ l/p}.

We also give the results one would obtain using the Lasso alone, but with the benefit of an oracle

which knows the optimal value of the tuning parameter λ. That is, we take Ŝλ
∗

n as our selected

set, where

λ∗ = inf{λ : E|Ŝλn ∩ Lq/p| ≤ l},

and Ŝλn is the selected set when using the Lasso with tuning parameter λ applied to the whole

dataset.

We present all of our results relative to the performance of CPSS using an oracle-driven thresh-

old τ∗, where τ∗ is defined by

τ∗ = min{τ ∈ {0, 1/2B, . . . , 1} : E|ŜCPSS
n,τ ∩ Lq/p| ≤ l}.

Referring to Figures 1.4-1.7, the heights of the black bars, grey bars and crosses are given by

E|ŜCPSS
n,0.9 ∩ S|

E|ŜCPSS
n,τ∗ ∩ S|

,
E|ŜCPSS

n,τ̃ ∩ S|
E|ŜCPSS

n,τ∗ ∩ S|
and

E|Ŝλ∗n ∩ S|
E|ŜCPSS

n,τ∗ ∩ S|
,

respectively. Thus the heights of the black and grey bars relate to the loss of power in using the

threshold suggested by the corresponding bounds. In all of our simulations, we used B = 50. Each

scenario was run 500 times, and in order to determine the set Lq/p, in each scenario, we applied

the particular selection procedure Ŝbn/2c to 50,000 independent datasets.

It is immediately obvious from the results that using the r-concave bound, we are able to

recover significantly more variables in S than when using the the worst case bound. Furthermore,

though it is not shown in the graphs explicitly, we also achieve the required level of error control

in all but one case (where the r-concavity assumption fails). In fact the one particular example

is hardly exceptional in that we have E|ŜCPSS
n,τ̃ ∩ Lq/p| = 1.034 > 1 = l. Thus in close accordance

with our theory, there are no significant violations of the r-concave bound.

We also see that the loss in power due to using τ̃ rather than τ∗, is very low. In almost
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all of the scenarios, we are able to select more than 75% of the signal we could select with the

benefit of an oracle, and usually much more than this. It is interesting that the performance of the

oracle CPSS and oracle Lasso procedures are fairly similar. The key advantage of CPSS is that it

allows for error control whereas there is in general no way of determining (or even approximating)

the optimal λ∗ that achieves the required error control. In fact, the performance of CPSS with

our bound is only slightly worse then that of the oracle Lasso procedure, and in a few cases,

particularly when ρ is small, it is even slightly better. In the cases where ρ ≥ 0.75, we see that

CPSS is not quite as powerful. This is because having such large correlations between variables

causes {pk,bn/2c : k = 1, . . . , p} to be relatively spread out in [0, 1]. As explained in Section 1.3.4,

we expect our bound to weaken in this situation. However, even when the correlation is as high as

0.9, we recover a sizeable proportion of the signal we would select had we used the optimal τ∗.

1.4.2 Real data example

Here we illustrate our CPSS methodology on the widely studied colon dataset of Alon et al.

(1999), freely available at http://microarray.princeton.edu/oncology/affydata/index.html . The

data consist of 2000 gene expression levels from 40 colon tumour samples and 22 normal colon

tissue samples, measured using Affymetrix oligonucleotide arrays. Our goal is to identify a small

subset of genes which we are confident are linked with the development of colon cancer. Such a

task is important for improving scientific understanding of the disease and for selecting genes as

potential drug targets.

The data were first preprocessed by averaging over the expression levels for repeated genes

(which had been tiled more than once on each array), log-transforming each gene expression level,

standardising each row to have mean zero and unit variance, and finally removing the columns

corresponding to control genes, so that p = 1908 genes remained. The transformation and stan-

dardisation are very common preprocessing steps to reduce skewness in the data and help eliminate

the effects of systematic variations between different microarrays (see for example Amaratunga and

Cabrera (2004) and Dudoit et al. (2002)).

We applied CPSS with `1 (Lasso) penalised logistic regression as the base procedure, with

B = 50, and choosing τ both using the r-concave bound of Section 1.3.4, and the original bound of

Meinshausen and Bühlmann (2010). We estimated the expected classification error in the two cases

by averaging over 128 repetitions of stratified random subsampling validation, taking 8 cancerous

and 4 normal observations in each test set. Thus when applying CPSS, we had n = 40+22−12 = 50.

We looked at q = 8, 10 and 12, and set τ to control E|ŜCPSS
n,τ ∩ Lq/p| ≤ l with l = 0.1 and 0.5.

Rather than subsampling completely at random when using CPSS, we also stratified these

subsamples to include the same proportion of cancerous to normal samples as in the training data

supplied to the procedure. Without this step, some of the subsamples may not include any samples

from one of the classes, and applying Ŝbn/2c to such a subsample would give misleading results.

Using stratified random subsampling is still compatible with our theory, provided that E|ŜCPSS
n,τ ∩Lθ|

is interpreted as an expectation over random data which contain the same class proportions as

observed in the original data. In general, this approach of stratified random subsampling is useful

when the response is categorical.

The results in Table 1.1 show that, as expected, the new error bounds allow one to select

more variables than the conservative bounds of Meinshausen and Bühlmann (2010) for the same

level of error control, and as a consequence, the expected prediction error is reduced. Figure 1.8

http://microarray.princeton.edu/oncology/affydata/index.html
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Figure 1.4: Linear regression with n = 200, p = 1000. The black and grey bars correspond to the
worst case and r-concave procedures respectively, with higher bars being preferred. The crosses
correspond to a theoretical oracle-driven Lasso procedure (see the beginning of Section 1.4.1 for
further details). The y-axis label gives the error control level l.

Figure 1.5: As above but n = 500, p = 2000.



1.4. NUMERICAL PROPERTIES 15

Figure 1.6: As Figure 1.4 but with logistic regression (and n = 200, p = 1000).

Figure 1.7: As above but with with n = 500, p = 2000.
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Table 1.1: Improvement in classification error (%) over the naive classifier which always determines
the data to be from a cancerous tissue. Thus the classification errors are 33 1

3% minus these
quantities. We also give the average number of variables selected in parentheses.

Worst case procedure r-concave procedure
q l = 0.1 l = 0.5 l = 0.1 l = 0.5
8 4.9 (0.5) 11.6 (1.1) 16 (2.3) 17.5 (5.1)
10 0.9 (0.1) 10.6 (0.9) 14.7 (1.6) 15.8 (4.4)
12 0.0 (0.0) 9.4 (0.8) 12.8 (1.1) 15.8 (4.1)

Figure 1.8: For l = 0.1 (left) and l = 0.5 (right), we have plotted the proportion of times a gene
was selected by our r-concave CPSS procedure for all genes which were selected at least 5% of the
time among the 128 repetitions. Solid black means the gene was selected in every repetition, and
white means it was never selected. Thus dark vertical lines indicate that the choice of q has little
effect on the end result of CPSS.

demonstrates the robustness of the selected set to the different values of q. Finally, we also applied

CPSS on the entire dataset with q = 8 and B = 50 and using the r-concave bound of Section 1.3.4

to choose τ to control E|ŜCPSS
n,τ ∩Lq/p| ≤ 0.5 (cf. Figure 1.9). We see that with just 5 genes out of

1908, we manage to separate the two classes quite well.

1.5 Appendix

1.5.1 Proof of Theorem 1

The proof of Theorem 1 requires the following lemma.

Lemma 5. (i) If τ ∈ ( 1
2 , 1], then

P(k ∈ ŜCPSS
n,τ ) ≤ 1

2τ − 1
p2
k,bn/2c.

(ii) If τ ∈ [0, 1
2 ), then

P(k /∈ ŜCPSS
n,τ ) ≤ 1

1− 2τ
(1− pk,bn/2c)2.

Figure 1.9: A heatmap of the normalised, centered, log intensity values of the genes selected when
we use the r-concave bound to choose τ such that we control E|ŜCPSS

n,τ ∩ Lq/p| ≤ 0.5.
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Proof. (i) Let A = {(A2j−1, A2j) : j = 1, . . . , B} be randomly chosen independent pairs of subsets

of {1, . . . , n} of size bn/2c such that A2j−1 ∩A2j = ∅. Then

0 ≤ 1

B

B∑
j=1

{
1− 1{k∈Ŝ(A2j−1)}

}{
1− 1{k∈Ŝ(A2j)}

}
= 1− 2Π̂B(k) + Π̃B(k). (1.9)

Now E{Π̃B(k)} = E{E(Π̃B(k)|A)} = p2
k,bn/2c because Ŝ(A2j−1) and Ŝ(A2j) are independent con-

ditional on A. It follows using (1.9) that

P(k ∈ ŜCPSS
n,τ ) = P{Π̂B(k) ≥ τ} ≤ P

{
1
2 (1 + Π̃B(k)) ≥ τ

}
= P{Π̃B(k) ≥ 2τ − 1}

≤ 1

2τ − 1
p2
k,bn/2c, (1.10)

where we have used Markov’s inequality in the final step.

(ii) Define Π̂N̂n
B and Π̃N̂n

B by replacing Ŝn with N̂n := {1, . . . , p} \ Ŝn in the definitions of Π̂B

and Π̃B respectively. Then, using the bound corresponding to (1.9) and Markov’s inequality again,

P(k /∈ ŜCPSS
n,τ ) = P{Π̂B(k) < τ} = P{Π̂N̂n

B (k) > 1− τ} ≤ P{Π̃N̂n
B (k) > 1− 2τ}

≤ 1

1− 2τ
(1− pk,bn/2c)2.

Proof of Theorem 1. (i) Note that

E|Ŝbn/2c ∩ Lθ| = E
( p∑
k=1

1{k∈Ŝbn/2c}1{pk,bn/2c≤θ}

)
=

p∑
k=1

pk,bn/2c1{pk,bn/2c≤θ}.

By Lemma 5, it follows that

E|ŜCPSS
n,τ ∩ Lθ| = E

( p∑
k=1

1{k∈ŜCPSS
n,τ }1{pk,bn/2c≤θ}

)
=

p∑
k=1

P(k ∈ ŜCPSS
n,τ )1{pk,bn/2c≤θ}

≤ 1

2τ − 1

p∑
k=1

p2
k,bn/2c1{pk,bn/2c≤θ} ≤

θ

2τ − 1
E|Ŝbn/2c ∩ Lθ|.

(ii) This proof is very similar to that of (i) and is omitted.

1.5.2 Proof of Theorem 2.

The proof of Theorem 2 requires several preliminary results, and we use the following notation.

Let G denote the finite lattice {0, 1
B ,

2
B , . . . , 1} = 1

BZ ∩ [0, 1]. If f is a probability mass function

on G, we write fi for f(i/B), thereby associating f with (f0, f1, . . . , fB) ∈ RB+1.

For t ∈ G, we denote the probability that a random variable distributed according to f takes

values greater than or equal to t by Tt(f) :=
∑
i≥Bt fi. We also write E(f) :=

∑B
i=1

i
B fi for the

expectation of this random variable and supp(f) := {i/B ∈ G : fi > 0} for the support of f .

Let U be the set of all unimodal probability mass functions f on G, and let Uη := {f ∈ U :

E(f) ≤ η}. We consider the problem of maximising Tt over f ∈ Uη. Since the cases η = 0 and

t ≤ η are trivial, there is no loss of generality in assuming throughout that 0 < η < t and t ∈ G,
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so in particular t ≥ 1/B.

Lemma 6. There exists a maximiser of Tt in Uη.

Proof. Since Tt : RB+1 → R is linear and therefore continuous, it suffices to show that Uη ⊂ RB+1

is closed and bounded. Now Uη is bounded as Uη ⊂ [0, 1]B+1. Moreover, the hyperplane H =

{(x0, . . . , xB) : x0 + x1 + . . . + xB = 1} is closed. Also, E is a continuous function on RB+1, so

E−1([0, η]) is closed. Now let O = {f ∈ RB+1 : f is not unimodal}. If f ∈ O then there must

exist i1 < i2 < i3 such that fi2 < min{fi1 , fi3}. Clearly this inequality must hold for all g in a

sufficiently small open ball about f , so O is open. We see that

Uη = H ∩ E−1([0, η]) ∩Oc.

Thus Uη is an intersection of closed sets and hence is closed.

We will make frequent use of the following simple proposition in subsequent proofs.

Proposition 7. Suppose that (x1, . . . , xn) ∈ Rn and (y1, . . . , yn) ∈ Rn satisfy

n∑
i=1

xi =

n∑
i=1

yi,

and that there exists some i∗ ∈ {1, . . . , n} with xi ≥ yi for all i ≤ i∗ and xi ≤ yi for all i > i∗.

Then
n∑
i=1

ixi ≤
n∑
i=1

iyi,

with equality if and only if xi = yi for i = 1, . . . , n.

Proof. We have ∑
i≤i∗

i(xi − yi) ≤ i∗
∑
i≤i∗

(xi − yi) = i∗
∑
i>i∗

(yi − xi) ≤
∑
i>i∗

i(yi − xi).

The following result characterises the extremal elements of Uη in the sense of maximising the

tail probability Tt. In particular, it shows that such extremal elements can take only one of two

simple forms.

Proposition 8. Any maximiser f∗ ∈ Uη of Tt satisfies

(i) E(f∗) = η,

(ii) writing iM for Bmax(supp(f∗)), we have either

(a) f∗0 > f∗1 = f∗2 = . . . = f∗iM−1
≥ f∗iM , or

(b) iM = t and f∗0 = f∗1 = . . . = f∗iM−1
≤ f∗iM .

Proof. (i) Suppose f∗ ∈ Uη maximises Tt, but that E(f∗) < η. Define im := min(supp(f∗)). As

η < τ , we must have im < Bt. Define g by

gi =


0 if i < im

f∗i − ε1 if i = im

f∗i + ε2 if i > im
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where ε1, ε2 > 0 are chosen such that
∑B
i=0 gi = 1, but are small enough that E(g) ≤ η. Then

g ∈ Uη but Tt(g) > Tt(f
∗), a contradiction.

(ii) Suppose first that there exists a mode of f∗ which is at least t. Let g ∈ Uη be such that

gi = f∗i for i ≥ Bt and gi = 1
Bt

∑Bt−1
`=0 f∗` for i < Bt. As f∗0 ≤ f∗1 ≤ . . . ≤ f∗Bt, we can apply

Proposition 7 to see that

E(g) ≤ E(f∗). (1.11)

But Tt(g) = Tt(f
∗), so by optimality of f∗ we must have equality in (1.11). Thus Proposition 7

gives us that f∗ = g.

Next, define h ∈ Uη by hi = f∗i for i < Bt, hBt = Tt(f
∗), and hi = 0 for i > Bt. Then

Tt(h) = Tt(f
∗). Again Proposition 7 and the optimality of f∗ give that f∗ = h. Thus f∗ satisfies

property (ii)(b) of the theorem.

Now suppose that there is no mode of f∗ which is at least t, so f∗Bt ≥ f∗Bt+1 ≥ . . . ≥ f∗B . Let

g ∈ Uη satisfy gi = f∗i for i ≥ Bt and g1 = . . . = gBt. We must have g0 > g1, otherwise f∗ would

have a mode at t. As Tt(g) = Tt(f
∗), optimality of f∗ and Proposition 7 imply f∗ = g.

Finally, let h ∈ Uη satisfy hi = f∗i for i ≤ Bt and hBt = hBt+1 = . . . = hk−1 ≥ hk, where k and

hk are chosen such that
∑B
i=0 hi = 1. As before, Proposition 7 allows us to deduce that f∗ = h.

Thus f∗ satisfies property (ii)(a) of the theorem.

We are now in a position to state Markov’s inequality for random variables with unimodal

distributions on G, which may be of some independent interest.

Theorem 9 (Markov’s inequality under unimodality). Let X be a random variable with a unimodal

distribution on G = {0, 1
B ,

2
B , . . . , 1}, and let t ∈ G. If η := E(X) ≤ 1/3, then

P(X ≥ t) ≤



2η − t+ 1
B

t+ 1
B

if t ∈
(
η, min

(
3
2η + 1

2B , 2η
)]

η

2t− 1
B

if t ∈
(
min

(
3
2η + 1

2B , 2η
)
, 1

2

]
2η(1− t+ 1

B )

1 + 1
B

if t ∈
(

1
2 , 1

]
.

Let d be defined by

d := d(η,B) = −2
(
η − 1

2

)
(6η + 1) +

2− 4η

B
+

(4η − 1)2

B2
.

If η > 1/3 and d > 0, then

P(X ≥ t) ≤


2η − t+ 1

B

t+ 1
B

if t ∈
(
η, 1

2 + 1
4η (1 + 1

B − d1/2)
]

2η(1− t+ 1
B )

1 + 1
B

if t ∈
(

1
2 + 1

4η (1 + 1
B − d1/2), 1

]
.

Finally, if η > 1/3 and d ≤ 0, then

P(X ≥ t) ≤ 2η − t+ 1
B

t+ 1
B

.

Proof. Proposition 8 tells us that P(X ≥ t) must be at most the maximum of the optimal solutions
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to the following two optimisation problems:

(P ): Maximise b(s−Bt) + c in a, b, c, s (Q): Maximise b in a, b

subject to a+ (s− 1)b+ c = 1 subject to Bta+ b = 1
s
2 (s− 1)b+ sc = Bη Bt

2 (Bt− 1)a+Btb = Bη

a > b ≥ c ≥ 0 b ≥ a ≥ 0.

s ∈ {Bt,Bt+ 1, . . . , B}

Problem (P ) corresponds to case (ii)(a) of Proposition 8, and problem (Q) to case (ii)(b).

The solution to (Q) is determined entirely by the constraints, and we see that the optimal value

is
2η − t+ 1

B

t+ 1
B

. (1.12)

To solve (P ), we break it into B(1− t) + 1 subproblems: for s ∈ {Bt,Bt+ 1, . . . , B}, we define

subproblem (P (s)) as follows:

(P (s)): Maximise b(s−Bt) + c in a, b, c

subject to a+ (s− 1)b+ c = 1
s
2 (s− 1)b+ sc = Bη

b ≥ c,
a, b, c ≥ 0.

Notice that we have not included the a > b constraint. This is because Proposition 8 ensures that

this constraint is always satisfied at an optimal solution of (P ), so there exists s∗ such that every

optimal solution of (P (s∗)) corresponds to an optimal solution of (P ).

Now each subproblem is a standard linear programming problem, so we know that one of the

basic feasible solutions must be optimal. Since a > 0, all basic feasible solutions must have either

c = 0 or b = c. Thus we may replace the subproblems (P (s)) by

(P ′(s)): Maximise b(s−Bt+ 1) in a, b

subject to a+ sb = 1
s
2 (s+ 1)b = Bη

a, b ≥ 0.

The second constraint is enough to determine that the optimal value of P ′(s) is

2Bη(s−Bt+ 1)

s(s+ 1)
=: γ(s). (1.13)

Now we can proceed to find an s∗ which maximises γ over {Bt,Bt+ 1, . . . , B}. The sign of γ′(s)

is the sign of

−s2 + 2(Bt− 1)s+Bt− 1.

This quadratic in s has roots

Bt− 1±
√

(Bt− 1)2 +Bt− 1.
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So γ(s) is increasing for all s ∈ {Bt,Bt+ 1, . . . , B} with

s ≤ Bt− 1 +

√(
Bt− 1

2

)2 − 1
4 =: s0. (1.14)

When s0 < B, we must have s∗ ∈ {2Bt − 2, 2Bt − 1}. In fact, by examining (1.13), we see that

γ(2Bt − 2) = γ(2Bt − 1). Also, from (1.14), we see that when t > 1/2, we have that s0 ≥ B, so

s∗ = B. So far, we have shown that

P(X ≥ t) ≤ max(b1, b2, b3),

where bounds b1, b2 and b3 are given by

b1 := b1(t, η, B) =
2η − t+ 1

B

t+ 1
B

1{η<t≤min(2η,1)}

b2 := b2(t, η, B) =
η

2t− 1
B

1{η<t≤1/2}

b3 := b3(t, η, B) =
2η(1− t+ 1

B )

1 + 1
B

1{max(η,1/2)≤t≤1}.

All that remains now is to determine which of b1, b2 and b3 have the largest value. We first

consider the case when η ≤ 1
3 . When t ≤ min(1/2, 2η),

sgn(b2 − b1) = sgn
{(
t− 3

2η − 1
2B

) (
t− 1

B

)}
.

Now for 1/2 < t ≤ 2η,

∂b3
∂t

= − 2η

1 + 1
B

≥ − (2η + 2
B )

(t+ 1
B )2

=
∂b1
∂t

.

Furthermore, .

b3
(

1
2 + 1

2B , η, B
)

= η ≥ 2η − 1
2 + 1

2B
1
2 + 3

2B

= b1
(

1
2 + 1

2B , η, B
)
.

Putting this together gives the required bound for η ≤ 1/3.

When η > 1/3, we can ignore b2 as it is dominated by b1. Comparing b1 and b3, we get the

final cases of the bound.

Proof of Theorem 2. Recalling that E{Π̃B(k)} = p2
k,bn/2c, we follow the proof of Lemma 5,

but apply Theorem 9 at the last step of (1.10) with t = 2τ − 1 to deduce that if the distribution

of Π̃B(k) is unimodal, then

P(k ∈ ŜCPSS
n,τ ) ≤ P{Π̃B(k) ≥ 2τ − 1} ≤ C(τ,B)p2

k,bn/2c,

where C(τ,B) is given in the statement of Theorem 2. The bound for E|ŜCPSS
n,τ ∩ Lθ| then follows

in the same way that Theorem 1 follows from Lemma 5.

1.5.3 Proofs of results on r-concavity

Proof of Proposition 3. Suppose that f is log-concave, so we may write f = e−φ where φ is a

convex function. If r < 0, then −rφ is convex, and as the exponential function is increasing and

convex, fr = e−rφ is convex.
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Conversely, suppose that f is not log-concave, so there exist x, y and λ ∈ (0, 1) with f(λx +

(1 − λ)y) < f(x)λf(y)1−λ. Then as Mr(f(x), f(y);λ) → f(x)λf(y)1−λ as r → 0, we must have

f(λx+ (1− λ)y) < Mr(f(x), f(y);λ) for some r < 0, and so f cannot be r-concave.

Proof of Proposition 4. Let I = {1, . . . , l} ∪ {u, . . . , B − 1}. The conditions on f imply that

fi > min{fi−1, fi+1}, i ∈ I.

Then as Mr(fi−1, fi+1,
1
2 ) → min{fi−1, fi+1} as r → −∞, for each i ∈ I, may choose an ri < 0

with

fi > Mri(fi−1, fi+1; 1
2 ). (1.15)

Set r = mini∈I ri. Observe that as Mr(a, b;
1
2 ) is increasing in r for all fixed a and b, the inequalities

(1.15) are all satisfied when ri = r. Thus fri ≤ 1
2 (fri−1 + fri+1) for all i ∈ {1, . . . , B − 1}, so f is

r-concave.

By analogy with the unimodal case, let Fr,η := {f ∈ Fr : E(f) ≤ η}. In maximising Tt over

Fr,η, there is again no loss of generality in assuming 0 < η < t.

Lemma 10. For each r < 0, there exists a maximiser of Tt in Fr,η.

Proof. This proof is almost identical to that of Lemma 6, except here we let O = {f ∈ RB+1 :

fr is not convex}. If f ∈ O, then there must exist i1 < i2 < i3 such that

(i3 − i2)fri1 + (i2 − i1)fri3 < (i3 − i1)fri2

and it is clear that the above inequality must hold for all g in a sufficiently small open ball about

f . Thus O is open, and the rest of the proof is clear.

Proposition 11. Any maximiser f∗ ∈ Fr,η of Tt satisfies

(i) E(f∗) = η

(ii) f∗r is linear between f∗r0 and f∗riM−1
, where iM = Bmax(supp(f∗)).

Proof. (i) Suppose that E(f∗) < η. Define im := Bmin(supp(f∗)). Let φ = f∗r and define a new

sequence ψ := (ψi : i = 0, . . . , B) by

ψi =


∞ if i < im

φi + ε1 if i = im

φi − ε2 if i > im

where ε1, ε2 > 0 are chosen such that
∑B
i=0 ψ

1/r
i = 1, but are small enough that E(ψ1/r) ≤ η.

Then ψ is convex, so ψ1/r ∈ Fr,η. Since η > 0, we must have Tt(f
∗) > 0 so max(supp(f∗)) ≥ t.

Also, as we are assuming η < τ , we must have im < t. Therefore Tt(ψ
1/r) > Tt(f

∗), which is a

contradiction.

(ii) Set φ = f∗r, so φ is convex and φ1/r = f∗. Define ψ′ = (ψ′0, . . . , ψ
′
B) ∈ RB+1 as follows.

Take ψ′i = φi for i ≥ Bt, but make ψ′ linear between ψ′0 and ψ′Bt such that g := ψ′1/r has∑B
i=0 gi = 1 and g0 > 0. This is possible since E(f∗) ≤ η < t, so min(supp(f∗)) < t. Note that

ψ′ is still convex since we must have ψ′Bt − ψ′Bt−1 ≤ φBt − φBt−1. Also Tt(g) = Tt(f
∗). Applying
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Proposition 7, we see that E(g) ≤ E(f∗). Optimality of f∗ means that equality must hold, so

f∗ = g and also φ = ψ′.

Now if φ is in fact linear between φ0 and φB , condition (ii) of the theorem is satisfied and we

are done. Otherwise we may assume φ is not a linear function between φBt−1 and φB and we can

define ψ such that ψi = φi for i ≤ Bt, that ψ is linear between ψBt−1 and ψk−1 and ψi = ∞ for

i > k. Here, k is chosen such that g := ψ1/r has
∑B
i=0 gi = 1, and the convexity of φ ensures that

such a k ≤ B exists. Applying Proposition 7, we see that E(g) ≤ E(f∗). Since Tt(g) = Tt(f
∗), as

before, optimality of f∗ allows us to conclude that f∗ = g.

1.5.4 Computing the r-concave tail probability bound

Here we describe a numerical algorithm that computes the function D defined in Section 1.3.3.

Note that this is the maximum of Tt(f) over f ∈ Fr,η. We shall only discuss the case where f∗

is decreasing, as is always the case when t > 2η. The increasing case is very similar and less

important for our application. We first note that we may parametrise the r-concave probability

mass functions whose rth powers are linear as follows:

fa,k;i =
(a+ i)1/r∑k
j=0(a+ j)1/r

, i = 0, 1, . . . , k (1.16)

where k ≤ B. As E(fa,k) is strictly increasing in a, for each k, there is a unique ak for which

E(fak,k) = η. We also note here that ak decreases with k. This is easily seen by observing that,

regardless of the value of k, the parameter a in (1.16) determines the ratio of fa,k;i to fa,k;j , each

i, j.

According to Proposition 11, if f∗ ∈ Fr,η maximises Tt, then f∗r is linear up to its penultimate

support point. We can parametrise these in the following way. Write∑k
i=1 i(a+ i)1/r + (k + 1)c∑k

j=0(a+ j)1/r + c
= Bη,

and then solve for c:

c = c(a, k) =
Bη
∑k
j=0(a+ j)1/r −∑k

i=1 i(a+ i)1/r

k + 1−Bη .

We see that as a ranges through [ak+1, ak], we obtain all the relevant probability mass functions

supported on 0, 1, . . . , k + 1 via

ga,k;i =
(a+ i)1/r∑k

j=0(a+ j)1/r + c(a, k)
, i = 0, 1, . . . , k

ga,k;k+1 =
c(a, k)∑k

j=0(a+ j)1/r + c(a, k)
.

The tail probability of ga,k, when the threshold is t, is

Tt(ga,k) = 1− (k + 1−Bη)
∑Bt−1
i=0 (a+ i)1/r∑k

i=0(k + 1− i)(a+ i)1/r
(1.17)

and we may maximise this over a ∈ [ak+1, ak] to obtain an optimal a∗k for each k. This is easily
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accomplished using a general purpose optimiser such as optimize in R. To summarise, we have the

following simple procedure for computing Tt(f
∗).

1. For each k ∈ {t, . . . , B}, determine (numerically), the solution in ak to E(fa,k) = η.

2. Find a∗k := argmaxa∈[ak+1,ak] Tt(ga,k), for each k.

3. Let k∗(t) := argmaxk Tt(ga∗k,k).

Then Tt(f
∗) = Tt(ga∗

k∗(t),k
∗(t)). When we wish to evaluate Tt(f

∗) for a range of values of t, the

process is simplified by the observation that k∗(t) is increasing in t, and thus in Step 2 we need

only consider those k which are at least k∗(t− 1/B).

Using the algorithm described above, we have computed

min{D(θ2, 2τ − 1, 50,−1/2), D(θ, τ, 100,−1/4)}

over a grid of θ and τ values (cf. Tables 1.2 and 1.3). An R implementation of the algorithm is

available from http://www.statslab.cam.ac.uk/~rds37/papers/r_concave_tail.R.

http://www.statslab.cam.ac.uk/~rds37/papers/r_concave_tail.R
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Table 1.2: Table of values of min{D(θ2, 2τ − 1, 50,−1/2), D(θ, τ, 100,−1/4)} for θ ∈
{0.01, 0.02, 0.03, 0.04, 0.05}.

θ
τ 0.01 0.02 0.03 0.04 0.05

0.30 6.11× 10−4 2.70× 10−3 6.51× 10−3 1.21× 10−2 1.93× 10−2

0.31 5.57× 10−4 2.47× 10−3 5.99× 10−3 1.12× 10−2 1.79× 10−2

0.32 5.08× 10−4 2.26× 10−3 5.52× 10−3 1.03× 10−2 1.66× 10−2

0.33 4.65× 10−4 2.08× 10−3 5.10× 10−3 9.57× 10−3 1.55× 10−2

0.34 4.27× 10−4 1.92× 10−3 4.71× 10−3 8.88× 10−3 1.44× 10−2

0.35 3.92× 10−4 1.77× 10−3 4.36× 10−3 8.25× 10−3 1.34× 10−2

0.36 3.61× 10−4 1.64× 10−3 4.05× 10−3 7.68× 10−3 1.25× 10−2

0.37 3.33× 10−4 1.51× 10−3 3.76× 10−3 7.15× 10−3 1.17× 10−2

0.38 3.08× 10−4 1.40× 10−3 3.50× 10−3 6.67× 10−3 1.09× 10−2

0.39 2.85× 10−4 1.30× 10−3 3.26× 10−3 6.23× 10−3 1.02× 10−2

0.40 2.64× 10−4 1.21× 10−3 3.04× 10−3 5.82× 10−3 9.59× 10−3

0.41 2.45× 10−4 1.13× 10−3 2.83× 10−3 5.45× 10−3 9.00× 10−3

0.42 2.27× 10−4 1.05× 10−3 2.65× 10−3 5.10× 10−3 8.44× 10−3

0.43 2.12× 10−4 9.81× 10−4 2.48× 10−3 4.78× 10−3 7.93× 10−3

0.44 1.97× 10−4 9.16× 10−4 2.32× 10−3 4.48× 10−3 7.45× 10−3

0.45 1.84× 10−4 8.56× 10−4 2.17× 10−3 4.21× 10−3 7.01× 10−3

0.46 1.71× 10−4 8.01× 10−4 2.03× 10−3 3.95× 10−3 6.60× 10−3

0.47 1.60× 10−4 7.50× 10−4 1.91× 10−3 3.72× 10−3 6.21× 10−3

0.48 1.50× 10−4 7.02× 10−4 1.79× 10−3 3.50× 10−3 5.85× 10−3

0.49 1.40× 10−4 6.58× 10−4 1.68× 10−3 3.29× 10−3 5.52× 10−3

0.50 1.31× 10−4 6.18× 10−4 1.58× 10−3 3.10× 10−3 5.20× 10−3

0.51 1.23× 10−4 5.80× 10−4 1.49× 10−3 2.92× 10−3 4.91× 10−3

0.52 1.15× 10−4 5.45× 10−4 1.40× 10−3 2.75× 10−3 4.63× 10−3

0.53 1.08× 10−4 5.12× 10−4 1.32× 10−3 2.59× 10−3 4.37× 10−3

0.54 1.01× 10−4 4.81× 10−4 1.24× 10−3 2.44× 10−3 4.13× 10−3

0.55 9.51× 10−5 4.52× 10−4 1.17× 10−3 2.30× 10−3 3.90× 10−3

0.56 8.93× 10−5 4.26× 10−4 1.10× 10−3 2.17× 10−3 3.68× 10−3

0.57 8.39× 10−5 4.01× 10−4 1.04× 10−3 2.05× 10−3 3.48× 10−3

0.58 7.89× 10−5 3.77× 10−4 9.78× 10−4 1.94× 10−3 3.29× 10−3

0.59 7.41× 10−5 3.55× 10−4 9.22× 10−4 1.83× 10−3 2.99× 10−3

0.60 6.97× 10−5 3.34× 10−4 8.69× 10−4 1.64× 10−3 2.61× 10−3

0.61 6.56× 10−5 3.15× 10−4 7.99× 10−4 1.45× 10−3 2.30× 10−3

0.62 6.16× 10−5 2.96× 10−4 7.12× 10−4 1.29× 10−3 2.05× 10−3

0.63 5.80× 10−5 2.78× 10−4 6.38× 10−4 1.16× 10−3 1.84× 10−3

0.64 5.45× 10−5 2.51× 10−4 5.76× 10−4 1.04× 10−3 1.66× 10−3

0.65 5.13× 10−5 2.27× 10−4 5.22× 10−4 9.46× 10−4 1.51× 10−3

0.66 4.82× 10−5 2.07× 10−4 4.75× 10−4 8.61× 10−4 1.37× 10−3

0.67 4.53× 10−5 1.89× 10−4 4.33× 10−4 7.86× 10−4 1.25× 10−3

0.68 4.23× 10−5 1.73× 10−4 3.97× 10−4 7.20× 10−4 1.15× 10−3

0.69 3.88× 10−5 1.58× 10−4 3.64× 10−4 6.60× 10−4 1.05× 10−3

0.70 3.56× 10−5 1.45× 10−4 3.35× 10−4 6.07× 10−4 9.68× 10−4

0.71 3.28× 10−5 1.34× 10−4 3.08× 10−4 5.59× 10−4 8.91× 10−4

0.72 3.02× 10−5 1.23× 10−4 2.84× 10−4 5.15× 10−4 8.21× 10−4

0.73 2.79× 10−5 1.14× 10−4 2.62× 10−4 4.76× 10−4 7.58× 10−4

0.74 2.57× 10−5 1.05× 10−4 2.42× 10−4 4.39× 10−4 7.00× 10−4

0.75 2.37× 10−5 9.70× 10−5 2.23× 10−4 4.06× 10−4 6.47× 10−4

0.76 2.19× 10−5 8.95× 10−5 2.06× 10−4 3.75× 10−4 5.97× 10−4

0.77 2.02× 10−5 8.27× 10−5 1.90× 10−4 3.46× 10−4 5.52× 10−4

0.78 1.87× 10−5 7.63× 10−5 1.76× 10−4 3.20× 10−4 5.10× 10−4

0.79 1.72× 10−5 7.04× 10−5 1.62× 10−4 2.95× 10−4 4.70× 10−4

0.80 1.59× 10−5 6.48× 10−5 1.50× 10−4 2.72× 10−4 4.34× 10−4

0.81 1.46× 10−5 5.97× 10−5 1.38× 10−4 2.51× 10−4 3.99× 10−4

0.82 1.34× 10−5 5.48× 10−5 1.27× 10−4 2.30× 10−4 3.67× 10−4

0.83 1.23× 10−5 5.03× 10−5 1.16× 10−4 2.12× 10−4 3.37× 10−4

0.84 1.13× 10−5 4.60× 10−5 1.06× 10−4 1.94× 10−4 3.09× 10−4

0.85 1.03× 10−5 4.20× 10−5 9.71× 10−5 1.77× 10−4 2.82× 10−4

0.86 9.35× 10−6 3.82× 10−5 8.84× 10−5 1.61× 10−4 2.57× 10−4

0.87 8.47× 10−6 3.46× 10−5 8.02× 10−5 1.46× 10−4 2.33× 10−4

0.88 7.64× 10−6 3.12× 10−5 7.24× 10−5 1.32× 10−4 2.11× 10−4

0.89 6.85× 10−6 2.80× 10−5 6.50× 10−5 1.19× 10−4 1.89× 10−4

0.90 6.10× 10−6 2.49× 10−5 5.80× 10−5 1.06× 10−4 1.69× 10−4
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Table 1.3: Table of values of min{D(θ2, 2τ − 1, 50,−1/2), D(θ, τ, 100,−1/4)} for θ ∈
{0.06, 0.07, 0.08, 0.09, 0.1}.

θ
τ 0.06 0.07 0.08 0.09 0.10

0.30 2.81× 10−2 3.82× 10−2 4.97× 10−2 6.24× 10−2 7.63× 10−2

0.31 2.61× 10−2 3.57× 10−2 4.64× 10−2 5.84× 10−2 7.14× 10−2

0.32 2.43× 10−2 3.33× 10−2 4.35× 10−2 5.47× 10−2 6.70× 10−2

0.33 2.27× 10−2 3.12× 10−2 4.08× 10−2 5.14× 10−2 6.30× 10−2

0.34 2.12× 10−2 2.92× 10−2 3.83× 10−2 4.83× 10−2 5.93× 10−2

0.35 1.98× 10−2 2.73× 10−2 3.59× 10−2 4.55× 10−2 5.59× 10−2

0.36 1.85× 10−2 2.57× 10−2 3.38× 10−2 4.29× 10−2 5.28× 10−2

0.37 1.74× 10−2 2.41× 10−2 3.18× 10−2 4.04× 10−2 4.99× 10−2

0.38 1.63× 10−2 2.26× 10−2 2.99× 10−2 3.81× 10−2 4.72× 10−2

0.39 1.53× 10−2 2.13× 10−2 2.82× 10−2 3.60× 10−2 4.46× 10−2

0.40 1.43× 10−2 2.00× 10−2 2.66× 10−2 3.40× 10−2 4.22× 10−2

0.41 1.35× 10−2 1.89× 10−2 2.51× 10−2 3.22× 10−2 4.00× 10−2

0.42 1.27× 10−2 1.78× 10−2 2.37× 10−2 3.04× 10−2 3.79× 10−2

0.43 1.19× 10−2 1.68× 10−2 2.24× 10−2 2.88× 10−2 3.59× 10−2

0.44 1.12× 10−2 1.58× 10−2 2.11× 10−2 2.72× 10−2 3.40× 10−2

0.45 1.06× 10−2 1.49× 10−2 2.00× 10−2 2.58× 10−2 3.23× 10−2

0.46 9.98× 10−3 1.41× 10−2 1.89× 10−2 2.44× 10−2 3.06× 10−2

0.47 9.41× 10−3 1.33× 10−2 1.79× 10−2 2.31× 10−2 2.90× 10−2

0.48 8.88× 10−3 1.26× 10−2 1.69× 10−2 2.19× 10−2 2.76× 10−2

0.49 8.38× 10−3 1.19× 10−2 1.60× 10−2 2.08× 10−2 2.62× 10−2

0.50 7.92× 10−3 1.12× 10−2 1.52× 10−2 1.97× 10−2 2.48× 10−2

0.51 7.48× 10−3 1.06× 10−2 1.44× 10−2 1.87× 10−2 2.36× 10−2

0.52 7.07× 10−3 1.01× 10−2 1.36× 10−2 1.77× 10−2 2.24× 10−2

0.53 6.68× 10−3 9.53× 10−3 1.29× 10−2 1.68× 10−2 2.13× 10−2

0.54 6.32× 10−3 9.02× 10−3 1.22× 10−2 1.60× 10−2 2.02× 10−2

0.55 5.98× 10−3 8.54× 10−3 1.16× 10−2 1.52× 10−2 1.92× 10−2

0.56 5.65× 10−3 8.09× 10−3 1.10× 10−2 1.44× 10−2 1.83× 10−2

0.57 5.35× 10−3 7.66× 10−3 1.04× 10−2 1.37× 10−2 1.73× 10−2

0.58 5.06× 10−3 7.13× 10−3 9.49× 10−3 1.22× 10−2 1.54× 10−2

0.59 4.39× 10−3 6.09× 10−3 8.10× 10−3 1.04× 10−2 1.31× 10−2

0.60 3.82× 10−3 5.30× 10−3 7.04× 10−3 9.08× 10−3 1.14× 10−2

0.61 3.37× 10−3 4.67× 10−3 6.21× 10−3 8.00× 10−3 1.01× 10−2

0.62 3.01× 10−3 4.17× 10−3 5.54× 10−3 7.14× 10−3 8.97× 10−3

0.63 2.70× 10−3 3.74× 10−3 4.98× 10−3 6.42× 10−3 8.06× 10−3

0.64 2.44× 10−3 3.38× 10−3 4.50× 10−3 5.80× 10−3 7.29× 10−3

0.65 2.21× 10−3 3.07× 10−3 4.08× 10−3 5.26× 10−3 6.62× 10−3

0.66 2.01× 10−3 2.79× 10−3 3.72× 10−3 4.79× 10−3 6.03× 10−3

0.67 1.84× 10−3 2.55× 10−3 3.40× 10−3 4.38× 10−3 5.51× 10−3

0.68 1.68× 10−3 2.34× 10−3 3.11× 10−3 4.01× 10−3 5.05× 10−3

0.69 1.55× 10−3 2.14× 10−3 2.86× 10−3 3.68× 10−3 4.64× 10−3

0.70 1.42× 10−3 1.97× 10−3 2.63× 10−3 3.39× 10−3 4.27× 10−3

0.71 1.31× 10−3 1.82× 10−3 2.42× 10−3 3.12× 10−3 3.93× 10−3

0.72 1.21× 10−3 1.68× 10−3 2.23× 10−3 2.88× 10−3 3.63× 10−3

0.73 1.11× 10−3 1.55× 10−3 2.06× 10−3 2.66× 10−3 3.35× 10−3

0.74 1.03× 10−3 1.43× 10−3 1.90× 10−3 2.46× 10−3 3.09× 10−3

0.75 9.51× 10−4 1.32× 10−3 1.76× 10−3 2.27× 10−3 2.86× 10−3

0.76 8.78× 10−4 1.22× 10−3 1.63× 10−3 2.10× 10−3 2.64× 10−3

0.77 8.12× 10−4 1.13× 10−3 1.50× 10−3 1.94× 10−3 2.44× 10−3

0.78 7.50× 10−4 1.04× 10−3 1.39× 10−3 1.79× 10−3 2.26× 10−3

0.79 6.92× 10−4 9.61× 10−4 1.28× 10−3 1.65× 10−3 2.08× 10−3

0.80 6.38× 10−4 8.86× 10−4 1.18× 10−3 1.53× 10−3 1.92× 10−3

0.81 5.88× 10−4 8.16× 10−4 1.09× 10−3 1.41× 10−3 1.77× 10−3

0.82 5.41× 10−4 7.51× 10−4 1.00× 10−3 1.29× 10−3 1.63× 10−3

0.83 4.97× 10−4 6.89× 10−4 9.20× 10−4 1.19× 10−3 1.50× 10−3

0.84 4.55× 10−4 6.32× 10−4 8.43× 10−4 1.09× 10−3 1.37× 10−3

0.85 4.16× 10−4 5.77× 10−4 7.71× 10−4 9.95× 10−4 1.25× 10−3

0.86 3.79× 10−4 5.26× 10−4 7.02× 10−4 9.07× 10−4 1.14× 10−3

0.87 3.44× 10−4 4.77× 10−4 6.37× 10−4 8.23× 10−4 1.04× 10−3

0.88 3.11× 10−4 4.31× 10−4 5.76× 10−4 7.44× 10−4 9.37× 10−4

0.89 2.79× 10−4 3.88× 10−4 5.18× 10−4 6.69× 10−4 8.42× 10−4

0.90 2.49× 10−4 3.46× 10−4 4.63× 10−4 5.97× 10−4 7.53× 10−4



Chapter 2

Modelling interactions in

high-dimensional data with

Backtracking

2.1 Introduction

In recent years, there has been a lot of progress in the field of high-dimensional regression. Much of

the development has centred around the Lasso (Tibshirani, 1996), which given a vector of responses

Y ∈ Rn and design matrix X ∈ Rn×p, solves

(µ̂, β̂) := arg min
(µ,β)∈R×Rp

{ 1
2n‖Y − µ1−Xβ‖22 + λ‖β‖1}, (2.1)

where 1 is an n-vector of ones and the regularisation parameter λ controls the relative contribution

of the penalty term to the objective. The many extensions of the Lasso allow most familiar models

from classical (low-dimensional) statistics to now be fitted in situations where the number of

variables p may be tens of thousands and even greatly exceed the number of observations n (see

the recent monograph Bühlmann and van de Geer (2011a) and references therein).

However, despite the advances, fitting models with interactions remains a challenge. Two issues

that arise are:

(i) Since there are p(p− 1)/2 possible first-order interactions, the main effects can be swamped

by the vastly more numerous interaction terms and without proper regularisation, stand little

chance of being selected in the final model (see Figure 2.1b).

(ii) Monitoring the coefficients of all the interaction terms quickly becomes infeasible as p runs

into the thousands.

Though in many situations, the ‘true model’ may not contain strong interactions, note that par-

ticularly in high-dimensional settings where it is not even clear which variables are important, one

is unlikely to be confident about the presence or absence of interactions. Therefore there is a real

need for developing methods that detect interactions automatically.

For situations where p < 1000 or thereabouts and the case of two-way interactions, a lot of

work has been done in recent years to address this need. To tackle (i), many of the proposals use

27
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penalty functions and constraints designed to enforce that if an interaction term is in the fitted

model, one or both main effects are also present (Bach et al., 2012a,b; Bien et al., 2013; Jenatton

et al., 2011; Lin and Zhang, 2006; Radchenko and James, 2010; Yuan et al., 2009; Zhao et al.,

2009). See also Turlach (2004) and Yuan et al. (2007), which consider modifications of the LAR

algorithm Efron et al. (2004) that impose this type of condition.

In the moderate-dimensional setting that these methods are designed for, the computational

issue (ii) is just about manageable. However, when p is larger—the situation of interest in this

work—it becomes necessary to narrow the search for interactions. Comparatively little work has

been done on fitting models with interactions to data of this sort of dimension.

One option is to screen for important variables and only consider interactions involving the

selected set. Wu et al. (2010) and others take this approach: the Lasso is first used to select main

effects; then interactions between the selected main effects are added to the design matrix, and the

Lasso is run once more to give the final model.

The success of this method relies on all main effects involved in interactions being selected in

the initial screening stage. However, this may well not happen. Certain interactions may need to be

included in the model before some main effects can be selected. To address this issue, Bickel et al.

(2010) propose a procedure involving sequential Lasso fits which, for some predefined number K,

selects K variables from each fit and then adds all interactions between those variables as candidate

variables for the following fit. The process continues until all interactions to be added are already

present. However, it is not clear how one should choose K: a large K may result in a large number

of spurious interactions being added at each stage, whereas a small K could cause the procedure

to terminate before it has had a chance to include important interactions.

Rather than adding interactions in one or more distinct stages, when variables are selected

in a greedy fashion, the set of candidate interactions can be updated after each selection. This

dynamic updating of interactions available for selection is present in the popular MARS procedure

of Friedman (1991). One problem with this approach is that particularly in high-dimensional

situations, greedy selection can produce unstable final models and predictive performance can

suffer as a consequence. Bagging (Breiman, 1996) can be very successful at reducing instability

(such as in Random Forests (Breiman, 2001)), but the final aggregated model is likely to be difficult

to interpret as it will tend to contain small contributions from a great number of variables.

In this chapter, we propose a new method we call Backtracking, for incorporating a similar

model building strategy to that of MARS into methods based on sparsity-inducing penalty func-

tions. Such methods can be more stable than greedy forward selection approaches (see Efron et al.

(2004)), and as a consequence tend to give better predictive performance. When used with the

Lasso, Backtracking begins by computing the Lasso solution path, decreasing λ from∞. A second

solution path, P2, is then produced, where the design matrix contains all main effects, and also

the interaction between the first two active variables in the initial path. Continuing iteratively,

subsequent solution paths P3, . . . , PT are computed where the set of main effects and interactions

in the design matrix for the kth path is determined based on the previous path Pk−1. Thus if in

the third path, a key interaction was included and so variable selection was then more accurate,

the selection of interactions for all future paths would benefit. In this way information is used as

soon as it is available, rather than at discrete stages as with the method of Bickel et al. (2010). In

addition, if all important interactions have already been included by P3, we have a solution path

unhindered by the addition of further spurious interactions.

It may seem that a drawback of our proposed approach is that the computational cost of
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producing all T solution paths will usually be unacceptably large. However, computation of the full

collection of solution paths is very fast indeed. This is because rather than computing each of the

solution paths from scratch, for each new solution path Pk+1, we first track along the previous path

Pk to find where Pk+1 departs from Pk. This is the origin of the name Backtracking. Typically,

checking whether a given trial solution is on a solution path requires much less computation

than calculating the solution path itself, and so this Backtracking step can be made very fast.

Furthermore, when the solution paths do separate, the tail portions of the paths can be computed

in parallel.

The rest of the chapter is organised as follows. In Section 2.2 we describe an example which

provides some motivation for our Backtracking method. In Section 2.3 we develop our method

in the context of the Lasso for the linear model. We build up to our final algorithm in stages,

presenting the final version in Section 2.3.2.2. In Section 2.4, we describe how our method can

be extended beyond the case of the Lasso for the linear model. In Section 2.5 we report the

results of some simulation experiments and real data analyses that demonstrate the effectiveness

of Backtracking. Finally, in Section 2.6, we present some theoretical results which aim to give a

deeper understanding of the way in which Backtracking works. Proofs are collected in the appendix

of this chapter.

2.2 Motivation

In this section we introduce a toy example where approaches that select candidate interactions

based on selected main effects will tend to perform poorly. The data follow a linear model with

interactions,

Yi =

6∑
j=1

βjXij + β7Xi1Xi2 + β8Xi3Xi4 + β9Xi5Xi6 + εi, εi ∼ N(0, σ2), i = 1, . . . , n, (2.2)

with the matrix of predictors X designed such that Xi5 is uncorrelated with the response, and also

with any linear combination of {Xij : j 6= 5}.
The construction of X is as follows. First, consider (Zi1, Zi2, Zi3) generated from a mean

zero multivariate normal distribution with Var(Zij) = 1, j = 1, 2, 3, Cov(Zi1, Zi2) = 0 and

Cov(Zi1, Zi3) = Cov(Zi2, Zi3) = 1/2. Independently generate Ri1 and Ri2 each of which takes

only the values {−1, 1}, each with probability 1/2. We form the ith row of the design matrix as

follows:

Xi1 =Ri1 sgn(Zi1)|Zi1|1/4,
Xi2 =Ri1|Zi1|3/4,
Xi3 =Ri2 sgn(Zi2)|Zi2|1/4,
Xi4 =Ri2|Zi2|3/4,
Xi5 =Zi3.

The remaining Xij , j = 6, . . . , p are independently generated from a standard normal distribution.

Note that the random signs Ri1 and Ri2 ensure that Xi5 is uncorrelated with each of Xi1, . . . , Xi4.

Furthermore, the fact that Xi1Xi2 = Zi1 and Xi3Xi4 = Zi2, means that when β5 = − 1
2 (β7 + β8),

Xi5 is uncorrelated with the response.
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If we first select important main effects using the Lasso, for example, when p is large it is very

unlikely that variable 5 will be selected. Then if we add all two-way interactions between the

selected variables and fit the Lasso once more, the interaction between variables 5 and 6 will not

be included. Of course, one can again add interactions between selected variables and compute

another Lasso fit, and then there is a chance the interaction will be selected. Thus it is very likely

that at least three Lasso fits will be needed in order to select the right variables.

Figure 2.1a shows the result of applying the Lasso to data generated according to (2.2) with

200 independent and identically distributed (i.i.d.) observations, p = 500, σ chosen to give a

signal-to-noise ratio (SNR) of 4, and

β = (−1.25,−0.75, 0.75,−0.5,−2, 1.5, 2, 2, 1)T .

As expected, we see variable 5 is nowhere to be seen and instead many unwanted variables are

selected as λ is decreased. Figure 2.1b illustrates the effect of including all p(p − 1)/2 possible

interactions in the design matrix. Even in our rather moderate-dimensional situation, we are not

able to recover the true signal. Though all the true interaction terms are selected, now both

variables 4 and 5 are not present in the solution paths and many false interactions are selected.

Although this example is rather contrived, it illustrates how sometimes the right interactions

need to be augmented to the design matrix in order for certain variables to be selected. Even when

interactions are only present if the corresponding main effects are too, main effects can be missed

by a procedure that does not consider interactions. In fact, we can see the same phenomenon

occurring when the design matrix has i.i.d. Gaussian entries (see Section 2.5.1). In our case here,

except purely by chance, variable 5 can only be selected by the Lasso if either the interactions

between variables 1 and 2 or 3 and 4 are present in the design matrix. We also see that multiple

Lasso fits might be needed to have any chance of selecting the right model.

This raises the question of which tuning parameters to use in the multiple Lasso fits. One

option, which we shall refer to as the iterated Lasso, is to select tuning parameters by cross-

validation each time. A drawback of this approach, though, is that the number of interactions to

add can be quite large if cross-validation chooses a large active set. This is often the case when

the presence of interactions makes some important main effects hard to distinguish from noise

variables in the initial Lasso fit. Then cross-validation may choose a low λ in order to try to select

those variables, but this would result in many noise variables also being included in the active set.

We take an alternative approach here and include suspected interactions in the design matrix

as soon as possible. That is, if we progress along the solution path from λ =∞, and two variables

enter the model, we immediately add their interaction to the design matrix and start computing

the Lasso again. We could now disregard the original path, but there is little to lose, and possibly

much to gain, in continuing the original path in parallel with the new one. We can then repeat this

process, adding new interactions when necessary, and restarting the Lasso, whilst still continuing

all previous paths in parallel. We show in the next section how computation can be made very

fast since many of these solution paths will share the same initial portions.

2.3 Backtracking with the Lasso

In this section we introduce a version of the Backtracking algorithm applied to the Lasso (2.1).

First, we present a naive version of the algorithm, which is easy to understand. Later in Sec-
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(c) Step 3: {1, 2}, {2, 6}. {1, 6} added in step 2.
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(d) Step 4: {1, 3}, {2, 3}, {3, 6}.
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(e) Step 5: {1, 4}, {2, 4}, {3, 4}, {4, 6}.
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(f) Step 6: {1, 5}, {2, 5}, {3, 5}, {4, 5}, {5, 6}.

Figure 2.1: For data generated as described in Section 2.2, the coefficient paths against λ of the
Lasso with main effects only, (a); the Lasso with all interactions added, (b); and Backtracking
with k = 3, . . . , 6, ((c)–(d)); when applied to the example in Section 2.2. Below the Backtracking
solution paths we give Ck \Ck−1: the interactions which have been added in the current step. The
solid red, green, yellow, blue, cyan and magenta lines trace the coefficients of variables 1, . . . , 6
respectively, with the alternately coloured lines representing the corresponding interactions. The
dotted blue and red coefficient paths indicate noise main effect (‘NM’) and interaction (‘NI’)
terms respectively. Vertical dotted black and dashed grey lines give the values of λstart

k and λadd
k

respectively.
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tion 2.3.2, we show that this algorithm performs a large number of unnecessary calculations, and

we give a far more efficient version.

2.3.1 A naive algorithm

As well as a base regression procedure, the other key ingredient that Backtracking requires is a

way of suggesting candidate interactions based on selected main effects, or more generally a way

of suggesting higher order interactions based on lower order interactions. In order to discuss this

and present our algorithm, we first introduce some notation concerning interactions.

Let X be the original n×p design matrix, with no interactions. In order to consider interactions

in our models, rather than indexing variables by a single number j, we use subsets of {1, . . . , p}.
Thus by variable {1, 2}, we mean the interaction between variables 1 and 2, or in our new notation,

variables {1} and {2}. As we are using the Lasso as the base regression procedure here, interaction

{1, 2} will be the componentwise product of the first two columns of X. We will write Xv ∈ Rn

for variable v, so in particular, X{j} will be the jth column of X.

The choice of whether and how to scale and centre interactions and main effects can be a rather

delicate one, where domain knowledge may play a key role. In this work, we will centre all main

effects, and scale them to have `2-norm
√
n. The interactions will be created using these centred

and scaled main effects, and they themselves will also be centred and scaled to have `2-norm
√
n.

Note that when the design matrix is sparse, for example, it may make more sense not to centre

and scale at all.

Let us denote the power set operator by P. For C ⊆ P({1, . . . , p}), we can form a modified

design matrix XC , where the columns of XC are given by the variables in C, centred and scaled

as described above. Thus C is the set of candidate variables available for selection when design

matrix XC is used. This subsetting operation will always be taken to have been performed before

any further operations on the matrix, so in particular XT
C means (XC)T .

We will consider all associated vectors and matrices as indexed by variables, so we may speak of

component {1, 2} of β, denoted β{1,2}, if β were multiplying a design matrix which included {1, 2}.
Further, for any collection of variables A, we will write βA for the subvector whose components

are those indexed by A. To represent an arbitrary variable, we shall use v or u rather than j, to

remind us that variables are now indexed by sets.

We will often need to express the dependence of the Lasso solution β̂ (2.1) on the tuning

parameter λ and the design matrix used. We shall write β̂(λ,C) when XC is the design matrix.

We will denote the set of active components of a solution β̂ by A(β̂) = {v : β̂v 6= 0}.
We now introduce a function I that given a set of variables A, suggests a set of interactions to

add to the design matrix. The choice of I we use here is as follows:

I(A) = {v ⊆ {1, . . . , p} : for all u ( v, u 6= ∅, u ∈ A}.

In other words, I(A) is the set of variables not in A, all of whose corresponding lower order

interactions are present in A. For example, I({{1}, {2}}) = {{1, 2}}, and I({{1}, {2}.{3}}) =

{{1, 2}, {2, 3}, {1, 3}}. Note {1, 2, 3} /∈ I({{1}, {2}, {3}}) as the lower order interaction {1, 2} of

{1, 2, 3} is not in {{1}, {2}, {3}}, for example. Other choices for I can be made, and we discuss

some further possibilities in Section 2.4.

As mentioned in section 2.1, Backtracking relies on a path algorithm for computing, in our case

here, the solution path of (2.1). Several such algorithms are available: the homotopy method of
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Osborne et al. (2000a) and Osborne et al. (2000b), and the closely related LARS algorithm (Efron

et al., 2004) make use of the piecewise linearity of the solution path, and are able to compute

it exactly. More recently, coordinate descent methods have been demonstrated to be significantly

faster in high-dimensional situations, and can be applied to fit generalised linear models and others

(Friedman et al., 2010). These, however, compute the solution path at a discrete set of λ values.

Any of these algorithms are suitable for use in conjunction with Backtracking, but we will focus

our discussion on the coordinate descent method, because of the advantages already mentioned.

We are now in a position to introduce the naive version of our Backtracking algorithm applied

to the Lasso (Algorithm 1). We will assume that Y is centred in addition to the design matrix, so

no intercept term is necessary.

Algorithm 1 A naive version of Backtracking for the Lasso. The highlighted line is needed for
modifications to be presented in Section 2.3.2.2 and should be ignored on a first reading.

1: Input Design matrix X and grid of λ values λ1 > · · · > λL
2: Set the initial candidate set to contain just the main effects: C1 ← {{1}, . . . , {p}}
3: Initialise the index variables for the candidate sets and λ values: k ← 1; l← 1
4: Initialise the set of interactions generated by the current active set: I ← ∅
5: Set the initial vector of residuals to be Y: R(1)← Y
6: while I ⊆ Ck and l ≤ L and R(l) 6= 0 do

7: Compute β̂ with design matrix XCk at λl, and store this in B(l): B(l)← β̂(λl, Ck)
8: Let I be the set of interactions generated from the current active set:

I ← I(A(B(l)))
9: Store the current residual in R(l): R(l)← Y −XCkB(l)

10: Let K(l) be the index of the largest candidate set to have had β̂(λl, Ck)

computed so far: K(l)← k

11: Increment l: l← l + 1
12: end while
13: Let ladd

k record the last value of l at which β̂ was computed: ladd
k ← l − 1

14: Collect the solution path obtained thus far in Pk: Pk ← (B(l) : l ≤ ladd
k )

15: if I * Ck then
16: Spawn a parallel process to continue the solution path Pk using the current design matrix

XCk until either a perfect fit is reached, or the path reaches the end of the grid of λ values
17: Add interactions I to the current set of candidates: Ck+1 ← Ck ∪ I
18: Increment k: k ← k + 1
19: Reset l← 1 and go to line 6
20: end if
21: Set T to be the total number of candidate sets: T ← k
22: return Completed paths (P1, . . . , PT )

Looking at the while loop in Algorithm 1, we see that given a set of candidates Ck, the algorithm

decrements λ until either the active set generates interaction terms currently not in Ck, i.e. until

I * Ck, or until a perfect fit or λL is reached. If the former holds, a process is spawned to continue

the current solution path, an updated set of candidates, Ck+1 is formed, and λ is decreased from

λ1 once more. The quantity ladd
k records the value of λ at which interaction terms were added to

the set of candidates Ck. Termination of the algorithm is guaranteed since |Ck| increases at each

iteration, and it cannot exceed 2p − 1. Though in practice, termination will typically occur long

before Ck = P({1, . . . , p}) \ {∅}, for both computational and statistical reasons, we recommend

terminating the algorithm if |Ck| − p becomes too large (see Section 2.3.1.1). We note also that

the possible interactions to consider can easily be restricted to, say, first-order interactions.
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The final output of the algorithm is a collection of solution paths, each one of which corresponds

to a different set of candidates. Figures 2.1c–2.1f show steps 3–6 (i.e. k = 3, . . . , 6) of Backtracking

applied to the example described in Section 2.2. Note that Figure 2.1a is in fact step 1. Step 2 is

not shown as the plot looks identical to that in Figure 2.1a. We see that when k = 6, we have a

solution path where all the true variable and interaction terms are active before any noise variables

enter the coefficient plots.

In the following section we explain how one can choose a final estimator from this collection of

paths.

2.3.1.1 Cross-validation

Where the Lasso has one tuning parameter, with Backtracking we have two: λ and k, the rank

of the path. When using the Lasso, the tuning parameter used to construct the final estimator is

typically chosen by cross-validation.

In many cases we may be performing Backtracking and forcing early termination if Ck gets too

large. If the (λ, k) pair with minimal cross-validation score has k less than each of the maximum

number of steps reached on each of the folds, one can think of this as a local minimiser of the cross-

validation score when the size of Ck is unrestricted. Often, this may in fact be the global minimiser,

and in these cases calculating the full collection of solution paths without early termination would

result in unnecessary computation. Even when this is not true, since one expects the variance

of XCk β̂(λ,Ck) to increase with k, there are statistical reasons one might prefer the restricted

minimiser.

In fact, the same reasoning supports terminating solution paths when the active set gets large

and so selecting λ to be a possibly local minimiser of the cross-validation score. Since the bulk of

the computation in the Lasso solution path occurs when the active set is large, this can result in

big computational savings.

In some situations, rather than using the final estimator from the Lasso, it is often better to use

the active sets from the Lasso solution paths, and apply a further estimation procedure to subsets

of the original design matrix whose columns are given by the variables in the active sets. Sensible

candidates for this second estimation procedure include ordinary least squares and a further Lasso

fit; these choices giving methods known as (a variant of) the LARS–OLS hybrid (Efron et al., 2004)

and the relaxed Lasso (Meinshausen, 2007) respectively. An alternative to this approach is the

adaptive Lasso of Zou (2006). All of these methods can be used in conjunction with Backtracking

and for our numerical results in Section 2.5.1 we use the LARS–OLS hybrid.

2.3.2 Speeding up computation

2.3.2.1 An improved algorithm

The process of performing mutiple Lasso fits is computationally cumbersome, and an immediate

gain in efficiency can be realised by noticing that the final collection of solution paths is in fact

a tree of solutions: many of the solution paths computed will share the same initial portions.

To discuss this, we first recall that by considering subgradients or simply one-sided directional
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derivatives, β̂ is a solution to (2.1) when the design matrix is XC if and only if

1
nXT

v (Y −XCβ̂) = λsgn(β̂v) for β̂v 6= 0 (2.3)

1
n |XT

v (Y −XC β̂)| ≤ λ for β̂v = 0. (2.4)

Note the µ̂XT
v 1 term vanishes as the columns of XC are assumed to be centred. These are often

referred to as the KKT conditions for the Lasso in the literature.

Write λadd
k for λladd

k
and set λstart

k+1 = λlstartk+1
to be the minimal element of {λ1, . . . , λ

add
k } such

that the following holds for all λ ≥ λstart
k+1 :

1
n‖XT

Ck+1\Ck(Y −XCk β̂(λ,Ck))‖∞ ≤ λ. (2.5)

Then crucially, for all λ ≥ λstart
k+1 ,

β̂Ck+1\Ck(λ,Ck+1) = 0 and

β̂Ck(λ,Ck+1) = β̂(λ,Ck).

In words, no variables in Ck+1 \ Ck are active before the point λstart
k+1 on the solution path. Note

the existence of λstart
k+1 is guaranteed provided λ1 is sufficiently large, since β̂(λ,Ck+1) = 0 and

β̂(λ,Ck) = 0 for λ sufficiently large. The modifications needed when λ1 is not large enough are

trivial and we do not discuss them here. We can use this knowledge to replace line 19 in Algorithm

1, which sets l to 1 after the set of candidates has changed, with Algorithm 2 below. We see that

computation of the solution path need only start again after lstart
k+1 which may in fact be as large

as ladd
k , the last value of l at which β̂(λl, Ck) was computed.

Algorithm 2 An improvement on line 19 of Algorithm 1.

lstart
k+1 ← 1

while ‖XT
Ck+1\CkR(lstart

k+1 )‖∞ ≤ nλlstartk+1
and lstart

k+1 ≤ ladd
k do

lstart
k+1 ← lstart

k+1 + 1
end while
l← lstart

k+1 + 1 and go to line 6

Notice that the condition to be checked in the while loop involves the multiplication of a |Ck+1\
Ck| × n matrix by a vector of length n, and thus has computational complexity O(|Ck+1 \ Ck|n).

This computation is very fast, especially compared to the alternative of calculating β̂(λl, Ck+1).

Furthermore, the while loop can, if necessary, be executed in parallel, making the ‘Backtracking

step’ very fast indeed. However, since parallel computing power may well need to be reserved for

processing the various jobs assigned to them, in the next section we present another version of the

Backtracking algorithm that allows us to bypass most of the calculations in the while loop.

2.3.2.2 The final algorithm

When the current set of candidates changes from Ck to Ck+1, Algorithm 2 searches along Pk from

λ1 to λadd
k , checking the validity of each point on the path as a solution β̂(λ,Ck+1) with the enlarged

candidate set. If the search reaches λadd
k , we would have done a fair few calculations simply to

end up, quite literally, back where we started. Motivated by this observation, in Algorithm 3 we

present a further improvement on line 19 of Algorithm 1. Note that Algorithm 3 below redefines
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lstart
k and ladd

k , and hence also λstart
k and λadd

k .

Algorithm 3 A further improvement on line 19 of Algorithm 1.

if ‖XT
Ck+1\CkR(ladd

k )‖∞ ≤ nλadd
k then

lstart
k+1 ← ladd

k

else
Set lstart

k+1 to be any l′ < ladd
k such that

‖XT
Ck+1\CK(l′)

R(l′)‖∞ ≤ nλl′ and ‖XT
Ck+1\CK(l′+1)

R(l′ + 1)‖∞ > nλl′+1,

(so the KKT conditions hold at l′ and consequently β̂Ck+1\CK(l′)
(λl′ , Ck+1) = 0, but they are

violated at l′ + 1)
end if
l← lstart

k+1 + 1 and go to line 6

To explain Algorithm 3 in words, we first check whether Pk+1 can simply be made to extend

Pk. If not, we search for any point where Pk and Pk+1 agree but after which they disagree, rather

than the first such point. Such a search can be implemented by a bisection method which would

terminate in at most O(log2 l
add
k ) steps. Since ladd

k ≤ L and L would not usually be more than a

few hundred, this modified search is very cheap. Note that when checking the KKT conditions at

λl′ , we need to verify that (2.4) holds for all v ∈ Ck+1 \CK(l′), where CK(l′) is the largest candidate

set C to have had β̂(λl′ , C) computed at that point in the progression of the algorithm (see line

10 of Algorithm 1).

A possible disadvantage of this approach is that the solution paths computed will only be

approximate. If we let β̃(λ,C), defined for C = C1, . . . , CT , give the solution paths obtained by

Backtracking with bisection search, then we only know that for λ ≤ λstart
k+1 we have β̃(λ,Ck+1) =

β̂(λ,Ck+1), the true solution. For λ > λstart
k+1 , this need not be the case, as variables in Ck+1 \ Ck

could have entered the solution path β̂(λ,Ck+1) at an earlier stage, but then left at or before λstart
k+1 .

In practice, variables leaving and re-entering the solution path does not happen too often. In fact,

one might say that an active variable that is about to leave the active set should be regarded as

suspicious, and it makes sense to include it only at a later stage along the path. Furthermore, for

the theory we develop in Section 2.6, we lose nothing by using the approximate solutions. For these

reasons, we prefer to use the bisection search method, and from now on, we will use Backtracking

to mean precisely this variant.

One computational shortcut we have not mentioned yet concerns the fact that when λstart
k+1 =

λadd
k , the solution paths Pk and Pk+1 will still agree beyond λstart

k+1 and the solution tree will not

branch at this point. In this case our algorithm, as it has been presented, will perform some

unnecessary computation, though if this redundancy were removed the parallel computational

complexity would remain the same. It is straightforward to modify the algorithm so that processes

are only spawned at branch points of the solution tree, but the details are rather technical and we

do not discuss them here.

2.4 Further applications of Backtracking

Our Backtracking algorithm has been presented in the context of the Lasso for the linear model.

However, the real power of the idea is that it can be incorporated into any method that produces a

path of increasingly complex sparse solutions by solving a family of convex optimisation problems

parametrised by a tuning parameter. For the Backtracking step (Algorithm 3), the KKT conditions
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for these optimisation problems provide a way of checking whether a given trial solution is an

optimum. As in the case of the Lasso, checking whether the KKT conditions are satisfied typically

requires much less computational effort than computing a solution from scratch. Below we briefly

sketch some applications of Backtracking to a few of the many possible methods with which it can

be used.

2.4.1 Multinomial regression

An example, which we apply to real data in Section 2.5.2, is multinomial regression with a group

Lasso (Yuan and Lin, 2006) penalty. Consider n observations of a categorical response that takes

J levels, and p associated covariates. Let Y be the indicator response matrix, with ijth entry equal

to 1 if the ith observation takes the jth level, and 0 otherwise. We model

P(Yij = 1) := Πij(µ
∗,β∗; XS∗) :=

exp
(
µ∗j +

(
XS∗β

∗
j

)
i

)
∑J
j′=1 exp

(
µ∗j′ +

(
XS∗β

∗
j′
)
i

) .
Here µ∗ is a vector of intercept terms and β∗ is a |S∗|×J matrix of coefficients; β∗j denotes the jth

column of β∗. This model is over-parametrised, but regularisation still allows us produce estimates

of µ∗ and β∗ and hence also of Π (see Friedman et al. (2010)). When our design matrix is XC ,

these estimates are given by (µ̂, β̂) := arg min
µ,β

Q(µ,β;λ) where

Q(µ,β;λ) := 1
n

J∑
j=1

YT
j (µj1 + XCβj) − 1

n1T log

 J∑
j=1

exp(µj1 + XCβj

 + λ
∑
v∈C
‖(βT )v‖2.

The functions log and exp are to be understood as applied componentwise and the rows of β are

indexed by elements of C. To derive the Backtracking step for this situation, we turn to the KKT

conditions which characterise the minima of Q:

1
n{YT −ΠT (µ̂, β̂; XC)}1 = 0,

1
n{YT −ΠT (µ̂, β̂; XC)}Xv = −λ (β̂

T
)v

‖(β̂T )v‖2
for (β̂

T
)v 6= 0,

1
n‖{YT −ΠT (µ̂, β̂; XC)}Xv‖2 ≤ λ for (β̂

T
)v = 0.

Thus, analogously to (2.5), for D ) C, (β̂
T

(λ,D))D\C = 0 and (β̂
T

(λ,D))C = β̂
T

(λ,C) if and

only if

max
v∈D\C

1
n‖{YT −ΠT (µ̂(λ,C), β̂(λ,C); XC)}Xv‖2 ≤ λ.

2.4.2 Structural sparsity

Although in our Backtracking algorithm, interaction terms are only added as candidates for se-

lection when all their lower order interactions and main effects are active, this hierarchy in the

selection of candidates does not necessarily follow through to the final model: one can have first-

order interactions present in the final model without one or more of their main effects, for example.

One way to enforce the hierarchy constraint in the final model is to use a base procedure which



38 CHAPTER 2. MODELLING INTERACTIONS WITH BACKTRACKING

obeys the constraint itself. Examples of such base procedures are provided by the Composite

Absolute Penalties (CAP) family (Zhao et al., 2009).

Consider the linear regression setup with interactions. For simplicity we only describe Back-

tracking with first-order interactions. Let C be the candidate set and let I = C \ C1 be the

(first-order) interaction terms in C. In order to present the penalty, we borrow some notation from

Combinatorics. Let C
(r)
1 denote the set of r-subsets of C1. For A ⊆ C(r)

1 and r ≥ 1, define

∂l(A) = {v ∈ C(r−1)
1 : v ⊂ u for some u ∈ A}

∂u(A) = {v ∈ C(r+1)
1 : v ⊂ u for some u ∈ A}

These are known as the lower shadow and upper shadow respectively (Bollobás, 1986).

Our objective function Q is given by

Q(µ,β) = 1
2n‖Y − µ1−XCβ‖22 + λ‖βC1\∂l(I)‖1 + λ

∑
v∈∂l(I)

‖β{v}∪(∂u({v})∩I)‖γ + λ‖βI‖1,

where γ > 1. For example, if C = {{1}, . . . , {4}, {1, 2}, {2, 3}}, then omitting the factor of λ, the

penalty terms in Q are

|β{4}|+ ‖(β{1}, β{1,2})T ‖γ + ‖(β{2}, β{1,2}, β{2,3})T ‖γ + ‖(β{3}, β{2,3})T ‖γ + |β{1,2}|+ |β{2,3}|.

The form of this penalty forces interactions to enter the active set only after or with their corre-

sponding main effects.

The KKT conditions for this optimisation take a more complicated form than those for the

Lasso. Nevertheless, checking they hold for a trial solution is an easier task than computing a

solution.

2.4.3 Nonlinear models

If a high-dimensional additive modelling method (Meier et al., 2009; Ravikumar et al., 2009) is used

as the base procedure, it is possible to fit nonlinear models with interactions. Here each variable

is a collection of basis functions, and to add an interaction between variables, one adds the tensor

product of the two collections of basis functions, penalizing the new interaction basis functions

appropriately. Structural sparsity approaches can also be used here. The VANISH method of

Radchenko and James (2010) uses a CAP-type penalty in nonlinear regression, and this can be

used as a base procedure in a similar way to that sketched above.

2.4.4 Introducing more candidates

In our description of the Backtracking algorithm, we only introduce an interaction term when all of

its lower order interactions and main effects are active. Another possibility, in the spirit of MARS

(Friedman, 1991), is to add interaction terms when any of their lower order interactions or main

effects are active. As at the kth step of Backtracking, there will be roughly kp extra candidates,

an approach that can enforce the hierarchical constraint may be necessary to allow main effects

to be selected from amongst the more numerous interaction candidates. The key point to note is

that if the algorithm is terminated after T steps, we are having to deal with roughly at most Tp

variables rather than O(p2), the latter coming from including all first-order interactions.
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Scenario S∗2
1 ∅
2 ∅
3 {{1, 2}, {3, 4}, {5, 6}}
4 {{1, 2}, {1, 3}, . . . , {1, 6}}
5 I({{1}, {2}, {3}}) ∪ I({{4}, {5}, {6}})

Table 2.1: Simulation settings.

2.5 Numerical results

2.5.1 Simulations

In this section, we report the results of five numerical studies designed to demonstrate the effective-

ness of Backtracking with the Lasso and also highlight some of the drawbacks of using the Lasso

with main effects only, when interactions are present. In each of the five scenarios, we generated

200 design matrices with n = 250 observations and p = 1000 covariates. The rows of the design

matrices were sampled independently from Np(0,Σ) distributions. The covariance matrix Σ was

chosen to be the identity in all scenarios except scenario 2, where

Σij = 0.75−||i−j|−p/2|+p/2.

Thus in this case, the correlation between the components decays exponentially with the distance

between them in Z/pZ.

We created the responses according to the linear model with interactions and set the intercept

to 0:

Y = XS∗β
∗
S∗ + ε, εi

i.i.d.∼ N(0, σ2). (2.6)

The error variance σ2 was chosen to achieve a signal-to-noise ratio (SNR) of either 2 or 3. We

define SNR here by

SNR2 =
E‖XS∗β

∗
S∗‖22

E‖ε‖22
.

The set of main effects in S∗, S∗1 , was {{1}, . . . , {10}}. The subset of variables involved in inter-

actions was I∗1 := {{1}, . . . , {6}}. The set of first-order interactions in S∗ chosen in the different

scenarios, S∗2 , is displayed in Table 2.1, and we took S∗ = S∗1 ∪S∗2 so S∗ contained no higher order

interactions. In each simulation run, β∗S∗1 was fixed and given by

(2,−1.5, 1.25,−1, 1,−1, 1, 1, 1, 1)T .

Each component of β∗S∗2 was chosen to be
√
‖β∗S∗1 ‖

2
2/ |S∗1 |. Thus the squared magnitude of the

interactions was equal to average of the squared magnitudes of the main effects.

In all of the scenarios, we applied three methods: the Lasso using only the main effects; iterated

Lasso fits; and the Lasso with Backtracking. Note that due to the size of p in these examples, the

methods for finding interactions in lower-dimensional data discussed in Section 2.1, are computa-

tionally impractical here.

For the iterated Lasso fits, we repeated the following process. Given a design matrix, first fit the

Lasso. Then apply 5-fold cross-validation to give a λ value and associated active set. Finally add all

interactions between variables in this active set to the design matrix, ready for the next iteration.
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For computational feasibility, the procedure was terminated when the number of variables in the

design matrix exceeded p+ 250× 249/2. As with Backtracking, this method yields a collection of

solution paths, each one associated with a different number of iterations of the above process.

Additionally, in scenarios 3–5, we applied the Lasso with all main effects and only the true

interactions. This theoretical Oracle approach provided a gold standard against which to test

the performance of Backtracking. For all of the procedures mentioned, we used grids of 100 λ

values. The LARS–OLS hybrid and cross-validation with squared error loss were used to give the

final estimator. For our cross-validation procedure we randomly selected 5 folds each time but

repeated this a total of 5 times to reduce the variance of the cross-validation scores. Thus for

each λ value we obtained an estimate of the expected prediction error that was an average over

the observed prediction errors on 25 (overlapping) validation sets of size n/5 = 50. Note that for

both Backtracking and the iterated Lasso, this form of cross-validation chose not just a λ value

but also a path rank. When using Backtracking, the size of the active set was restricted to 50

and the size of Ck to p + 50 × 49/2 = 1225 (see Section 2.3.1.1). Our restricted minimisers of

the cross-validation scores were always very far from these boundaries so it is likely they coincided

with the global minimisers.

In scenarios 1 and 2, the results of all the methods were almost indistinguishable. Even in

Scenario 2, where high correlations made estimation very challenging, neither Backtracking nor

the iterated Lasso fits picked up any false interactions, though all the methods struggled to identify

the important main effects.

The results of scenarios 3–5, where the signal contains interactions, are given in Table 2.2.

For each scenario, method and SNR level, we report 5 statistics. ‘L2-sq’ is the expected squared

distance of the signal f∗ and our prediction functions f̂ based on training data (Ytrain,Xtrain),

evaluated at a random independent test observation xnew:

Exnew,Ytrain,Xtrain
(f∗{xnew)− f̂(xnew; Ytrain,Xtrain)}2.

‘FP Main’ and ‘FP Inter’ are the numbers of noise main effects and noise interaction terms respec-

tively, incorrectly included in the final active set. ‘FN Main’ and ‘FN Inter’ are the numbers of

true main effects and interaction terms respectively, incorrectly excluded from the final active set.

For all the statistics presented, lower numbers are to be preferred. However, the higher number

of false selections incurred by both Backtracking and the Oracle procedure compared to using the

main effects only or iterated Lasso fits, is due to the model selection criterion being the expected

prediction error. It should not be taken as an indication that the latter procedures are performing

better in these cases.

Backtracking performs best out of the three methods compared here. Note that under all of

the settings, iterated Lasso fits incorrectly selects more interaction terms than Backtracking. We

see that the more careful way in which Backtracking adds candidate interactions, helps here. Un-

surprisingly, fitting the Lasso on just the main effects performs rather poorly in terms of predictive

performance. However, it also fails to select important main effects; Backtracking and Iterates

have much lower main effect false negatives.

2.5.2 Real data analyses

In this section, we look at the performance of Backtracking using two base procedures, the Lasso

for the linear model and the Lasso for multinomial regression, on a regression and a classification
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SNR = 2 SNR = 3

Scenario Statistic Main Iterate
Back-

tracking
Oracle Main Iterate

Back-
tracking

Oracle

3

L2-sq 6.946 1.401 1.210 0.825 5.671 0.274 0.272 0.184
FP Main 3.182 2.434 2.889 3.192 1.914 0.652 0.727 0.788
FN Main 1.258 0.379 0.237 0.136 0.515 0.045 0.035 0.005
FP Inter 0.000 0.929 0.449 0.000 0.000 0.273 0.121 0.000
FN Inter 3.000 0.182 0.141 0.005 3.000 0.030 0.035 0.000

4

L2-sq 12.046 3.255 2.723 1.682 10.444 0.632 0.406 0.305
FP Main 2.217 3.884 5.343 7.051 2.581 1.798 2.081 2.212
FN Main 3.121 0.899 0.606 0.258 1.768 0.111 0.040 0.000
FP Inter 0.000 2.500 0.768 0.000 0.000 1.768 0.283 0.000
FN Inter 5.000 0.662 0.510 0.081 5.000 0.076 0.030 0.000

5

L2-sq 14.122 5.081 4.521 2.144 12.841 1.556 1.170 0.436
FP Main 3.071 4.747 5.869 8.571 3.429 3.005 3.227 3.768
FN Main 3.202 1.258 0.980 0.333 2.348 0.253 0.192 0.015
FP Inter 0.000 3.278 0.869 0.000 0.000 3.051 0.551 0.000
FN Inter 6.000 1.343 1.227 0.136 6.000 0.394 0.303 0.000

Table 2.2: Simulation results.

data set. As competing methods, we consider simply using the base procedures (‘Main’), iterated

Lasso fits (‘Iterated’), Random Forests (Breiman, 2001), hierNet (Bien et al., 2013) and MARS

(Friedman, 1991) (implemented using Hastie et al. (2013)). Note that we do not view the latter

two methods as competitors of Backtracking, as they are designed for use on lower dimensional

datasets than Backtracking is capable of handling. However, it is still interesting to see how the

methods perform on data of dimension that is perhaps approaching the upper end of what is easily

manageable for methods such as hierNet and MARS, but at the lower end of what one might used

Backtracking on.

Below we describe the datasets used which are both from the UCI machine learning repository

(Asuncion and Newman, 2007).

2.5.2.1 Communities and Crime

This dataset available at http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

contains crime statistics for the year 1995 obtained from FBI data, and national census data from

1990, for various towns and communities around the USA. We took violent crimes per capita as our

response: violent crime being defined as murder, rape, robbery, or assault. The data set contains

two different estimates of the populations of the communities: those from the 1990 census and

those from the FBI database in 1995. The latter was used to calculate our desired response using

the number of cases of violent crimes. However, in several cases, the FBI population data seemed

suspect and we discarded all observations where the maximum of the ratios of the two available

population estimates differed by more than 1.25. In addition, we removed all observations that

were missing a response and several variables for which the majority of values were missing. This

resulted in a dataset with n = 1903 observations and p = 101 covariates.

2.5.2.2 ISOLET

This data set consists of p = 617 features based on the speech waveforms generated from utterances

of each letter of the English alphabet. The task is to learn a classifier which can determine the

letter spoken based on these features. The dataset is available from http://archive.ics.uci.edu/

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
http://archive.ics.uci.edu/ml/datasets/ISOLET
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ml/datasets/ISOLET; see Fanty and Cole (1991) for more background on the data. We consider

classification on the notoriously challenging E-set consisting of the letters ‘B’, ‘C’, ‘D’, ‘E’, ‘G’, ‘P’,

‘T’, ‘V’ and ‘Z’ (pronounced ‘zee’). As there were 150 subjects and each spoke each letter twice,

we have n = 2700 observations spread equally among 9 classes. The dimension of this data is such

that MARS and hierNet could not be applied.

2.5.3 Methods and results

For the Communities and crime data set, we used the Lasso for the linear model as the base

regression procedure for Backtracking and Iterates. Since the per capita violent crime response

was always non-negative, the positive part of the fitted values was taken. For Main, Backtracking,

Iterates and hierNet, we employed 5-fold cross-validation with squared error loss to select tuning

parameters. For MARS we used the default settings for pruning the final fits using generalised

cross-validation. With Random Forests, we used the default settings on both data sets. For the

classification example, penalised multinomial regression was used (see Section 2.4.1) as the base

procedure for Backtracking and Iterates, and the deviance was used as the loss function for 5-

fold cross-validation. In all of the methods except Random Forests, we only included first-order

interactions. When using Backtracking, we also restricted the size of Ck to p+50×49/2 = p+1225.

To evaluate the procedures, we randomly selected 2/3 for training and the remaining 1/3 was

used for testing. This was repeated 200 times for each of the data sets. Note that we have

specifically chosen data sets with n large as well as p large. This is to ensure that comparisons

between the performances of the methods can be made with more accuracy. For the regression

example, out-of-sample squared prediction error was used as a measure of error; for the classification

example, we used out-of-sample misclassification error with 0–1 loss. The results are given in

Table 2.3.

Random Forests has the lowest prediction error on the regression dataset, with Backtracking

not far behind, whilst Backtracking wins in the classification task, and in fact achieves strictly

lower misclassification error than all the other methods on 90% of all test samples. Note that a

direct comparison with Random Forests is perhaps unfair, as the latter is a black-box procedure

whereas Backtracking is aiming for a more interpretable model.

MARS performs very poorly indeed on the regression dataset. The enormous prediction error

is caused by the fact that whenever observations corresponding to either New York or Los Angeles

were in the test set, MARS predicted their responses to be far larger than they were. However,

even with these observations removed, the instability of MARS meant that it was unable to give

much better predictions than an intercept-only model.

HierNet performs well on this dataset, though it is worth noting that we had to scale the

interactions to have the same `2-norm as the main effects to get such good results (the default

scaling produced error rates worse than that of an intercept-only model). Backtracking does better

here. One reason for this is that the because the main effects are reasonably strong in this case,

a low amount of penalisation works well. However, because with hierNet, the penalty on the

interactions is coupled with the penalty on the main effects, the final model tended to include close

to two hundred interaction terms.

The way that Backtracking creates several solution paths with varying numbers of interaction

terms means that it is possible to fit main effects and a few interactions using a low penalty

without this low penalisation opening the door to many other interaction terms. The iterated

http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET
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Error
Method Communities and crime ISOLET

Main 000000.414 (6.5× 10−3) 00000.0641 (4.7× 10−4)
Iterate 000000.384 (5.9× 10−3 00000.0641 (4.7× 10−4)

Backtracking 000000.365 (3.7× 10−3) 00000.0563 (4.5× 10−4)
Random Forest 000000.356 (2.4× 10−3) 00000.0837 (6.0× 10−4)

hierNet 000000.373 (4.7× 10−3) -
MARS 005580.586 (3.1× 103) -

Table 2.3: Real data analyses results. Average error rates over 200 training–testing splits are given,
with standard deviations of the results divided by

√
200 in parentheses.

Lasso approach also has this advantage, but as the number of interactions are increased in discrete

stages, it can miss a candidate set with the right number of interactions that may be picked up by

the more continuous model building process used by Backtracking. This occurs in a rather extreme

way with the ISOLET dataset where, since in the first stage of the iterated Lasso, cross-validation

selected far too many variables (> 250), the second and subsequent steps could not be performed.

This is why the results are identical to using the main effects alone.

2.6 Theoretical properties

Our goal in this section is to understand under what circumstances Backtracking with the Lasso

can arrive at a set of candidates, C̃∗, that contains all of the true interactions, and only a few false

interactions. On the event on which this occurs, we can then apply many of the existing results

on the Lasso, to show that the solution path β̃(λ, C̃∗) has certain properties. As an example, we

give sufficient conditions for the existence of a λ∗ such that {v : β̃v(λ
∗, C̃∗) 6= 0} equals the true

set of variables.

We work with the normal linear model with interactions,

Y = µ∗1 + XS∗βS∗ + ε, (2.7)

where εi
i.i.d.∼ N(0, σ2), and to ensure identifiability, XS∗ has full column rank. We will assume that

S∗ = S∗1 ∪S∗2 , where S∗1 and S∗2 are main effects and two-way interactions respectively. Further we

will assume that the set of interacting main effects,

I∗1 := {v : |v| = 1, v ⊆ u, some u ∈ S∗2},

satisfies I∗1 ⊆ S∗1 .

In order for Backtracking not to add any interactions involving noise variables, to begin with,

one pair of interacting signal variables must enter the solution path before any noise variables.

Other interacting signal variables need only become active after the interaction between this first

pair has become active. Thus we need that there is some ordering of the interacting variables

where each variable only requires interactions between those variables earlier in the order to be

present before it can become active. Variables early on in the order must have the ability to be

selected when there is serious model misspecification as few interaction terms will be available for

selection. Variables later in the order only need to have the ability to be selected when the model

is approximately correct.
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Note that a signal variable having a coefficient large in absolute value does not necessarily

ensure that it becomes active before any noise variable. Indeed, in our example in Section 2.2,

variable 5 did not enter the solution path at all when only main effects were present, but had the

largest coefficient. If we write f∗ for XS∗βS∗ , and for a set S such that XS has full column rank,

we define

βS := (XT
SXS)−1XT

S f∗,

intuitively what should matter are the sizes of the appropriate coefficients of βS for suitable choices

of S. In the next section, we give a sufficient condition based on βS for a variable v ∈ S to enter

the solution path before any variable outside S.

2.6.1 The entry condition

Let PS = XS(XT
SXS)−1XT

S denote orthogonal projection on to the space spanned by the columns

of XS . Further, for any two candidate sets S,M ⊆ P({1, . . . , p}), define

ΣS,M = 1
nXT

SXM .

Now given a set of candidates, C, let v ∈ S ⊂ C and write M = C \ S. For η > 0, we shall say

that the Ent(v, S, C; η) condition holds if, XS has full column rank, and the following holds,

sup
τS∈R|S|:‖τS‖∞≤1

‖ΣM,SΣ−1
S,SτS‖∞ < 1, (2.8)

|βSv | > max
u∈M

{
1
n

∣∣XT
u (I−PS)f∗

∣∣+ 2η

1− ‖Σ−1
S,SΣS,{u}‖1

+ η

}
‖(Σ−1

S,S)v‖1. (2.9)

In Lemma 14 given in the Appendix of this chapter, we show that this condition is sufficient for

variable v to enter the active set before any variable in M , when the set of candidates is C and

‖XT
Cε‖∞ ≤ η. In addition, we show that v will remain in the active set at least until some variable

from M enters the active set.

The condition (2.8) is closely related to irrepresentable conditions (see Meinshausen and Bühlmann

(2006), Zhao and Yu (2006), Zou (2006), Bühlmann and van de Geer (2011b), Wainwright (2009),

for example), which are used for proving variable selection consistency of the Lasso. Indeed, when

S is the set of true nonzero coefficients, it can be shown that the condition,

‖ΣM,SΣ−1
S,Ssgn(β∗S)‖∞ ≤ 1, (2.10)

is essentially necessary for variable selection consistency of the Lasso. If we require this to hold for

all possible sign vectors sgn(β∗S), we arrive at (2.8).

The second part of the entry condition (2.9) asserts that coefficient v of the regression of f∗

on XS must exceed a certain quantity that we now examine in more detail. The 1
nXT

u (I−PS)f∗

term is the sample covariance between Xu, which is one of the columns of XM , and the residual

from regressing f∗ on XS . Note that the more of S∗ that S contains, the closer this will be to 0.

To understand the ‖(Σ−1
S,S)v‖1 term, without loss of generality take v as {1} and write b =

ΣS\{v},{v} and D = ΣS\{v},S\{v}. For any square matrix Σ, let cmin(Σ) denote its minimal



2.6. THEORETICAL PROPERTIES 45

eigenvalue. Using the formula for the inverse of a block matrix and writing s for |S|, we have

‖(Σ−1
S,S)v‖1 =

∥∥∥∥∥
(

1 + bT (D− bbT )−1b

−(D− bbT )−1b

)∥∥∥∥∥
1

≤ 1 +
‖b‖22 +

√
s− 1‖b‖2

cmin(ΣS,S)
.

In the final line we have used the Cauchy–Schwarz inequality and the fact that if w∗ is a unit

eigenvector of D− bbT with minimal eigenvalue, then

cmin(D− bbT ) =

∥∥∥∥∥ΣS,S

(
−bTw∗

w∗

)∥∥∥∥∥
2

≥ cmin(ΣS,S)
√

1 + |bTw∗|2 ≥ cmin(ΣS,S).

Thus when variable v is not too correlated with the other variables in S, and so ‖b‖2 is small,

‖(Σ−1
S,S)v‖1 will not be too large. Even when this is not the case, we still have the bound

‖(Σ−1
S,S)v‖1 ≤

√
s

cmin(ΣS,S)
.

Turning now to the denominator, ‖Σ−1
S,SΣS,{u}‖1 is the `1-norm of the coefficients from regres-

sion of Xu on XS , and the maximum of this quantity over u ∈M gives the left-hand side of (2.8).

Thus when u is highly correlated with many of the variables in S, ‖Σ−1
S,SΣS,{u}‖1 will be large. On

the other hand, in this case one would expect ‖(I −PS)Xu‖2 to be small, and so to some extent

the numerator and denominator compensate for each other.

2.6.2 Statement of results

Without loss of generality assume I∗1 = {{1}, . . . , {|I∗1 |}}. Our formal assumption corresponding

to the discussion at the beginning of Section 2.6 is the following.

The entry order condition. There is some I∗1 ⊆ S̃∗1 ⊆ S∗1 , and some ordering of the

variables in I∗1 , which without loss of generality we take to simply be 1, . . . , |I∗1 |, such

that for each {j} ∈ I∗1 , we have,

For all A : I({{1}, . . . , {j − 1}}) ⊆ A ⊆ I(S̃∗1 )

Ent({j}, S̃∗1 ∪ (A ∩ S∗2 ), C1 ∪A; η) holds.

where

η = η(t;n, p, |S̃∗1 |, σ) = σ

√
t2 + 2 log(p+ 1

2 |S̃∗1 |2)

n
.

First we discuss the implications for variable {1}. Let S̃∗ = S̃∗1 ∪S∗2 The condition ensures that

whenever the candidate set is enlarged from C1 to also include any subset of I(S̃∗1 ), variable {1}
enters the active set before any variable outside S̃∗, and moreover, it remains in the active set at

least until a variable outside S̃∗ enters.

For j > 2, we see that the enlarged candidate sets for which we require the entry conditions to

hold, are fewer in number. Variable {|I∗1 |} only requires the entry condition to hold for candidate
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sets that at least include I({{1}, . . . , {|I∗1 |−1}}) and thus include almost all of S∗. What this means

is that we require some ‘strong’ interacting variables, for which when f∗ is regressed onto a variety of

sets of variables containing them (some of which contain only a few of the true interaction variables),

always have large coefficients. Given the existence of such strong variables, other interacting

variables need only have large coefficients when f∗ is regressed onto sets containing them that

also include many true interaction terms. Note that the equivalent result for the success of the

strategy that simply adds interactions between selected main effects would essentially require all

main effect involved in interactions to satisfy the conditions imposed on the variables {1} and {2}
here. Going back to the example in Section 2.2, variable 5 has |βS{5}| ≈ 0 for all S ⊆ {{1}, . . . , {6}},
but |βS{5}| > 0 once {1, 2} ∈ S or {3, 4} ∈ S.

The reason we use the sets S̃∗1 and S̃∗ rather than their larger counterparts, S∗1 and S∗, is that

there may be some very weak signals in S∗1 \ I∗1 . We do not want to require that the interacting

variables remain in the active set all the way until these weak variables are selected, as the entry

conditions would dictate.

We are now in a position to state our main theorem. Although the Backtracking algorithm

was presented for a base path algorithm that computed solutions at only discrete values, for the

following theorem, we need to imagine an idealised algorithm which computes the entire path of

solutions. Explicitly, we require that our algorithm outputs a collection of paths

{β̃(λ,Ck) : λ ∈ [0,∞], 1 ≤ k ≤ T}

for which there exists a λstart
k sequence with λstart

1 = ∞, that satisfies β̃(λ,Ck) = β̂(λ,Ck) for all

λ ≤ λstart
k , and for 2 ≤ k ≤ T ,

A(β̃(λstart
k , Ck)) = A(β̃(λstart

k , Ck−1)).

In addition, we will assume that we only allow first-order interactions in the Backtracking algo-

rithm.

Theorem 12. Assume the entry order condition holds and let C̃∗ = C1 ∪ I(S̃∗1 ). With probability

at least 1− exp(−t2/2), there exists a k∗ such that C̃∗ ⊇ Ck∗ ⊇ S∗.

Theorem 12 gives sufficient conditions for Backtracking to produce a set of candidates that

includes S∗, but no interactions among variables in C1 \S∗. Once we have such a set of candidates,

we are essentially in the familiar ‘Lasso with the linear model world’, and we do not need to worry

about interactions. The one caveat is that the path β̃(·, Ck∗) need only coincide with β̂(·, Ck∗)
after λstart

k∗ . If this subtlety is taken into account, many of the theorems concerning the Lasso with

the linear model can be applied. As an example, we give the following corollary.

Corollary 13. Assume the entry order condition holds. Writing N = C̃∗ \ S∗, further assume

‖ΣN,S∗Σ
−1
S∗,S∗sgn(β∗S∗)‖∞ < 1;

and that for all v ∈ S∗,

|β∗v | >
η
∣∣∣sgn(β∗S∗)

T (Σ−1
S∗,S∗)v

∣∣∣
1− ‖ΣN,S∗Σ

−1
S∗,S∗sgn(β∗S∗)‖∞

+ ξ,
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where

ξ = ξ(t;n, |S∗|, σ, cmin(ΣS∗,S∗)) = σ

√
t2 + 2 log(|S∗|)
ncmin(ΣS∗,S∗)

.

Then with probability at least 1− 3 exp(−t2/2), there exist k∗ and λ∗ such that

A(β̃(λ∗, Ck∗)) = S∗.

Note that if we were to simply apply the Lasso to the set of candidates Call := C1 ∪ I(C1) (i.e.

all possible main effects and their first-order interactions), we would require an irrepresentable

condition of the form

‖ΣNall,S∗Σ
−1
S∗,S∗sgn(β∗S∗)‖∞ < 1,

where Nall = Call \ S∗. Thus we would need O(p2) inequalities to hold, rather than our O(p).

Of course, we had to introduce many additional assumptions to reach this stage and no set of

assumptions is uniformly stronger or weaker than the other. However, our proposed method is

computationally feasible.

2.7 Discussion

While several methods now exist for fitting interactions in moderate-dimensional situations where

p < 1000, the problem of fitting interactions when the data is of truly high dimension has received

comparatively little attention.

Typically, the search for interactions must be restricted by first fitting a model using only main

effects, and then including interactions between those selected main effects, as well as the original

main effects, as candidates in a final fit. This approach has the drawbacks that important main

effects may not be selected in the initial stage as they require certain interactions to be present

in order for them to be useful for prediction; and the initial model may contain too many main

effects when, without the relevant interactions, the model selection procedure cannot find a good

sparse approximation to the true model.

The Backtracking method proposed in this chapter allows interactions to be added in a more

natural gradual fashion, so there is a better chance of having a model which contains the right

interactions. The method is computationally efficient, and our numerical results demonstrate its

effectiveness for both variable selection and prediction.

From a theoretical point of view we have shown that when used with the Lasso, rather than

requiring all main effects involved in interactions to be highly correlated with the signal, Back-

tracking only needs there to exist some ordering of these variables where those early on in the

order are important for predicting the response by themselves. Variables later in the order only

need to be helpful for predicting the response when interactions between variables early on in the

order are present.

Though here, we have largely focussed on Backtracking used with the Lasso, the method is very

general and can be used with many procedures that involve sparsity-inducing penalty functions.

These methods tend to be some of the most useful for dealing with high-dimensional data, as

they can produce stable, interpretable models. Combined with Backtracking, the methods become

much more flexible, and it would be very interesting to explore to what extent using non-linear

base procedures could yield interpretable models with predictive power comparable to black-box
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procedures such as Random Forests (Breiman, 2001). In addition, we believe integrating Back-

tracking with some of the penalty-based methods for fitting interactions to moderate-dimensional

data, will prove to be a fruitful direction for future research.

2.8 Appendix

In this section, after presenting a lemma on the entry condition (Section 2.6.1), we prove Theo-

rem 12 and Corollary 13. The proofs of Lemma 14 below, and Corollary 13 use many ideas from

Wainwright (2009) and Bühlmann and van de Geer (2011b).

Lemma 14. Let S ⊆ C be such that XS has full column rank and let M = C \ S. On the event

ΩC,η := { 1
n‖XT

Cε‖∞ ≤ η},

the following hold:

(i) If

λ > max
u∈M

{
1
n |XT

u (I−PS)f∗|+ 2η

1− ‖Σ−1
S,SΣS,{u}‖1

}
, (2.11)

then the Lasso solution is unique and β̂M (λ,C) = 0.

(ii) If λ is such that for some Lasso solution β̂M (λ,C) = 0, and for v ∈ S,

|βSv | > ‖(Σ−1
S,S)v‖1(λ+ η),

then for all Lasso solutions, β̂v(λ,C) 6= 0.

(iii) Let

λent = sup{λ : λ ≥ 0 and for some Lasso solution β̂M (λ,C) 6= 0},

where we take sup ∅ = 0. If for v ∈ S,

|βSv | > max
u∈M

{
1
n |XT

u (I−PS)f∗|+ 2η

1− ‖Σ−1
S,SΣS,{u}‖1

+ η

}
‖(Σ−1

S,S)v‖1,

there exists a λ > λent such that the solution β̂(λ,C) is unique, and for all λ′ ∈ (λent, λ] and

all Lasso solutions β̂(λ′, C), we have β̂v(λ
′, C) 6= 0.

Proof. We begin by proving (i). Suppressing the dependence of β̂ on λ and C, we can write the

KKT conditions ((2.3), (2.4)) as
1

n
XT
C(Y −XCβ̂) = λτ̂ ,

where τ̂ is an element of the subdifferential ∂‖β̂‖1 and thus satisfies

‖τ̂‖∞ ≤ 1, (2.12)

β̂v 6= 0⇒ τ̂v = sgn(β̂v). (2.13)

By decomposing Y as PSf∗ + (I−PS)f∗ + ε, XC as (XS XM ), and noting that XT
S (I−PS) = 0,
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we can rewrite the KKT conditions in the following way:

1
nXT

S (PSf∗ −XSβ̂S) + 1
nXT

Sε−ΣS,M β̂M = λτ̂S , (2.14)

1
nXT

M (PSf∗ −XSβ̂S) + 1
nXT

M{(I−PS)f∗ + ε} −ΣM,M β̂M = λτ̂M . (2.15)

Now let β̆S be a solution to the restricted Lasso problem,

(µ̂, β̆S) = arg min
µ,βS

{
1

2n‖Y − µ1−XSβS‖2 + λ‖βS‖1
}
.

The KKT conditions give that β̆S satisfies

1

n
XT
S (Y −XSβ̆S) = λτ̆S , (2.16)

where τ̆S ∈ ∂‖β̆S‖1. We now claim that

(β̂S , β̂M ) = (β̆S ,0) (2.17)

(τ̂S , τ̂M ) =
(
τ̆S , ΣM,SΣ−1

S,S(τ̆S − 1
nλ
−1XT

Sε) + 1
nλ
−1XT

M{(I−PS)f∗ + ε}
)

(2.18)

is the unique solution to (2.14), (2.15), (2.12) and (2.13). Indeed, as β̆S solves the reduced Lasso

problem, we must have that (2.14) and (2.13) are satisfied. Multiplying (2.14) by XSΣ−1
S,S , setting

β̂M = 0 and rearranging gives us that

PSf∗ −XSβ̂S = XSΣ−1
S,S(λτ̂S − 1

nXT
Sε), (2.19)

and substituting this into (2.15) shows that our choice of τ̂M satisfies (2.15). It remains to check

that we have ‖τ̂M‖∞ ≤ 1. In fact, we shall show that ‖τ̂M‖∞ < 1. Since we are on ΩC and

‖τ̆S‖∞ ≤ 1, for u ∈M we have

λ|τ̂u| ≤ ‖Σ−1
S,SΣS,{u}‖1

(
λ‖τ̆S‖∞ + ‖ 1

nX
T
S ε‖∞

)
+ 1

n

∣∣∣Xu
T (I−PS)f∗

∣∣∣+ 1
n

∣∣∣Xu
Tε
∣∣∣

< λ‖Σ−1
S,SΣS,{u}‖1 + 1

n

∣∣∣Xu
T (I−PS)f∗

∣∣∣+ 2η

< λ,

where the final inequality follows from (2.11). We have shown that there exists a solution, β̂, to

the Lasso optimisation problem with β̂M = 0. The uniqueness of this solution follows from noting

that ‖τ̂M‖∞ < 1, XS has full column rank and appealing to Lemma 1 of Wainwright (2009).

For (ii), note that from (2.14), provided β̂M = 0, we have that

β̂S = βS −Σ−1
S,S(λτ̂S − 1

nXT
Sε).

But by assumption

|βSv | > ‖(Σ−1
S,S)v‖1(λ+ η) ≥

∣∣∣(Σ−1
S,S)

T

v
(λτ̂S − 1

nXT
Sε)
∣∣∣ ,

whence β̂v 6= 0.

(iii) follows easily from (i) and (ii).
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Proof of Theorem 12. In all that follows, we work on the event Ω1 ∩ ΩC̃∗,η where ΩC̃∗,η is

defined as in Lemma 14 and

Ωc1 = {Y = µ1 + XAβA, some µ,β, A ∈ P(C1) : |A| < |S∗|}.

Clearly as |S∗| < n, P(Ω1) = 1. Note that trivially,

ΩC̃∗,η =
⋂

A:A⊆C̃∗
ΩA,η,

so Lemma 14 can be used in conjunction with the entry order condition to deduce that certain

variables enter the active set before certain sets of noise variables. Using standard bounds for the

tails of Gaussian random variables and the union bound, it is easy to show that P(Ω1 ∩ ΩC̃∗,η) ≥
1− exp(−t2/2).

Let Ckmax be the largest member of {C1, . . . , CT } satisfying Ckmax ⊆ C̃∗. Such a Ckmax exists

since C1 ⊆ C̃∗.
Now suppose that for k ≤ kmax, Ck + S∗. We shall show that then k+ 1 ≤ T and Ck+1 ⊆ C̃∗,

thus showing that we may take k∗ = kmax. Take jmax such that

I({{1}, . . . , {jmax − 1}}) ⊆ Ck,

with jmax maximal. Since I({{1}}) = ∅, such a jmax exists. Let A = Ck \ C1. Note that

I({{1}, . . . , {jmax − 1}}) ⊆ A ⊆ C̃∗ \ C1 = I(S̃∗1 ).

Thus by the entry order condition, we know that for all j ≤ jmax, the Ent({j}, Ck \ S̃∗, Ck, η)

condition holds. Let

λent = sup{λ : λ ≥ 0 and for some Lasso solution β̂Ck\S̃∗(λ,Ck) 6= 0},

where we take the supremum to be 0 if the set is empty. By Lemma 14, part (iii), we know that

for all j ≤ jmax, there exists a λj > λent such that {j} ∈ A(β̂(λ,Ck)) for all λ ∈ (λent, λj ], and

moreover, we know that the Lasso solution at λj is unique. Note that as A(β̂(λj , Ck) ( S∗, the

fact that we are on Ω1 means we do not have a perfect fit at λj , i.e. ‖Y −µ1−XCk β̂(λj , Ck)‖2 > 0.

Let λall = minj λj . Then

A(β̂(λall, Ck)) ⊇ {{1}, . . . , {jmax}} and

β̂Ck\S∗(λ,Ck) = 0 for all λ ≥ λall

That is, λall is a point on the solution path at which variables {1}, . . . , {jmax} are in the active

set, and before which no variable from Ck \ S∗ is active.

Now it remains to understand what this means for the approximate solution paths, β̃, computed

by Backtracking. For the case k = 1, we have β̃(·, C1) = β̂(·, C1), and so we can conclude that

k + 1 = 2 ≤ T , and C2 ⊆ C̃∗.
For the case k > 1, suppose first (for contradiction) that λstart

k ≤ λall. Note that

A(β̂(λstart
k , Ck)) = A(β̃(λstart

k , Ck−1)).
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Now we must have that

A(β̃(λstart
k , Ck−1)) ⊆ S̃∗, (2.20)

A(β̃(λstart
k , Ck−1)) + {{1}, . . . , {jmax}} (2.21)

as otherwise, by the design of our Backtracking algorithm, either Ck * C̃∗ or Ck ⊇ I({{1}, . . . , {jmax}}).
By Lemma 14, part (ii), we know that for each j ≤ jmax, if for some λ ≤ λj , β̂Ck\S̃∗(λ,Ck) = 0,

then β̂{j}(λ,Ck) 6= 0. But since λstart
k ≤ λall, by (2.20) λstart

k is such a λ, which then contradicts

(2.21).

Thus λstart
k > λall, so we can conclude that k + 1 ≤ T and that Ck+1 ⊆ C̃∗.

Proof of Corollary 13. Let Ω1 and ΩC̃∗,η be defined as in Lemma 14. Also define the events

Ω2 = { 1
n‖XT

N (I−PS∗)ε‖∞ ≤ η},
Ω3 = { 1

n‖Σ
−1
S∗,S∗X

T
S∗ε‖∞ ≤ ξ}

In all that follows, we work on the event Ω1 ∩ Ω2 ∩ Ω3 ∩ ΩC̃∗,η. As I−PS∗ is a projection,

P( 1
n |Xv

T (I−PS∗)ε| ≤ η) ≥ P( 1
n |Xv

Tε| ≤ η).

Further, 1
nΣ−1

S∗,S∗X
T
S∗ε ∼ N|S∗|(0, 1

nΣ2Σ−1
S∗,S∗). Thus

P(Ω3) ≥ |S∗|P(|Z| ≤ ξ)

where Z ∼ N(0,Σ2/(ncmin(ΣS∗,S∗))). Note that

P(Ω1 ∩ Ω2 ∩ Ω3 ∩ ΩC̃∗,η) ≥ 1− P(Ωc
C̃∗,η

)− P(Ωc2)− P(Ωc3).

Using this, it is straightforward to show that P(Ω1 ∩ Ω2 ∩ Ω3 ∩ ΩC̃∗,η) ≥ 1− 3 exp(−t2/2).

Since we are on Ω1 ∩ ΩC̃∗,η, we can assume the existence of a k∗ from Theorem 12. We now

follow the proof of Lemma 14 taking S = S∗ and M = Ck∗ \S∗ ⊆ N . The KKT conditions become

ΣS∗,S∗(β
∗
S∗ − β̂S∗) + 1

nXT
S∗ε−ΣS∗,M β̂M = λτ̂S∗ , (2.22)

ΣM,S∗(β
∗
S∗ − β̂S∗) + 1

nXT
Mε−ΣM,M β̂M = λτ̂M , (2.23)

with τ̂ also satisfying (2.12) and (2.13) as before. Now let λ be such that

η

1− ‖ΣM,S∗Σ
−1
S∗,S∗sgn(β∗S∗)‖∞

< λ < min
v∈S∗

{∣∣∣sgn(β∗S∗)
T (Σ−1

S∗,S∗)v

∣∣∣−1

(|β∗v | − ξ)
}
.

It is straightforward to check that

(β̂S∗ , β̂M ) = (β∗S∗ − λΣ−1
S∗,S∗sgn(β∗S∗) + 1

nΣ−1
S∗,S∗X

T
S∗ε, 0)

(τ̂S∗ , τ̂M ) =
(

sgn(β∗S∗), ΣM,S∗Σ
−1
S∗,S∗sgn(β∗S∗) + 1

nλ
−1XT

M (I−PS∗)ε
)

is the unique solution to (2.22), (2.23), (2.12) and (2.13). The only danger is that we may have

λ > λstart
k∗ . However, we know that β̂M (λstart

k∗ , Ck∗) = 0. It is easy to check that in this case we
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still have sgn(β̂S∗(λ
start
k∗ , Ck∗)) = sgn(β∗S∗), and thus we may take λ∗ = min{λ, λstart

k∗ }.



Chapter 3

Random Intersection Trees

3.1 Introduction

In this chapter we return to the problem of detecting interactions that was the subject of the pre-

vious chapter, but this time in the setting of classification with high-dimensional binary predictors.

We suppose we have data that can be written in the form (Yi, Xi) for observations i = 1, . . . , n;

Yi is the class label and Xi ⊆ {1, . . . , p} is the set of active predictors for observations i (out of a

total of p predictors). An important example of this type of problem is that of text classification,

where then Xi is the set of frequently appearing words (in a suitable sense) for document i, and

Yi indicates whether the document belongs to a certain class. In this case, the dimension p can

be of the order of several thousand or more. More generally, if data with continuous predictors

are available, they can be converted to binary format by choosing various split-points, and then

reporting whether or not each variable exceeds each of these thresholds.

Our aim here is to develop methodology that can discover important interaction terms in the

data without requiring that any of their lower order interactions are also informative. This is in

contrast to the previous chapter where we relied on all corresponding lower order interactions being

present when higher order interactions were important. To state the problem under consideration

here more precisely, we are interested in finding subsets S ⊆ {1, . . . , p} of all predictor variables

that occur more often for observations in a class of interest than for other observations. We will use

the terms ‘leaf nodes’, ‘rules’, ‘patterns’ and ‘interactions’ interchangeably to describe such subsets

S. In general, when p is large, finding interactions of this sort without restricting our search as

in the previous chapter, can be computationally infeasible. Here however, we hope to exploit the

sparsity of the predictors to overcome these difficulties.

For simplicity, suppose there are only two classes, the set of labels being {0, 1}. The case with

more than two classes can be dealt with using one-versus-one, or one-versus-all strategies. Given

a pair of thresholds, 0 ≤ θ0 < θ1 ≤ 1, our goal is to find all sets S (or as many as possible), for

which

Pn(S ⊆ X|Y = 1) ≥ θ1 and Pn(S ⊆ X|Y = 0) ≤ θ0. (3.1)

Here and throughout this chapter, we use the subscript n to indicate that the probabilities are

empirical probabilities. For example, for c ∈ {0, 1},

Pn(S ⊆ X|Y = c) :=
1

|Cc|
∑
i∈Cc

1{S⊆Xi},

53
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where we have denoted the set of observations in class c by Cc. Of course, one would also be

interested in sets S which satisfy a version of (3.1) with classes 1 and 0 interchanged, but we will

only consider (3.1) for simplicity.

The interaction terms uncovered can be used in various ways. For example, they can be

built into tree-based methods, or form new features in linear or logistic regression models. The

interactions may also be of interest in their own right, as they can characterise distinctions between

classes in a simple and interpretable way. These potentially high order interactions that our method

aims to target would be very difficult to discover using existing methods, as we now explain.

A pure brute force search examines each potential interaction S of a given size to check whether

it fulfils (3.1). Restricting the order of interactions to size s, the computational complexity scales

as ps, rendering problems with even moderate values of p infeasible.

Instead of searching through every possible interaction, tree-based methods build up interac-

tions incrementally. A typical tree classifier such as CART (Breiman et al., 1984) works by building

a decision tree greedily from root node to the leaves; see also Loh and Shih (1997). The feature

space is recursively partitioned based on the variable whose presence or absence best distinguishes

the classes. The myopic nature of this strategy makes it a computationally feasible approach, even

for very large problems. The downside is that it produces rather unstable results: small changes

in the data can lead to very different partitions being produced at the leaf nodes. Moreover, be-

cause of the incremental way in which interactions are constructed, the success of this strategy in

recovering an important interaction S rests on at least some of its lower order interactions being

informative for distinguishing the classes.

Approaches based on tree ensembles can somewhat alleviate the problem of tree instability;

Random Forests (Breiman, 2001) is a prominent example. Here the data with which the decision

trees are constructed is sampled with replacement from the original data. Further randomness is

introduced by randomising over the subset of variables considered for each split in the construction

of the trees. While the results of Random Forests are very complex and hard to interpret, one can

examine what are known as variable importance measures. These aim to quantify the marginal

or pairwise importance of predictor variables (Strobl et al., 2008). Though such measures can be

useful, checking through all possible high order interactions is too cumbersome, and so these may

fail to be highlighted.

More recently, there has been interest in algorithms that start from deep splits or leaf nodes in

trees and then try to build a simpler model out of many thousands of these leaves by regularisation

and dimension reduction. Examples include Rule Ensembles (Friedman and Popescu, 2008), Node

Harvest (Meinshausen, 2010) and the general framework of Decision Lists (Marchand and Sokolova,

2006; Rivest, 1987). Though these methods have been demonstrated to improve on Random Forests

in some situations, they nevertheless crucially rely on a good initial basis of leaf nodes. These bases

are usually generated by tree ensemble methods and so, if the base trees miss some important splits,

they would also be absent in the results of these derivative algorithms.

A complementary approach has developed in data mining under the name of frequent itemset

search, starting with the Apriori algorithm (Agrawal et al., 1994), which has since then developed

into many improved and more specialised forms. The starting point for these was ‘market basket

analysis’, where the shopping behaviour of customers is analysed and the goal is to identify baskets

that are often bought together. Many algorithms have been proposed that aim to improve on

Apriori in terms of memory requirements and speed, such as the FP-growth (Han et al., 2000) and

H-mine (Pei et al., 2001) algorithms. While generally very successful, all these methods are only
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computationally feasible in large-scale settings if among the itemsets of low size, there are many

that are infrequent, and so using the principle that subsets of frequent itemsets are also frequent,

the search space can be greatly reduced. However, if small itemsets all have roughly the same

frequency, these methods cannot greatly improve over a brute force search.

We now give a simple example where tree-based approaches and those based on the Apriori

algorithm will struggle. Let Z = (Z1, . . . , Zp) ∈ {0, 1}p be a random variable with p independent

components each having a Bernoulli(1/2)-distribution. We take X to be the set of active entries

{k : Zk = 1}. Suppose the response Y ∈ {0, 1} is determined by an interaction between the first

two variables such that Y = 1{Z1+Z2 6=1}. Then none of the variables have a marginal effect as Y is

independent of Zk for all k = 1, . . . , p. In this case, when using trees or the Apriori algorithm, one

would have to search among O(p2) potential interactions to find the interaction pattern {1, 2}.
Here we look at a new way to discover interactions, which we call Random Intersection Trees.

Rather than searching through potential interactions directly, our method works by looking for

collections of observations whose common active variables together form informative interactions.

We present a basic version of the Random Intersection Trees algorithm in the following section.

This approach allows for computationally feasible discovery of interactions in settings where most

existing procedures would perform poorly. Bounds on the complexity of our algorithm are given in

Section 3.3. For example, our results yield that in the scenario discussed in the previous paragraph,

the order of computational complexity of our method is at most o(pκ) for any κ > 1. In Section 3.4,

we propose some modifications of our basic method to reduce its computational cost, based on min-

wise hash schemes. Some numerical examples are given in Section 3.5. We conclude with a brief

discussion in Section 3.6, and all technical proofs are collected in the appendix of this chapter.

3.2 Random Intersection Trees

Our method searches for important interactions by looking at intersections of randomly chosen

observations from class 1. We start with the full set of variables as an interaction and then

iteratively prune away variables to make the interaction smaller. At each iteration, we just keep

variables in the interaction that are present in a new randomly chosen observation of class 1. All

variables in the interaction that are not present in the chosen observation are removed. Then we

repeat with a new randomly chosen observation until an interaction of the desired size emerges.

If a pattern S has high prevalence in class 1, i.e. Pn(X = S|Y = 1) is large, it will be included

in the observations chosen with high probability. Thus, provided the overall process is repeated

often enough, S is likely to be retained in some of the final intersections. On the other hand,

elements in Sc, the complement of S in {1, . . . , p}, are unlikely to be present in all the observations

being intersected. Thus of those intersections which contain S, there is a good chance that at

least one of them is exactly S. Arranging the procedure in a tree-type search makes performing

the intersections more computationally efficient; details are given in the following section. One

would then consider each of these intersections as possible solutions of (3.1), checking whether

their prevalence among class 0 is below θ0.

It may at first seem strange that in the above, class 0 plays a part in the procedure only at

the very end. One might expect that many candidate interactions could be generated that have

high prevalence in both classes 1 and 0 and thus would not be useful for distinguishing between

classes. In Section 3.4, we do present an improved version of our algorithm that makes use of class

0 at an earlier stage. However, in the sparse setting we are considering here, interactions with high
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prevalence in either class would typically be rather few in number. Thus even if all interactions

with high prevalence in class 1, and not necessarily low prevalence in class 0, were generated by

the procedure outlined above, this would be a manageable number of candidate sets. Note that

the assumptions that allow this to happen certainly do not trivialise the problem: even if, given

all solutions to the first equation in (3.1), it is easy to uncover those interactions that additionally

satisfy the second equation, the first part of the task is still very challenging.

To describe the details of our algorithm, we first define some terms associated with trees that will

be needed later. Recall that a tree is a pair (N,E) of nodes and edges forming a connected acyclic

(undirected) graph. We will always assume (with no loss of generality) that N = {1, . . . , |N |}. A

rooted tree is the directed acyclic graph obtained from a tree by designating one node as root and

directing all edges away from this root.

Let α and β be two nodes in a rooted tree, with β not the root node. If (α, β) ∈ E, β is said

to be the child of α, and α, the parent of β. We will denote by ch(α), the set of children of a

node α. Since we are only considering rooted trees here as opposed to general directed graphs, we

will differ with convention slightly and will use pa(β) to mean the unique parent of β. Thus here,

pa(β) is a node itself, whereas ch(α) is a set of nodes.

If α 6= β lies on the unique path from the root to β, we say α is an ancestor of β, and

β is a descendant of α. We denote the sets of all ancestors and descendants of α by an(α)

and de(α) respectively. The depth of α, denoted depth(α), is the number of ancestors of α:

depth(α) = |an(α)|. In particular, the depth of the root node is 0. The depth (also known as the

height) of a rooted tree is the length of the longest path, or equivalently, the greatest number of

ancestors of any particular node. By level d of the tree, we will mean the set of nodes with depth

d.

We will say an indexing of the nodes is chronological if, for every parent and child pair, larger

indices are assigned to the child than the parent. In particular, the root node will be 1. Note that

both depth-first and breadth-first indexing methods are chronological in this way.

Algorithm 4 A basic version of Random Intersection Trees

for tree t = 1 to T do
Let t be a rooted tree of depth D, with each node j in levels 0, . . . , D− 1 having Bj children,
where the Bj are i.i.d. with a pre-specified distribution. Denote by J the total number of
nodes in the tree, and index the nodes chronologically. For each of the nodes j = 1, . . . , J ,
let i(j) be an independently and uniformly chosen index in the set of class 1 observations
{i : Yi = 1}.
Set S1 = Xi(1).
for node j = 2 to J do

Set Sj = Xi(j) ∩ Spa(j).
end for

Denote the collection of resulting sets from all nodes at depth d, for d = 1, . . . , D, by
Ld,t = {Sj : depth(j) = d}.

end for
return candidate set of interactions LD :=

⋃T
t=1 LD,t.

Algorithm 1 describes a basic version of the Random Intersection Trees procedure. The reason

for allowing random choices of children is for the proof of Theorem 1, where we can randomly

choose the number of children to be in {b, b+ 1} for a suitable integer value b. Although we have

allowed the number of children of each non-leaf node in the trees to be random, in practice we
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would take this as a fixed number.

Looking at the innermost for-loop, we see that each node in each tree is associated with a

randomly drawn observation from class 1. For every tree, we visit each non-root node in turn, and

compute the intersection of the observation assigned to it, and all those assigned to its ancestors.

Because of the way the nodes are indexed, parents are always visited before their children, and

this intersection can simply be computed as Sj = Xi(j) ∩ Spa(j). This is crucial to reducing the

computational complexity of the procedure, as we shall see in the next section.

Each of the sets assigned to the leaf nodes of each of the trees yields a collection of potential

candidate interactions, LD. One could then proceed to test these as potential solutions to (3.1);

we present a more efficient approach in Section 3.4, where we build this testing step into the

construction of the trees.

An illustration of this improved algorithm applied to the Tic-Tac-Toe data discussed in Sec-

tion 3.5 is given in Figure 3.1. Observations here correspond to winning endgame positions, coded

such that the data is binary. Class labels record which player (black or white) won the game, and

the goal is to infer the interactions (corresponding to positions of a few counters) that lead to a win

for each player. In this example, the root node contains a randomly drawn final win-state for black

(class 1). This corresponds to S1 in our algorithm. For each other node j, we draw a new random

observation i(j) from all class 1 observations. The randomly chosen additional black-win state

Xi(j) is shown along the edge from its parent node. The new intersection, Sj , is the intersection

of the interaction in the parent node and the new set Xi(j); it is shown in the corresponding node.

The early stopping added in the improved algorithm also allows it to run until the algorithm has

terminated in all nodes. Thus no prior specification of the tree depth will be necessary in practice,

as will be shown in Section 3.4.

3.3 Computational complexity

How many trees do we have to compute to have a very high probability of finding an interesting

interaction S that fulfils (3.1)? And what is the required size of these trees? If the interaction is

not associated with a main effect, most approaches like trees and association rules would require

of order p|S| searches. In this section, we show that in many settings, Random Intersection Trees

improves on this complexity. We consider a single interaction S of size s := |S|, and examine the

computational cost for returning S as one of the candidate interactions, with a given probability.

We will see that this depends critically on three factors:

� Prevalence θ1 := Pn(S ⊆ X|Y = 1) of the interaction pattern. If the pattern S in question

appears frequently in class 1, the search is more efficient.

� Sparsity δk := Pn(k ∈ X|Y = 1) of the predictor variables k = 1, . . . , p. If δk is very low for

many k (and sparsity of predictors consequently high), computation of the intersections is

much cheaper, and so overall computational cost is greatly reduced. Indeed, for a fixed tree

t, consider a node j with depth d < D. We have that

E(|Sj |) =

p∑
k=1

δd+1
k .
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Figure 3.1: An intersection tree for the Tic-Tac-Toe game dataset. Given winning positions
of the black player, we intersect them randomly to produce the interactions (corresponding to
positions of black or white stones) that are responsible for wins. Starting with a randomly chosen
class 1 (black wins) observation at the root node, B = 4 randomly chosen class 1 observations are
intersected with the pattern. These randomly chosen observations are shown along the edges and
the resulting intersections Sj as the nodes in the next layer of the tree. Nodes are only shown if
the corresponding patterns Sj have an estimated prevalence among class 0 below a set threshold;
the branching of the tree terminates for all other nodes. The algorithm continues until all resulting
Sj corresponding to the leaf nodes have prevalence among class 0 exceeding the threshold. Here,
one of the winning states for black is filtered out after three intersections.
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Thus, for j′ ∈ ch(j), computation of Sj′ requires on average at most

O

(
log(p)

p∑
k=1

δd+1
k

)

operations. This is because in order to compute the intersection, one can check whether each

member of Sj is in Xi(j′), and each such check is O(log(p)) if the sets Xi are ordered so a

binary search can be used. If we compare this to the O(p) computations required to calculate

each of the Sj if no tree structure were used, we see that large efficiency gains are possible

when d ≥ 1 if many variables are sparse. For intersections with the root node, the tree

structure offers no advantage, and in practice, branching the tree only after level 1 (so the

root node has only one child), is more efficient, though this modification does not improve

the order of complexity.

� Independence of S: Define ν := maxk∈Sc Pn(k ∈ X|S ⊆ X,Y = 1). If ν is low, less

computational effort is required to recover S. Note that if, for some k ∈ Sc, Pn(k ∈ X|S ⊆
X) = 1, interest would centre on S ∪ {k} rather than S itself. Indeed, if S satisfied (3.1), so

would S ∪{k}. In general, if ν is large, the search will tend to find sets containing S, though

not necessarily S itself.

With the assumptions that θ1 > 0 and ν < 1, we can give a bound on the computational complexity

of the basic version of Random Intersection Trees introduced in the previous section.

Let us define

C(T,D, FB)

to be the expected number of computations required to perform all the intersections in the algo-

rithm when T trees of depth D are created and the distribution of the branching factors Bj is

FB .

Theorem 15. Given η, ε ∈ (0, 1], there exist choices of T,D and FB such that the set LD returned

by Algorithm 4 contains S with probability at least 1− η, and

C(T,D, FB) = O

log(1/η)
log2(p)

ε

{
p+

∑
k: (1+ε)δk>θ1

p
log{(1+ε)δk/θ1}

log(1/ν)

} . (3.2)

As a function of the number of variables p, there is a contribution of p log2(p) and an additional

contribution in the brackets that depends on the sparsity δk of each variable. Sparse variables

do not contribute to this sum, which can be O(1) if sparsity among variables is high enough.

This would yield a computational complexity with order bounded above by o(pκ) for any κ > 1,

compared to the corresponding complexity of ps for a brute force search. In most interesting

settings, however, we would not achieve a nearly linear scaling in complexity, but would hope to

still be faster than a brute force search.

Before discussing the result further, we comment briefly on the values of T,D and the distri-

bution of the Bj , that yield (3.2). From the proof, it follows that there exist choices of T and D
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giving (3.2) that satisfy

T ≤ (1 + 2ε) log(1/η)

2εθ1
,

D ≤ log{p(1 + 2ε)}
log(1/ν)

.

The random number Bj used in the proof takes just one of two consecutive integers (essentially to

avoid the discretisation effect when being restricted to integers), and E(Bj) ≤ (1 + ε)/θ1. Though

the optimal choices of parameters for the theorem depend on the unknown ν and the minimising

ε, which will in turn depend on ν, the functional relationships given above still provide rough

qualitative guidelines for good choices for these parameters in practice.

Using the values of T , D and Bj necessary to guarantee that with high probability the set S is

in the set LD, we can also obtain a bound on the expected number of candidate interaction sets

in LD. This will in turn bound the expected number of ‘false positives’ returned. The expected

number of sets returned is bounded by

E(|LD|) ≤ TE(Bj)
D ≤ log(1/η)

ε

{
(1 + 2ε)p

ν

} log(1+ε)/θ1
log(1/ν)

The value of ε can be chosen to minimise the bound above, but its value here and in the compu-

tational complexity bound of Theorem 15 have to be the same, as they are linked to the choice of

the branching factor used when building the trees. We see that in many situations, we can expect

the bound above to be very much lower than the O(ps) sets a complete list of s-way interactions

would contain. Note that if s were known, the relevant quantity to consider would be

E(|{S′ ∈ LD : |S′| = s}|),

which is likely to be much less than E(|LD|). Even if s were unknown, one would only be interested

in the expected number of non-empty sets in LD, a quantity which may well also be substantially

lower than the derived bound on E(|LD|).

The influence of sparsity on computational complexity. It is interesting to make the

influence of the sparsity of individual variables, δk, on the overall computational complexity, more

explicit. We have the following corollary to Theorem 15.

Corollary 16. Define β by ν = θβ1 . Suppose that γ, α?, α? are such that α? > α?, and

δk ≤ θ1−α?
1 for all k ∈ {1, . . . , p}

δk > θ1−α?
1 for at most pγ variables.

Given η ∈ (0, 1], there exist choices of T,D and FB such that the set LD returned by Algorithm 4

contains S with probability at least 1− η, and

C(T,D, FB) = o
(
pκ
)

for any κ > max

{
α?

β
+ γ,

[α?
β

]
+

+ 1

}
. (3.3)

The implication of Corollary 16 is most apparent if we take γ = 1 as we can then set α? = 0.
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In this case,

α? = 1− log(maxk δk)

log(θ1)
.

We can then bound the computational complexity by

o
(
pκ
)

for any κ > 1 +
log(1/θ1)− log(1/maxk δk)

log(1/ν)
. (3.4)

The fraction on the right-hand side is a function of the prevalence of the pattern S, θ1, the

maximum sparsity of the variables, and the maximum sparsity of the variables in Sc, conditional

on the presence of S. As long as this fraction is less than 1, the computational complexity is

guaranteed to be better than a brute force search with the knowledge that s = 2, and the relative

advantage grows for larger sizes of the pattern.

Independent noise variables. To gain further insight, we consider the special case where

variables in Sc are independent of S (conditional on being in class 1), in the sense that for all

k ∈ Sc,
Pn(k ∈ X|S ⊆ X,Y = 1) = Pn(k ∈ X|Y = 1) = δk. (3.5)

Corollary 17. Assume (3.5) and that δk < 1 for all k. Given η ∈ (0, 1], there exist choices of

T,D and FB such that the set LD returned by Algorithm 4 contains S with probability at least

1− η, and

C(T,D, FB) = o(pκ) for any κ >
log(1/θ1)

log(1/maxk δk)
. (3.6)

We see that the computational complexity is approximately linear in p if the prevalence of the

pattern S is as high as the prevalence of the least sparse predictor variables. This is the case in

the example mentioned in the introduction, where θ = δk = 1/2.

We can also consider the situation where in addition to the independence (3.5), all variables have

the same sparsity δ. If the prevalence θ1 of S is only as high as that of a random occurrence of two

independent predictor variables, we get κ > 2 and the computational complexity is approximately

quadratic in p. In this case, the algorithm would not yield a computational advantage over brute

force search if looking for patterns of size 2. This is to be expected since every pattern S of size 2

would have the same prevalence in this scenario, and so there is nothing special about a pattern

S of size 2 with prevalence δ2, and in general no hope of beating the complexity ps of a brute

force search. However, the bound in (3.6) is independent of s. Thus provided the prevalence, θ1,

drops more slowly than the rate δs, at which every pattern of size S would occur randomly among

independent predictor variables, our results show that Random Intersection Trees is still to be

preferred over a brute force search.

3.4 Early stopping using min-wise hashing

While Algorithm 1 is computationally attractive, the following observation suggests that further

improvements are possible. Suppose that, for a particular tree, we have just computed the inter-

section Sj corresponding to a node j at depth d < D. If

Pn(Sj ⊆ X|Y = 0) > θ0,



62 CHAPTER 3. RANDOM INTERSECTION TREES

then since for all j′ ∈ de(j), Sj′ ⊆ Sj , we also have

Pn(Sj′ ⊆ X|Y = 0) > θ0.

Thus no intersection sets corresponding to descendants of j have any hope of yielding solutions to

(3.1), and so all further associated computations are wasted.

In view of this, one option would be to compute the quantity Pn(Sj ⊆ X|Y = 0) at each node

j as the algorithm progresses, and if this exceeds the threshold θ0, not visit any descendants j′ of j

for computation of Sj′ . This could be prohibitively costly, though, as it would require a pass over

all observations in class 0, for each node of each tree. One could work with a subsample of the

observations, but if θ0 is low, the subsample size may need to be fairly large in order to estimate

the probabilities to a sufficient degree of accuracy.

Instead, we propose a fast approximation, using some ideas based on min-wise hashing (Broder

et al., 1998; Cohen et al., 2001; Datar and Muthukrishnan, 2002) applied to the columns of the

data-matrix. We describe the scheme by leaving aside the conditioning on Y = 0, which can be

added at the end by restricting to observations in class 0. Consider taking a random permutation

σ of all observations {1, . . . , n}. Let mσ(k) be the minimal value ι such that variable k is active in

observation σ(ι):

mσ(k) := min{ι′ : k ∈ Xσ(ι′)}.

It is well known (Broder et al., 1998) that the probability that mσ(k) and mσ(k′) agree for two

variables k, k′ under a random permutation σ is identical to the Jaccard-index for the two sets

Ik = {i : k ∈ Xi} and Ik′ = {i : k′ ∈ Xi}, that is

Pσ(mσ(k) = mσ(k′)) =
|Ik ∩ Ik′ |
|Ik ∪ Ik′ |

.

Here the subscript σ indicates that the probability is with respect to a random permutation σ

of the observations. A min-wise hash scheme is typically used to estimate the Jaccard-index by

approximating the probability on the left-hand side of the equation above.

Now,

Pn(S ⊆ X) = Pn(k ∈ X for all k ∈ S)

= Pn(k ∈ X for all k ∈ S | ∃ k′ ∈ S such that k′ ∈ X)

× Pn(∃k ∈ S such that k ∈ X).

Let us denote the first and second terms on the right-hand side by π1(S) and π2(S) respectively.

Note that π1(S) is equal to the probability that all variables k ∈ S have the same min-wise hash

value mσ(k):

π1(S) = Pσ(∃ ι : mσ(k) = ι for all k ∈ S). (3.7)

Turning now to π2(S), observe that

Eσ(min
k∈S

mσ(k)) =
n+ 1

π2(S)n+ 1
, (3.8)

and so

π2(S) =
n+ 1

n

{
1

Eσ(mink∈Smσ(k))
− 1

n+ 1

}
. (3.9)
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A derivation of (3.8) is given in the appendix of this chapter.

Equations (3.7) and (3.9) provide the basis for an estimator of Pn(S ⊆ X). First we generate

L random permutations of {1, . . . , n}: σ1, . . . , σL. We then use these to create an L× p matrix M

whose entries are given by

Mlk = mσl(k).

Now we estimate π1(S) and π2(S) by their respective finite-sample approximations, π̂1(S) and

π̂2(S):

π̂1(L;S,M) := 1
L

L∑
l=1

1{Mlk=Mlk′ for all k,k′∈S}

π̂2(L;S,M) :=
n+ 1

n

{
1

1
L

∑L
l=1 mink∈SMlk

− 1

n+ 1

}
.

Finally, we estimate Pn(S ⊆ X) by

P̂n(L;S,M) := π̂1(L;S,M) · π̂2(L;S,M). (3.10)

To our knowledge, this use of min-wise hashing techniques, and in particular the estimator π̂2(L;S,M),

is new. The estimator enjoys reduced variance compared to that which would be obtained using

subsampling, as the following theorem shows.

Theorem 18. For P̂n(L;S,M), π1(S) and π2(S) defined as in (3.10), (3.7), and (3.9) respectively,

as L→∞, we have

√
L(P̂n(L;S,M)− Pn(S ⊆ X))

d→ N(0, π2(S)2π1(S)(1− π1(S)π2(S))(1 + ε(n))), (3.11)

where

ε(n) =
1

n

n−1 − π2
2 − 2π2n

−1

π2(π2 + 2n−1)(1 + n−1)
= O(n−1). (3.12)

A derivation is given in the Appendix of this chapter. If we tried to estimate π1π2 by evaluating

the prevalence of S on a subset of the data of size L, the corresponding estimator multiplied by√
L would have variance

π2(S)π1(S)(1− π1(S)π2(S)) + on(1),

where on(1) → 0 as n → ∞. Comparing this variance to the variance of the normal distribution

in (3.11), we see that a factor of π2(S) is gained: matching the accuracy of the the min-wise

hash scheme with subsampling would require roughly 1/π2(S) times as many samples. By using

min-wise hashing, choosing L = 100 typically delivers a reasonable approximation as long as we

just want to resolve values at θ0 = 0.01 and above.

An improved version of Algorithm 1, building in the ideas discussed above, is given in Algorithm

2 below. Note that P̂n(Spa(j),M) need only be computed once for every j with the same parent.

Early stopping decreases the computational cost of the algorithm as many nodes in the trees

generated may not need to have their associated intersections calculated. In addition, the set of

candidate intersections LD will be smaller but the chance of it containing interesting intersections

would not decrease by much. These gains comes at a small price, since the min-wise hash matrix M

must be computed, and the computational effort going into this will in turn determine the quality

of the approximation in (3.10). We have previously shown the complexity bounds in the absence
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Algorithm 5 Random Intersection Trees with early stopping

Compute the L× p min-wise hash matrix M , using only class 0 observations.
for tree t = 1 to T do

Let t be a rooted tree of depth D, with each node j in levels 0, . . . , D− 1 having Bj children,
where the Bj are i.i.d. with a pre-specified distribution. Denote by J the total number of
nodes in the tree, and index the nodes chronologically. For each of the nodes j = 1, . . . , J ,
let i(j) be an independently and uniformly chosen index in the set of class 1 observations
{i : Yi = 1}.
Set S1 = Xi(1).
for node j = 2 to J do

if P̂n(Spa(j),M) ≤ θ0 then
Set Sj = Xi(j) ∩ Spa(j).

end if
end for

Denote the collection of resulting sets of all nodes at depth d, for d = 1, . . . , D, by
Ld,t = {Sj : depth(j) = d}.

end for
return LD :=

⋃T
t=1 LD,t.

of early stopping and thus avoided the difficulty of making this trade-off explicit. We will use the

improved version of Random Intersection Trees with early stopping in all the practical examples

to follow, taking small values of L in the range of a (few) hundred permutations.

The depth D of the tree is still given explicitly in Algorithm 2. An interesting modification

creates the tree recursively. Starting with the root node, B children are added to all leaf nodes

of the tree in which the early stopping criterion has not been triggered yet. When the algorithm

terminates, all intersections in the leaf nodes of the final tree are collected.

3.5 Numerical Examples

In this section, we give two numerical examples to provide further insight into the performance of

our method. The first is about learning the winning combinations for the well-known game Tic-

Tac-Toe. This example serves to illustrate how Random Intersection Trees can succeed in finding

interesting interactions when other methods fail. The second example concerns text classification.

Specifically, we want to find simple characterisations (using only a few words, or word-stems in

this case) for classes within a large corpus in a large-scale text analysis application.

3.5.1 Tic-Tac-Toe endgame prediction

The Tic-Tac-Toe endgame dataset (Aha et al., 1991; Matheus and Rendell, 1989) contains all

possible winning end states of the game Tic-Tac-Toe, along with which player (white or black) has

won for each of these. There are just under 1000 possible such end states, and our goal is to learn

the rules that determine which player wins from a randomly chosen subset of these. We use half

of the observations for training, and the other half for testing.

There are 9 variables in the original dataset which can take the values ‘black’, ‘white’ or ‘blank’.

These can trivially be transformed into a set of twice as many binary variables where the first block

of variables encodes presence of black and the second block encodes presence of white.

Two properties of this dataset that make it particularly interesting for us here are:
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Figure 3.2: Left panel: patterns that are returned by Random Intersection Trees (bottom row),
Random Forests of depth 3 (middle row) and brute force search among all interactions of size 3
(top row) for the Tic-Tac-Toe data. Each pattern is scaled to make the area proportional to the
empirical frequency with which each pattern is found by these search algorithms. Right panel:
the same results in the case when 100 noise variables are added. Note that Random Intersection
Trees were not constrained to find interactions of depth 3. In the case with noise variables, some of
the patterns with the very smallest areas also contained a small number of noise variables, which
are not shown. Just counting three- to five-way interactions, there are more than 108 potential
interactions when 100 noise variables are added.
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Figure 3.3: From left to right: the misclassification rate (in %) on Tic-Tac-Toe data for 0, 60,
300 and 400 added noise variables. Each classifier is tuned to have equal misclassification rate in
both classes. The simple classifier based on Random Intersection Trees (RI) has a misclassification
rate of 0% in all cases, as the winning patterns are sampled very frequently (see Figure 3.2).
Random Forests (RF) and Random Forests limited to depth 3 trees (RF3) are competitive but the
misclassification rate increases sharply when many noise variables are added.

� The presence of interactions is obvious by the nature of the game.

� There are only very weak marginal effects. Knowing that the upper right corner is occupied

by a black stone is only very weakly informative about the winner of the game. Greedy

searches by trees fail in the presence of many added noise variables and linear models do not

work well at all.

We apply Random Intersection Trees to finding patterns that indicate a black win (class 1),

and also patterns that indicate a white win (class 0). We use the early stopping modifications

proposed in Section 3.4, and create two min-wise hash tables from the available observations in

each of the classes, taking L = 200. Figure 3.1 shows how the individual Intersection Trees are

constructed and illustrates the use of the early stopping rule. We emphasise that we do not need

to specify or know that the winning states are functions of only three variables. We let each tree

run until all its branches terminate, and collect all resulting leaves.

Figure 3.2 illustrates the importance sampling effect of Random Intersection Trees when using

only the training data, and adding a varying number of noise variables. When adding 100 noise

variables, all 16 winning final combinations are among the 40 most frequently chosen patterns.

All winning states are chosen hundreds of millions times more often than a random sampling of

interactions would pick them.

As discussed in Section 3.1, the interactions or rules that are found could be entered into any

existing aggregation method, such as Rule Ensembles (Friedman and Popescu, 2008) or Decision

Lists (Marchand and Sokolova, 2006; Rivest, 1987). Here, we consider an even simpler aggregation

method by selecting all patterns during 1000 iterations of Random Intersection Trees (with B = 5

samples as branching factor in each tree) that were selected by at least two trees. For each selected

pattern, we compute the (empirical) class distributions conditional on the presence and absence of
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the pattern, using the training sample. That is, for each selected pattern S, we compute

Pn(Y = 1|X ⊆ S) and Pn(Y = 1|X * S).

Then, given an observation from the test set, we classify according to the average of the log-odds

of being in class 1 calculated from each of the conditional probabilities above.

Figure 3.3 shows the misclassification rates under situations with different numbers of added

noise variables. The simple prediction based on Random Intersection Trees achieves perfect classi-

fication even when 400 noise variables are added. Neither k-NN nor CART (Breiman et al., 1984),

either restricted to trees of depth 3 (TREE3) or depth chosen by cross-validation (TREE), are

as successful, giving misclassification rates between 5% and 40%. Interestingly, trees of depth 3

perform much worse than deeper trees. The winning patterns are not identified in a pure form

but only after some other variables have been factored in first. This also means that it is very

hard to read the winning states of the trees, unlike the patterns obtained by our method. Random

Forests also maintain a 0% misclassification rate up until about a hundred added noise variables

but start to degrade in performance when further noise variables are added. It is easy to identify

the noise variables from a variable importance plot (Strobl et al., 2008). However, within the signal

variables the patterns are not easy to see since each variable is approximately equally important

for determining the winner (with the slight exception of the middle field in the 3×3 board which is

more important than the other fields) and the nature of the interactions is thus not obvious from

analysing a Random Forest fit.

3.5.2 Reuters RCV1 text classification

The Reuters RCV1 text data contain the tf–idf (term frequency–inverse document frequency)

weighted presence of 47, 148 word-stems in each document; for details on the collection and pro-

cessing of the original data, see Lewis et al. (2004). Each document is assigned possibly more than

one topic. Here we are interested in whether Random Intersection Trees is able to give a quick and

accurate summary of each topic. For each topic, we seek sets of word-stems, S, whose simultaneous

presence is indicative of a document falling within that topic.

To evaluate the performance of Random Intersection Trees, we divide the documents into a

training and test set with the first batch of 23, 149 documents as training and the following 30, 000

documents as test documents. We compare our procedure to an approach based on Random Forests

and a simple linear method.

Random Forests and classification trees can be very time- and memory-intensive to apply on

a dataset of the scale we consider here. In order to be able to compute Random Forests, we

only consider word-stems if they appear in at least 100 documents in the training data. This

leaves 2484 word-stems as predictor variables. We also only consider topics that contain at least

200 documents. To simplify the problem further, we consider a binary version of the predictor

variables for all methods, using a 1 or 0 to represent whether each tf–idf value is positive or not.

Let C be the set of topics in our modified dataset. Let Y ⊆ C indicate the topics that a given

document belongs to. Consider a topic or class c ∈ C. Our goal is to find patterns S that maximise

Pn(c ∈ Y |S ⊆ X), (3.13)

whilst also maintaining that the prevalence of S among all observations be bounded away from 0.
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Figure 3.4: The misclassification rate Pn(c /∈ Y |S ⊆ X) on the test data for a pattern S chosen with
a tree ensemble node generation mechanism (black circle), Random Intersections (white circle),
and a linear method (black triangle) for topics c ∈ C in the Reuters RCV1 text classification data.
The topics are shown on the left and the word combinations chosen by Random Intersection Trees
on the right.
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Specifically, we shall require that

Pn(S ⊆ X) ≥ pc/10 where pc = Pn(c ∈ Y ). (3.14)

To see how this can be cast within the framework set in (3.1), note that if S? maximises (3.13)

and S?? satisfies

Pn(S?? ⊆ X|Y ∈ c) ≥ Pn(S? ⊆ X|Y ∈ c) and (3.15)

Pn(S?? ⊆ X|Y /∈ c) ≤ Pn(S? ⊆ X|Y /∈ c), (3.16)

then

Pn(c ∈ Y |S? ⊆ X) =
Pn(S? ⊆ X|c ∈ Y )Pn(c ∈ Y )

Pn(S? ⊆ X|c ∈ Y )Pn(c ∈ Y ) + Pn(S? ⊆ X|c /∈ Y )Pn(c /∈ Y )

≤ Pn(S?? ⊆ X|c ∈ Y )Pn(c ∈ Y )

Pn(S?? ⊆ X|c ∈ Y )Pn(c ∈ Y ) + Pn(S?? ⊆ X|c /∈ Y )Pn(c /∈ Y )

= Pn(c ∈ Y |S?? ⊆ X),

whence S?? also maximises (3.13) by optimality of S?. Thus treating those documents belonging

to topic c as class 1, and all others as class 0, by solving (3.1) with θ0 and θ1 chosen appropriately,

we can obtain all solutions to (3.13).

In view of this, we use each of the methods to search for patterns S that have high prevalence

for a given topic c. We then remove all patterns that do not satisfy (3.14) on the test data. Then,

from the remaining patterns, we select the one that maximises (3.13) on training data. Below, we

describe specific implementation details of each of the methods under consideration.

Random Intersection Trees. We create the min-wise hash table for the prevalence among all

samples once, using 200 permutations with associated min-wise hash values for each word-stem.

Then 1000 iterations of the tree search are performed with a cut-off value θ0 = (3/20)pc and all

remaining patterns S with a length less than or equal to 4 are retained.

Random Forests. For a tree-based procedure, one approach is to fit classification trees on

subsampled data and adding randomness in the variable selection as in Random Forests (Breiman,

2001) and then looking among all created leaf nodes for the most suitable node among all nodes

created.

We generate 100 trees as in the Random Forests method: each is fit to subsampled training data

using CART algorithm restricted to depth 4, and further randomness is injected by only permitting

variables to be selected from a random subset of those available, for each tree. This takes on average

between 90% to 110% of the computational time of a non-optimised pure R (R Development Core

Team, 2005) implementation of Random Intersection Trees for these data. Note that this is when

using the Fortran version of (Breiman, 2001) for the Random Forests node generation; we expect a

significant speedup if Fortran or C code were used for Random Intersection Trees. We are currently

working on such a version and plan to make it available soon. Furthermore, Random Forests would

scale much worse if many more word-stems were included as variables.

Linear models. For linear models, we fit a sparse model with at most ` predictors (with ` ≤ 4),

using a logistic model with an `1-penalty (Friedman et al., 2010; Tibshirani, 1996). We constrain
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the regression coefficients to be positive since we are only looking for positive associations in the two

previously discussed approaches, and want to keep the same interpretability for the linear model.

For each value of ` ≤ 4, we take S` to be the set of variables with a positive regression coefficient.

We select the largest value of ` such that the fraction of documents attaining the maximal value is

at least pc/10 and select the associated pattern S`. (An alternative approach would be to retain

the documents with the highest predicted value when using a sparse regression fit. This approach

gave very similar results.)

After screening the candidate patterns returned by each of the methods using (3.14) on all of

the topics c ∈ C, we evaluate the misclassification rate Pn(c /∈ Y |S ⊆ X) on the test data. The

results for all of the topics are shown in Figure 3.4. The rules found with Random Intersection

Trees have a smaller loss than those found with Random Forests in all but 5 of the topics. For

those topics where Random Forests performs better, the difference in loss is typically small. Linear

models achieve a smaller loss than Random Forests among most of the topics, but only have a

smaller loss than Random Intersection Trees in 6 topics, performing worse in all remaining 46

topics.

3.6 Discussion

We have proposed Random Intersection Trees as an efficient way of finding interesting interactions.

In contrast to more established algorithms, the patterns are not built up incrementally by adding

variables to create interactions of greater and greater size. Instead we start from the full interaction

S = {1, . . . , p} and remove more and more variables from this set by taking intersections with

randomly chosen observations. Arranging the search in a tree increases efficiency by exploiting

sparsity in the data. For the basic version of our method (Algorithm 1), we were able to derive a

bound on the computational complexity. The bound depends on (a) the prevalence or frequency

with which the pattern S appears among observations in class 1, and (b) the overall sparsity of the

data, with higher sparsity making it easier to detect the interaction using a given computational

budget. In the best case, we can achieve an almost linear complexity bound as a function of p; more

generally our complexity bound typically has a smaller exponent than that for a brute force search.

Further improvements can be made by using min-wise hashing techniques to terminate parts of

the search (i.e. branches of the Intersection Tree) that have no chance of leading to interesting

interactions. Numerical examples illustrate the improved interaction detection power of Random

Intersection Trees over other tree-based methods and linear models.

There are many diverse ways in which interactions that solve (3.1) can be used in further

analysis. The interactions may be of interest in their own right as shown in both numerical

examples. One can also simply use the search to make sure that a dataset is unlikely to have

strong interactions that could otherwise have been missed. If the aim is to build a classifier, they

can be added to a linear model, or built into classifiers based on tree ensembles. For the latter

approach one could consider, for example, averaging predictions in a linear way or averaging log-

odds as in Random Ferns (Bosch et al., 2007). We believe developments along these lines will prove

to be fruitful directions for future research. We also plan to generalise the idea to categorical and

continuous predictor variables.
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3.7 Appendix

Proof of Theorem 15. Fix a tree t ∈ {1, . . . , T} and suppose this has node set N = {1, . . . , J}
indexed chronologically (see Section 3.2). For d ∈ {1, . . . , D}, define

Nd = {j ∈ N : depth(j) = d and Sj ⊇ S},
Wd = |Nd|.

Let E be the event that S is contained in S1, the random sample selected for the root node of tree

t. Further, let Gd(u) = E(uWd |E), the probability generating function of Wd conditional on the

event E.

We make a few simple observations from the theory of branching processes. Firstly, for d ≤
D − 1, Gd+1 = Gd ◦G where G := G1. To see this, first note that

Wd+1 =
∑
j∈Nd

∑
j′∈ch(j)

1{S⊆Xi(j′)}.

Now conditional on E, the random variables
∑
j′∈ch(j) 1{S⊆Xi(j′)} for j ∈ Nd, are independent of

Nd. Moreover, they are independent of each other and have identical distributions equal to that of∑
j′∈ch(1)

1{S⊆Xi(j′)} = W1.

This entails

E(uWd+1 |Wd = w,E) = {E(uW1 |E)}w = {G(u)}w.

Thus

Gd+1(u) = E(E(uWd+1 |Wd, E)|E) = E({G(u)}Wd |E) = Gd(G(u)),

as claimed.

From this we can conclude that if G has a fixed point q, then this must be a fixed point for all

Gd. Since each Gd is non-decreasing on (0, 1], we have that for all d ∈ N, if q′ ≤ q and q′ ∈ (0, 1],

then Gd(q
′) ≤ q. The relevance of these remarks will become clear from the following: for an

S′ ∈ LD,t, we have

GD(P(S′ ) S|S′ ⊇ S)) =

∞∑
`=0

P(WD = `|E)P(S′ ) S|S′ ⊇ S)`

=

∞∑
`=0

P({WD = `} ∩ {S /∈ LD,t}|E)

= P(S /∈ LD,t|E).

Thus if we can ensure that P(S′ ) S|S′ ⊇ S) is at most q, then the final probability in the above

display will also be at most q. The rest of the proof proceeds with the following steps:

1. Find conditions on FB , the distribution of the Bj , such that there exists a fixed point of G,

q.

2. Find conditions on the tree depth D such that P(S′ ) S|S′ ⊇ S) ≤ q.

3. Given q establish conditions on T such that the overall probability of recovering S is at least
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1− η.

4. Given FB , D and T , compute the expected computational cost of the algorithm.

Step 1: Let the distribution of the Bj be such that

Bj =

b with probability 1− α,
b+ 1 with probability α.

Now given a q ∈ (0, 1], we shall pick b ∈ Z+ and α ∈ [0, 1) to satisfy G(q) = q. To this end, observe

that

G(q) = (1− α)(1− θ1(1− q))b + α(1− θ1(1− q))b+1

= [1− {(α+ b)− bα+ bc}θ1(1− q)]{1− θ1(1− q)}bα+bc.

From the last displayed equation, we see that G(q) varies with α + b continuously. Furthermore,

when α + b = 0, G(q) = 1, and by making α + b large, we can make G(q) arbitrarily close to 0.

Thus by the intermediate value theorem, for any q ∈ (0, 1], α+b can be chosen such that G(q) = q.

We now bound α+b from above in terms of q for use later in creating a bound on the complexity

of the algorithm. We have

b+ α =
log(q)− log(1− αθ1(1− q))

log(1− θ1(1− q)) + α

≤ − log(q) + log(1− αθ1(1− q))
θ1(1− q) + α

≤ − log(q)

θ1(1− q)

≤ 1 + (1− q)/(2q)
θ1

. (3.17)

In the final line, we used the inequality

log(z) ≥ (z − 1)− (z − 1)2

2z
, 0 < z ≤ 1.

Step 2: We now bound P(S′ ) S|S′ ⊇ S) from above in terms of D. The set S′ is the

intersection of D+ 1 observations selected independently of one another. In order for some k ∈ Sc
to be contained in S′, it must have been present in all these D+1 observations. Thus by the union

bound we have

P(S′ ) S|S′ ⊇ S) ≤
∑
k∈Sc

P(k ∈ S′|S′ ⊇ S) ≤ pνD+1,

the rightmost inequality following from (A2).

To ensure this is at most q, we take

D =

⌈
log(p/q)

log(1/ν)

⌉
− 1, (3.18)

so

D ≤ log(p/q)

log(1/ν)
. (3.19)
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Step 3: Turning now to the probability of recovering S, we have

P(S ∈ LD) = 1− [1− {1− P(S /∈ LD,t|E)}θ1]T .

Given the choices of α and b (3.17), and D (3.18), we have that P(S /∈ LD,t|E) ≤ q. Thus taking

T to be at least
− log(η)

(1− q)θ1
≥ − log(η)

log{1− (1− q)θ1}
(3.20)

guarantees recovery of S with probability at least 1− η.

Step 4: To bound the complexity of the algorithm, observe that E(Bj) = b+ α, so

C(T,D, FB) ≤ log(p)T

p∑
k=1

[(b+ α)δk + · · ·+ {(b+ α)δk}D]

≤ log(p)TD

[
p+

∑
k:(b+α)δk>1

{(
(b+ α)δk

)D − 1
}]
. (3.21)

Substituting equations (3.17), (3.19) and (3.20) into the complexity bound (3.21), and writing

ε = (1− q)/(2q) gives a bound for the computational complexity of

log(p)
log(1/η)

θ1

1 + 2ε

2ε

log{p(1 + 2ε)}
log(1/ν)

[
p+

∑
k:(1+ε)δk>θ1

{(
p(1 + 2ε)

) log{(1+ε)δk/θ1}
log(1/ν) − 1

}]
. (3.22)

Given that ε is bounded above, removing constant factors not depending on p, we get that the

order of the computational complexity is bounded above by

log(1/η)
log2(p)

ε

{
p+

∑
k:(1+ε)δk>θ1

(
p

log{(1+ε)δk/θ1}
log(1/ν) − 1

)}
.

Proof of Corollary 16. Note that ∑
k:(1+ε)δk>θ1

p
log((1+ε)δk/θ1)

log(1/ν)

is bounded by

(1 + ε)
log(p)

log(1/ν)

(
pγ · pα?/β1{α?/β>0} + p · pα?/β1{α?/β>0}

)

The result then follows from substituting into (3.22) and taking ε ∝ 1/ log(p).

Derivation of (3.8). Writing r = nπ2(S), we have

(
n

r

)
Eσ(min

k∈S
mσ(k)) =

n−r+1∑
`=1

`

(
n− `
r − 1

)

=

n−r+1∑
`=1

{
(`− 1)

(
n− (`− 1)

r

)
− `
(
n− `
r

)}
+

n−r+1∑
`=1

(
n− `+ 1

r

)
.
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The first two terms sum to zero leaving only the final term. Thus

(
n

r

)
Eσ(min

k∈S
mσ(k)) =

n−r+1∑
`=1

{(
n− `+ 2

r + 1

)
−
(
n− `+ 1

r + 1

)}
=

(
n+ 1

r + 1

)
, (3.23)

whence

Eσ(min
k∈S

mσ(k)) =
n+ 1

r + 1
. (3.24)

Proof of Theorem 18. Writing

π̃−1
2 (L;S,M) := 1

L

L∑
l=1

min
k∈S

Mlk

and suppressing dependence on S and M , we have

π̂1π̂2 − π1π2 =
(n+ 1− π̃−1

2 )π̂1

nπ̃−1
2

− π1π2

=
n+ 1− π̃−1

2

nπ̃−1
2

{
(π̂1 − π1)− π1

nπ2 + 1

n+ 1− π̃−1
2

(
π̃−1

2 − n+ 1

nπ2 + 1

)}
. (3.25)

Consider L → ∞. By the weak law of large numbers and the continuous mapping theorem, we

have

n+ 1− π̃−1
2 (L)

nπ̃−1
2 (L)

p→ π2 and

nπ2 + 1

n+ 1− π̃−1
2 (L)

p→ (π2 + n−1)2

π2(1 + n−1)
.

By the central limit theorem, Slutsky’s lemma and Lemma 19,

AL :=
√
L(π̂1(L)− π1)

d→ N(0, π1(1− π1)) and

BL := −π1
nπ2 + 1

n+ 1− π̃−1
2 (L)

×
√
L

(
π̃−1

2 (L)− n+ 1

nπ2 + 1

)
d→ N(0, π2

1(1− π2)(1 + ε(n))),

with ε(n) defined as in (3.12).

Define IS := {i : S ⊆ X} and let k ∈ S. Now observe that

{∃ι′ : mσ(k) = ι′ for all k′ ∈ S} = {σ−1(mσ(k)) ∈ IS} and {min
k∈S

mσ(k) = ι}

are independent: in words, the distribution of mink∈Smσ(k) conditional on the fact that an

observation index in IS was permuted to a lower value than any in Ik \ IS is the same as its

unconditional distribution. This implies the independence of π̂1 and π̃−1
2 and thence also that of

AL and BL. Thus we have that for all u1, u2 ∈ R,

E(ei(u1AL+u2BL)) = E(eiu1AL)E(eiu2BL)→ exp[ 1
2u

2
1π1(1− π1) + 1

2u
2
2{π2

1(1− π2)(1 + ε(n))}].
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pointwise as L→∞. Returning to (3.25), by Lévy’s continuity theorem we have

√
L{π̂1(L)π̂2(L)− π1π2} d→ N(0, π2

2π1(1− π1π2)(1 + ε(n))).

Lemma 19. Let r = nπ2(S) and suppose n ≥ r + 2. Then

Varσ(min
k∈S

mσ(k)) =
r(n+ 1)(n− r)
(r + 1)2(r + 2)

.

Proof. We have,

(
n

r

)
Eσ{(min

k∈S
mσ(k))2} =

n−r+1∑
`=1

`2
(
n− `
r − 1

)

=

n−r+1∑
`=1

{
(`− 1)2

(
n− (`− 1)

r

)
− `2

(
n− `
r

)}

+

n−r+1∑
`=1

{
2(`− 1)

(
n− (`− 1)

r

)
+

(
n− `+ 1

r

)}
= 2

(
n+ 1

r + 2

)
+

(
n+ 1

r + 1

)
,

where in the last line we used (3.23) and (3.24). Simplifying and using (3.8) then gives the

result.
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Chapter 4

Min-wise hashing for large-scale

regression and classification with

sparse data

4.1 Introduction

The modern field of high-dimensional statistics has now developed a powerful range of methods to

deal with datasets where the number of variables p may greatly exceed the number of variables n.

The prototypical example of microarray data, where p may be in the tens of thousands but n

is typically not more than a few hundred, has motivated much of this development. Yet not all

modern datasets come in this sort of shape and size. The emerging area of ‘large-scale data’ or

the more vaguely defined ‘Big Data’ is a response to the increasing prevalence of computationally

challenging datasets as arise in text analysis or web-scale prediction tasks, to give two examples.

Here both n and p can run into the millions or more, particularly if interactions are considered.

In these ‘large p, large n’ regression scenarios, one can imagine situations where ordinary least

squares (OLS) has competitive performance for prediction, but the sheer size of the data renders

it computationally infeasible. Thus it makes sense, in this setting, to consider approximations to

OLS that can be obtained at a lower computational cost.

Some effort has gone into studying approximations to least squares estimation by using low-

rank matrix decompositions including CUR-type decompositions (Drineas et al., 2006, 2011). Here,

however, as in the previous chapter, we are interested in developing methodology that can take

advantage of sparsity in the design matrix, a property that is often present in large-scale data.

This is not to be confused with signal sparsity, a common assumption in the high-dimensional

context. Indeed, when the design matrix is sparse, having only a few variables that contribute

to the response would make the expected response values of all observations with no non-zero

entries for the important variables exactly the same; one expects that such a property would not

be possessed by many datasets. However, similarly to the way in which many high-dimensional

techniques exploit sparsity to improve statistical efficiency, here we aim to use sparsity in the data

to yield both computational and statistical improvements.

The approach we take uses dimensionality reduction: we first map each of the p-dimensional

observations to an L-dimensional space, where we would typically choose L� p, and then perform

77
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regression on the reduced design matrix thus created. Provided L is small enough, this final

regression will be computationally feasible. Our dimensionality reduction step is based on a min-

wise hashing scheme (see Section 3.4), and is a modification of b-bit min-wise hashing (Li and

König, 2011). The latter method can be applied to compress binary design matrices and has

been used with SVM-type classifiers (see Li et al. (2011); Yu et al. (2012)). Despite its promising

empirical results, the theoretical properties of the predictions obtained following a reduction by

b-bit min-wise hashing have not been thoroughly explored for linear or logistic regression. Our

variant, which we call ‘min-wise hash random-sign mapping’ (MRS mapping), is more analytically

tractable than b-bit min-wise hashing, and has the additional benefit that it can be used on design

matrices where some predictors are continuous. In addition, our scheme allows the construction of

variable importance measures that can allow one to assess the influence of the individual variables

on the predictions.

We describe the MRS mapping algorithm in Section 4.2. In Section 4.3 we study the per-

formance of linear and logistic regression using the reduced design matrix created. We show, in

particular, that if the original data are well-approximated by a linear model with coefficient vector

β∗, the expected mean-squared prediction error is bounded by a small constant times
√
q/n ‖β∗‖2,

where q is the maximal number of active variables for each observation.

Perhaps more surprisingly, we show in Section 4.4 that despite the information loss through

MRS mapping, a main effects model in the reduced design matrix can also approximate an interac-

tion model in the original data. This does not require a modification of the procedure, though one

typically needs a larger dimensionality L of the mapping, to reduce the error in the approximation.

Variable importance measures and other extensions are discussed in Section 4.5, after which some

numerical studies are presented in Section 4.6. We conclude with a discussion in Section 4.7, and

all proofs are collected in the appendix of this chapter.

4.2 MRS mapping and dimension reduction

In this section, we present our MRS mapping methodology for dimension reduction. Given a sparse

design matrix X ∈ Rn×p, the aim is to map this to a compressed matrix S ∈ Rn×L, in a way

that is computationally efficient and such that linear combinations of variables in X can be well-

approximated by linear combinations of columns of S. Section 4.2.2 describes the mapping to S.

The construction may seem rather bizarre at first sight; indeed, our initial motivation for developing

MRS mapping was to emulate the equally mysterious b-bit min-wise hashing scheme (Li and König,

2011) in an analytically tractable manner. We explain the connection between the two techniques

in Section 4.2.3. In Section 4.2.4 we briefly discuss two other dimension reduction schemes that one

might consider applying to X, namely principal components and random projections. We begin

by establishing some notation.

4.2.1 Notation

Given a matrix U, we will write ui and Uj for the ith row and jth column respectively, where both

are to be regarded as column vectors. The ijth entry will be denoted Uij . For a set of indices of

columns of U, A, we will write UA for the submatrix consisting of the columns of U indexed by
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A. A vector of 1’s will be denoted 1. We also define the following matrix norms

‖U‖∞ := max
i,j
|Uij |

‖U‖F :=

(∑
i,j

U2
ij

)1/2

.

When the parentheses following probability and expectation signs, P and E, enclose multiple

potential sources of randomness, we will sometimes add subscripts to indicate what is being con-

sidered as random. For example, if U and V are random variables, we may write EU (U |V ) for the

conditional expectation of U given V , and EU,V (U + V ) for the expected value of U + V .

4.2.2 Construction of S

Here we describe how the lth column of S, Sl, is generated. We will create L columns in total, the

entire collection of columns forming a set of i.i.d. random vectors. First let Ψ ∈ {−1, 1}p×L be a

matrix consisting of i.i.d. random signs, each chosen with probability 1/2. There are three steps

to the construction:

Step 1: Generate a random permutation of the set {1, . . . , p}, πl, and permute the columns of X

according to this permutation.

Step 2: Search along each row of the permuted design matrix (in order of increasing column index)

and record in the vector Hl ∈ Nn, the indices of the variables (indexed as in the original

design matrix) with the first non-zero value.

Step 3: Form Sl ∈ Rn with ith component given by ΨHillXiHil .

This construction is illustrated for a toy example in Table 4.1.

X =



1 2 3 4

· 7 · 9

· · 1 4

1 · 2 ·
· 6 1 ·
8 5 · ·


πl=23147→



3 1 2 4

· · 7 9

1 · · 4

2 1 · ·
1 · 6 ·
· 8 5 ·

 Hl =


2
3
3
3
1

 Ψl =


1
−1
−1
1

⇒ Sl =


−7
−1
−2
−1
8


Step 1 : non-zero indices whose variable indices will
appear in Hl in Step 2 are in bold.

Step 2. Step 3.

Table 4.1: Steps 1–3 applied to a toy example. Dots represent zeroes.

Let zi = {k : Xik 6= 0} be the set of variable indices whose entries entries have non-zero values

for the ith observation. Performing the steps above for all 1 ≤ l ≤ L, we get n × L matrices H,

and S given by

Hil =arg min
k∈zi

πl(k), (4.1)

Sil =ΨHillXiHil . (4.2)
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Suppose Y is a vector of responses associated with X. Having created matrix S, we now regress

Y on S, rather than the original X. For example, we may perform a linear regression,

(α̂, b̂) = arg min
(α,b)∈R×Dλ

‖Y − α1− Sb‖22,

where Dλ = RL for OLS or, Dλ = {w ∈ RL : ‖w‖2 ≤ λ} for ridge regression and a given value of

the tuning parameter λ.

The estimator b̂ can then be used for predicting the expected responses of the existing obser-

vations based on Sb̂. For new observations, a corresponding new S matrix must be created. To

create the S matrix for new observations we have to use the same permutations and sign-matrix

Ψ as for the original data.

Note that one would not necessarily follow the above steps when implementing the MRS map-

ping algorithm. In practice, one would not store the entire matrix of signs nor all the random

permutations. In an implementation, hash functions (Carter and Wegman, 1979) would be used

to create the matrix S deterministically, though it is beyond the scope of this work to go into

the details; see Li et al. (2012b) for more information. With this approach, S would be created

row-by-row, and only a single observation from X would need to be kept in memory at any one

time. Furthermore, many rows could be created in parallel. Other ideas such as one-permutation

hashing (Li et al., 2012a) can also be used to speed up the pre-processing step. For the theoretical

analysis in Section 4.3.1 and following, we will assume that all random inputs in the construction

of S are truly random.

4.2.3 Connection to b-bit min-wise hashing

Instead of creating the matrix H, b-bit min-wise hashing (Li and König, 2011) calculates a matrix

M ∈ Nn×L with entries given by

Mil = min
k∈zi

πl(k). (4.3)

Using this, a matrix M̃ ∈ Nn×L is created whose entries contain the numeric values of the lowest

b bits of the entries in M when written out in binary form (i.e. the values of the remainders when

dividing each entry by 2b). Finally, each column of M̃ is expanded into a block of 2b columns,

where each column codes for each of the 2b possible values. This creates a matrix T ∈ {0, 1}n×2bL

with which one can perform regression. Note that no information about the values of the entries

in X is used other than whether or not they are zero. Thus for design matrices with real-valued

entries, some form of quantisation must be performed first.

When X is binary, MRS mapping is perhaps most closely related to b-bit min-wise hashing

with b = 1, since the last bit of the value Mil can be considered to be a close approximation to

a random sign entry. Indeed, in the generation of each column of the final compressed design

matrix, both MRS mapping and 1-bit min-wise hashing divide the observations into two groups

with membership determined by random signs for MRS mapping and by the parity of the entries

in M for 1-bit min-wise hashing. If for a particular l, two observations, i and i′, have Mil = Mi′l,

or equivalently Hil = Hi′l, they will be in the same group under both schemes; if not, their

assignments to the two groups will be completely random with MRS-mapping, and approximately

random for 1-bit min-wise hashing.

Provided one includes an unpenalised intercept term in the regression using T, the fitted values
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from regression on T will be the same as when the binary entries in T are transformed such that

all zeroes take the value −1. Thus predictions from MRS mapping should be fairly close to those

of 1-bit min-wise hashing.

One could attempt to mimic b-bit min-wise hashing for b > 1 by taking b random sign-

assignments along with each permutation. The expansion used to code for the different sequences

of b signs that can be taken can be thought of as adding interactions of all order between each

block of b columns. However, we do not investigate this further here.

We do not make the claim that MRS mapping performs better when X is binary. Rather, the

random signs used in the former method help to expose the mechanism at work in both schemes

that make them successful under certain circumstances. In addition, using random signs allows

us to deal with continuous predictors, and makes it easier to compute the variable importance

measures to be described in Section 4.5.2.

4.2.4 Principal components and random projections

Performing principal component analysis (Jolliffe, 1986) (PCA) and retaining only the fist L com-

ponents is a popular and effective form of dimension reduction. One drawback in the large-scale

data setting is that computing the principal components can be computationally demanding. On

the other hand, the generation of S with MRS mapping has complexity of order L times the number

of non-zero entries in X, and thus is almost the best one can hope for.

The method of random projections, motivated by the celebrated Johnson–Lindenstrauss lemma

(Johnson and Lindenstrauss, 1984), offers dimension reduction at a similar computational cost to

MRS mapping. In this scheme, X is mapped to XA, where A is a p × L matrix with random

entries typically chosen to be i.i.d. Gaussians. We compare MRS mapping and random projections

from a theoretical perspective in Section 4.3.2 and empirically in Section 4.6.2.

One advantage that MRS mapping has over both PCA and random projections, is that in-

teractions between the original predictors in X can be captured when only performing regression

using the main effects in S, as shown in Section 4.4. In contrast, a regression using main effects

in the reduced design matrices obtained through PCA or random projections must necessarily fit

a model no more complex than a main effects model in the original data.

4.3 Main effect models

In this section, we present results that bound the expected prediction error when performing

regression on the reduced design matrix S in the contexts of the linear and logistic regression

models. Here we assume that the mean response depends on Xβ∗ where β∗ ∈ Rp is a vector of

coefficients. Models containing interactions will be treated in Section 4.4.

The first step in obtaining these results is to construct a vector b∗ ∈ RL such that Sb∗ is close

to Xβ∗, on average. We address this in the next section.

4.3.1 Approximation error

Assume that the number of non-zero entries in each row of X ∈ Rn×p is q ≥ 1. The simple

extension to unequal row sparsity will be dealt with below.
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Theorem 20. Let b∗ ∈ RL be defined by

b∗l :=
q

L

p∑
k=1

β∗kΨklwπl(k),

where w ∈ Rp is a vector of weights. Then there exists a choice of weight vector, such that b∗ has

the following properties.

(i) The approximation is unbiased: Eπ,Ψ(Sb∗) = Xβ∗.

(ii) Eπ,Ψ(‖b∗‖22) ≤ (2− q/p)q‖β∗‖22/L.

(iii) If ‖X‖∞ ≤ 1, then 1
nEπ,Ψ(‖Sb∗ −Xβ∗‖22) ≤ Eπ,Ψ(‖b∗‖22).

(iv) In general,

1

n
Eπ,Ψ(‖Sb∗ −Xβ∗‖22) ≤ 2− q/p

Ln

(
‖X‖2F ‖β∗‖22 + q

p∑
k=1

‖Xk‖22β∗k2

)
.

The theorem above shows that there exists a vector b∗ that furnishes two bounds on the

approximation error of Xβ∗. The version in (iii) holds when ‖X‖∞ ≤ 1. The more general bound

in (iv) is often tighter depending on the distribution of the entries in X, though a little more

complicated. In the results on prediction to follow, we will use the simpler bound (iii) assuming

that ‖X‖∞ ≤ 1. However, in all of these results, we could equally well use (iv) to give bounds that

are valid when the predictor variables are not necessarily bounded. For example, in Theorem 21

we can achieve this by replacing
√
q‖β∗‖2 by

(
‖X‖2F ‖β∗‖22 + q

∑p
k=1 ‖Xk‖22β∗k2

)1/2
.

One might initially think of simply approximating Xβ∗ by its projection on to S. However, it

is not clear how to obtain a bound on the approximation error of the type in (iii) or (iv) directly.

On the other hand, the relatively simple form of b∗ gives a bound on the approximation error

through relatively elementary calculations.

Another useful property of b∗, aside from the approximation accuracy it delivers, is given in

(ii): on average, ‖b∗‖22 is small when L is large. In addition, the fact that the components of

b∗ are i.i.d. entails that ‖b∗‖22 concentrates around its expected value with high probability (see

Lemma 28 in the Appendix of this chapter). This property will be useful when studying the

application of ridge regression to S.

We finally comment on the issue of unequal row sparsity; a simple solution to the problem is

as follows. Let qi be the number of non-zero entries in xi. Now form an augmented design matrix

X̃ by adding maxi qi −mini qi ‘dummy’ variables to X, all of whose non-zero values are equal to

a nominal value ξ and are arranged in such a way that |{k : x̃i 6= 0}| = maxi qi. Here ξ is to be

thought of as an arbitrarily small non-zero value so that the indices of the dummy variables can

be chosen as entries in the matrix H. The value of ξ is set to zero after S has been created, so

if Hil is the index of a dummy variable, then entry Sil will vanish. In this way, we can and will

assume that there are exactly q non-zero entries in each row, where q = maxi qi.

In practice, one does not usually need to consider X̃ as regressing on the original S tends to

produce a vector of coefficients b̂ that adapts reasonably well to unequal row sparsity, as long as

the variation in row sparsity across observations is moderate.
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4.3.2 Linear regression models

Assume we have the following approximately linear model:

Y = α∗1 + Xβ∗ + γ + ε. (4.4)

Here α∗ is the intercept and X is a sparse n×p design matrix with entries in [−1, 1], of which q are

non-zero in each row. See the comments after Theorem 20 for how to obtain results without the

restriction ‖X‖∞ ≤ 1. We assume that the random noise ε ∈ Rn satisfies Eε(εi) = 0, Eε(ε2
i ) = σ2

and Covε(εi, εj) = 0. The vector γ ∈ Rn represents deterministic structural error. We do not

require that γ be orthogonal to the column space of X. Our bounds on prediction error involve

‖γ‖22 and ‖β∗‖2, so if a β∗ is available with low `2-norm which satisfies (4.4) at the expense of a

small increase in ‖γ‖22, it is to be preferred. However, without loss of generality, we will demand

that γT1 = 0.

Our results here give bounds on a mean-squared prediction error (MSPE) of the form

MSPE((α̂, b̂)) := Eε,π,Ψ
(
‖α∗1 + Xβ∗ − α̂1− Sb̂‖22

)
/n. (4.5)

Thus we consider a denoising-type or in-sample error: the error on the data used to fit the regression

coefficients. Bounds on the prediction error at new observations would require conditions on the

distribution of observations and we have avoided making any such assumptions for the results here.

4.3.2.1 Ordinary least squares

Perhaps the simplest way to estimate the linear model is to apply a least squares estimator,

(α̂, b̂) := arg min
(α,b)∈R×RL

‖Y − α1− Sb‖22, (4.6)

to the matrix S, assuming that L ∈ N is smaller than the number of samples n. We have the

following theorem.

Theorem 21. Let (α̂, b̂) be the least squares estimator (4.6) and let L∗ :=
√

(2− q/p)qn‖β∗‖2/σ.
We have

MSPE((α̂, b̂)) ≤ 2

√
2− q

p
max

{
L

L∗
,
L∗

L

}
σ

√
q

n
‖β∗‖2 +

‖γ‖22
n

+
σ2

n
.

Considering the case where γ = 0, the result for an optimal choice of L ≈ L∗ implies that

the MSPE is of order σ
√
q/n‖β∗‖2. The slow rate in n, which stems from a balance between the

approximation error of order q‖β∗‖22/L and an estimation error of order σ2L/n, seems unavoidable

if we do not make stronger conditions on the design. Indeed, essentially the same error rate is

obtained in Theorem 21 of Maillard and Munos (2012) for OLS following dimension reduction by

random projections, though there an extra log(n) factor is incurred. Furthermore the optimal

number of projections in that case is of the same order as that of L∗ for MRS mapping here.

To better understand the implications of Theorem 21, it is helpful to assume α∗ = 0 and fix

the size of the signal so that ‖Xβ∗‖22/n = 1, and look at a few special cases. Consider the random

design setting with independent predictors with roughly equal sparsity and which sum to roughly

zero. In this case, ‖β∗‖2 will be of order
√
p/q and the MSPE will vanish if p/n→ 0.

The method becomes more attractive if the signal is associated with directions of X with larger

variance. For example, suppose the variables can be partitioned into B blocks of variables I1, . . . , IB
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such that within the blocks, predictors are independent but the contributions sb = XIbβ
∗
Ib

to the

signal of each block b = 1, . . . , B have positive correlations of at least a constant ρ > 0. Suppose

further that the ratios of the `2-norms of the sb are bounded and all predictors have roughly equal

sparsity. The signals ‖sb‖22/n then scale as 1/(B2ρ) and the `2-norm ‖β∗‖2 will scale as
√
p/(ρBq),

making the predictions converge to the true signal as long as (p/B)/n→ 0. We see that the overall

number of blocks is not relevant to the success of the scheme, and all that matters is the average

number of variables within a block, p/B.

We can also consider sparsity in the signal: if the number of important variables is fixed, the

`2-norm of the optimal regression vector will remain a constant if we add additional variables,

whilst q and p increase. All that is required for consistency is q/n→ 0.

An interesting scenario is one of increasing variable sparseness. In many applications, the more

predictor variables are added the sparser they tend to become. In text analysis, the first block of

predictor variables might encode the presence of individual words. The next block might code for

bigrams and the following, higher order N -grams. With this design, predictor variables in each

successive block become sparser than the previous. It is then interesting to consider how much the

MSPE can increase if we add a block with many sparse variables which contain no additional signal

contribution. The result above indicates that the MSPE only increases as
√
q since the norm of

‖β∗‖2 would be constant in this case. Adding a block of several million (sparse) bigrams might thus

have the same statistical effect as adding several thousand (denser) unigrams (individual words).

If we assume n = O(q), which is all that would be required to keep the prediction error

bounded asymptotically, then in this situation, we see that L∗ = O(q). This could be a substantial

reduction over the original dimension of the data, p, and would result in a corresponding large

reduction in the computational cost of regression. Indeed, ridge regression or the LAR algorithm

(Efron et al., 2004) applied to X would have complexity O(q2p), and one would expect that the

Lasso (Tibshirani, 1996) would have similar computational cost. In contrast OLS applied to S

would only require O(q3) operations, an improvement of q/p.

The discussion above considered an optimal choice of L ≈ L∗. Even if we cannot afford to

work with the optimal dimension L∗ for computational reasons, the bound will still be useful for

smaller values of L. The guarantee on prediction accuracy afforded by MRS mapping could not

be obtained if, for example, a random subset of the predictors were chosen and remaining ones

discarded, or SIS (Fan and Lv, 2008) was used; the latter would require much stronger conditions

on the design and signal to be met for it to work well.

4.3.2.2 Ridge regression

Instead of using a least-squares estimator on the transformed data matrix S we can also apply

ridge regression (Hoerl and Kennard, 1970). Here we will not require L ≤ n − 1 and so a higher-

dimensional MRS mapping can be used to create S. This will be especially useful when fitting

interaction models where a larger choice of L is needed (see Section 4.4).

For a given η > 0, the regression coefficients are found by

(α̂, b̂η) := arg min
(α,b)∈R×RL

‖Y − α̂1− Sb‖22 such that ‖b‖22 ≤ (1 + η)
(2− q/p)q‖β∗‖22

L
. (4.7)

The theorem below gives a bound on the MSPE of (α̂, b̂η).
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Theorem 22. Let L∗ be defined as in Theorem 21. We have

MSPE((α̂, b̂η)) ≤
√

(2− q/p)q ‖β∗‖2
(

2σ
√

1 + η + (L∗/L)√
n

)
+ρ
‖Xβ∗ −Xβ∗1 + γ‖22

n
+
‖γ‖22
n

+
σ2

n
,

where

ρ := exp

(
− Lη2

18(2− q/p)q{18(2− q/p) + η}

)
, (4.8)

and

Xβ∗ :=
1

n

n∑
i=1

xTi β
∗.

The ridge regression result above is very similar to that for OLS with the leading term of

σ‖β∗‖2
√
q/n being identical in both settings. The main difference is the following: achieving a

good prediction error with OLS hinges on a careful choice of L. In contrast, with ridge regression,

L can (and should) be chosen very large, from a purely statistical point of view. However, the

constraint on the `2-norm of b̂ needs to be chosen carefully with ridge regression. The tuning

parameter thus simply appears in a different place.

4.3.3 Logistic regression

We give an analogous result to Theorem 22 for classification problems under logistic loss. Let

X ∈ [−1, 1]n×p be the design matrix of predictor variables and let Y ∈ {0, 1}n be an associated

vector of class labels. We assume the model

Yi ∼ Bernoulli(pi); log

(
pi

1− pi

)
= xTi β

∗ + γi, (4.9)

with the Yi independent for 1 ≤ i ≤ n. The vector γ ∈ Rn represents structural error. We

have omitted the separate intercept term for simplicity, and we do not require any orthogonality

conditions on γ or X.

Here we consider a linear classifier constructed by `2-constrained logistic regression. One can

obtain a similar result for unconstrained logistic regression based on Lemma 6.6 of Bühlmann and

van de Geer (2011a), but we do not pursue this further here. Define

b̂η = arg min
b

1

n

n∑
i=1

[
−YisTi b + log{1 + exp(sTi b)}

]
such that ‖b‖22 ≤ (1 + η)

(2− q/p)q‖β∗‖22
L

.

(4.10)

Let E(b̂η) denote the excess risk of b̂η under logistic loss, so

E(b̂η) =
1

n

n∑
i=1

[
−pisTi b̂η + log{1 + exp(sTi b̂η)}

]
− 1

n

n∑
i=1

[
−pixTi β∗ + log{1 + exp(xTi β

∗ + γi)}
]
.

(4.11)

We can now state the analogous result to Theorem 22.

Theorem 23. Define p̃ ∈ R by

p̃ :=
1

n

n∑
i=1

pi(1− pi) ≤
1

2
. (4.12)
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Then we have

EY,π,Ψ{E(b̂η)} ≤
√

(2− q/p)q ‖β∗‖2
(√

(1 + η)p̃+ L∗/(4L)√
n

)
+ log(2)ρ,

where ρ and L∗ are defined as in (4.8) and Theorem 21 respectively.

The result illustrates that the usefulness of MRS mapping is not limited to regression problems.

In fact, most applications of b-bit min-wise hashing are classification problems (Li and König, 2011)

and our analysis of MRS mapping here gives a theoretical explanation for its performance in these

cases.

4.4 Interaction models

One of the compelling aspects of regression and classification with MRS mapping is the fact that

a particular form of interactions between variables can be fitted. This does not require any change

in the procedure other than a possible increase in L, the dimension of the MRS mapping. To

be clear, in order to capture interactions with MRS mapping, just as in the main effects case, we

create a reduced matrix S and then fit a main effects model to S. The dimension of the compressed

data, L, can still be substantially smaller than the O(p2) number of coefficients that would need

to be estimated if the interactions were modelled in the conventional way, and so the resulting

computational advantage can be very large.

Note that in situations where the number of original predictors, p, may be manageable, including

interactions explicitly can quickly become computationally infeasible. For example, if we start with,

105 variables, the two-way interactions number more than a billion. For larger values of p, even

methods such as Random Forest (Breiman, 2001) or Rule Ensembles (Friedman and Popescu, 2008)

would suffer similar computational problems.

We now describe the type of interaction model that can be fitted with MRS mapping. Let

f∗ ∈ Rn be given by

f∗i =

p∑
k=1

Xikθ
∗,(1)
k +

p∑
k,k1=1

Xik1{Xik1=0}Θ
∗,(2)
k,k1

, i = 1, . . . , n, (4.13)

where θ∗,(1) ∈ Rp is a vector of coefficients for the main effects terms, and Θ∗,(2) ∈ Rp×p is a

matrix of coefficients for interactions whose diagonal entries are zero. Throughout this section we

will assume that ‖X‖∞ ≤ 1. Note that if X were a binary matrix, then (4.13) parametrises (in fact

over-parametrises) all linear combinations of bivariate functions of predictors; that is all possible

two-way interactions are included in the model.

In general, the interaction model includes the tensor product of the set of original variables

with the columns of an n × p matrix with ikth entry 1{Xik=0}. The value zero is thus given a

special status and the model seems particularly appropriate in the sparse design setting we are

considering here.

Now let Θ∗ collect together θ∗,(1) and Θ∗,(2) so that we may define

`(Θ∗) := ‖θ∗,(1)‖2 +

2(2− q/p)q
∑

k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣
1/2

. (4.14)
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We will show that the results for main effects models with MRS mapping can be transferred to

interaction models if we replace ‖β∗‖2 with `(Θ∗). We proceed exactly as before, first bounding

the approximation error and then using this to control the prediction error.

4.4.1 Approximation error

As in the main effects case, we assume that the number of non-zero entries in each row of X ∈
[−1, 1]n×p is q ≥ 1; see the comments in Section 4.3.1 for how imbalanced row sparsity can be

dealt with. Furthermore, for technical reasons, we assume here that p ≥ 3.

Theorem 24. Let b∗ ∈ RL be defined by b∗ = b∗,(1) + b∗,(2), where

bl
∗,(1) :=

q

L

p∑
k=1

Ψklθ
∗,(1)
k W1πl(k),

bl
∗,(2) :=

pq

L

p∑
k=1

Ψkl

p∑
k1=1

Θ
∗,(2)
kk1

1{πl(k1)<πl(k)}W2πl(k),

and W is a 2 × p matrix with each row a vector of weights. Then there exists a choice of weight

matrix such that b∗ has the following properties:

(i) Eπ,Ψ(Sb∗) = f∗;

(ii) Eπ,Ψ(‖b∗‖22) ≤ (2− q/p)q`2(Θ∗)/L;

(iii) Eπ,Ψ(‖Sb∗ − f∗‖22)/n ≤ Eπ,Ψ(‖b∗‖22).

The bound on the approximation error in (iii) is most suited to situations where there are a

fixed number of interaction terms, so∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣ = O(1). (4.15)

Then we see that the contribution of the interaction terms to the bound on the approximation

error is of order q2. On the other hand, if we are considering a growing number of many small

interaction terms, much tighter bounds than that given by (iii) can be obtained. The results for

interaction models corresponding to Theorems 21, 22 and 23 now follow.

4.4.2 Linear regression models

Assume the model (4.4) and define the MSPE by (4.5) but in both cases with Xβ∗ now replaced

by f∗ defined in (4.13). Note that where before, the structural error term γ necessarily included

two-way interaction terms if they were present, here the deterministic error need only include

three-way and higher order interactions.

4.4.2.1 Ordinary least squares

Theorem 25. Let (α̂, b̂)) be the least squares estimator (4.6) and let L∗ :=
√

(2− q/p)qn `(Θ∗)/σ.

We have

MSPE((α̂, b̂)) ≤ 2

√
2− q

p
max

{
L

L∗
,
L∗

L

}
σ

√
q

n
`(Θ∗) +

‖γ‖22
n

+
σ2

n
.
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To interpret the result, consider a situation where there are a fixed number of interaction

and main effects of fixed size, so in particular (4.15) holds. If n, q and p increase by collecting

new data and adding uninformative variables, then in order for the MSPE to vanish asymptot-

ically, we require q2/n → 0. Compare this to the corresponding requirement of OLS applied to

X, that p2/n → 0. Particularly in situations of increasing variable sparseness, as discussed in

Section 4.3.2.1, this can amount to a large statistical advantage.

The computational gains can be equally great. In the situation considered here, the optimal

dimension L∗ = O(q
√
n). If, for example, n ≈ q2, then L∗ = O(q2). If ridge regression were

applied to X augmented by O(p2) interaction terms, the number of operations required would be

O(p2q4); OLS using S has complexity O(q6). If instead n ≈ p2, then regression with explicitly

coded interaction terms would have complexity O(p6), whilst with the compressed data this would

be reduced to O(p4q2) .

4.4.2.2 Ridge regression

Here we define the ridge regression estimator (α̂, b̂η) where η > 0 by

b̂η := arg min
b

‖Y − Ȳ − Sb‖22 such that ‖b‖22 ≤ (1 + η)
2(2− q/p)q`2(Θ∗)

L
.

Note the only difference to (4.7) is that the `2-norm of b̂η is allowed to be larger here, for the same

value of η.

Theorem 26. Define

ρ2 := exp

(
− Lη2

18(2− q/p)q{18(2− q/p) + η}

)
+ exp

(
− Lη2

36(2− q/p)2q2(18 + η)

)
, (4.16)

and let L∗ be as in Theorem 25. Then we have

MSPE((α̂, b̂η)) ≤
√

(2− q/p)q `(Θ∗)
(

2σ
√

1 + η +
√

2(L∗/L)√
n

)
+ρ2
‖f∗ − f̄∗1 + γ‖22

n
+
‖γ‖22
n

+
σ2

n
,

where

f̄∗ :=
1

n

n∑
i=1

f∗i .

As with Theorem 22 the result here suggests choosing a large L is always better from a statistical

point of view. However, for computational reasons, it may not be possible to take L much larger

than L∗.

4.4.3 Logistic regression

Here we assume the model (4.9) and define the excess risk by (4.11), but in both cases with Xβ∗

replaced by f∗. Let the estimator b̂η be given for some η > 0 by

b̂η = arg min
b

1

n

n∑
i=1

[
−YisTi b + log{1 + exp(sTi b)}

]
such that ‖b‖22 ≤ (1 + η)

2(2− q/p)q`2(Θ∗)
L

.
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Theorem 27. Let ρ2, p̃ and L∗ be as in (4.16), (4.12) and Theorem 25 respectively. Then we

have

EY,π,Ψ{E(b̂η)} ≤
√

(2− q/p)q `(Θ∗)
(√

(1 + η)p̃+ (
√

2L∗)/(4L)√
n

)
+ log(2)ρ2.

One could continue to look at higher-order interaction models by adding three-way interac-

tions in (4.13) and adapting (4.14) in a suitable way. However, being able to show that two-way

interaction models can be fitted with MRS mapping may well be sufficient for most applications.

4.5 Extensions

4.5.1 Map aggregation

Since the compressed design matrix S is generated in a random fashion, we can repeat the con-

struction B > 1 times to obtain B different S matrices. In the spirit of bagging (Breiman, 1996;

Bühlmann and Yu, 2002) we can then aggregate the predictions obtained from the different random

mappings by averaging them. In our experience, there has been a marked improvement when using

map aggregation, and L could be chosen much lower than for B = 1 to achieve the same predictive

accuracy. Since computational cost is typically quadratic in L, this can result in large savings.

Furthermore, the computations when B > 1 lend themselves to a trivial parallel implementation

for both the creation of the different S matrices and at the model fitting stage.

4.5.2 Variable importance

Typically prediction, rather than model selection, is the primary goal in large-scale applications

with sparse data, one reason for this being that we cannot expect a very small subset of variables to

approximate the signal well when the design matrix is sparse. Nevertheless, it is often illuminating

to study the influence of specific variables or look for the variables that have the largest influence on

predictions. Indeed, such study is often undertaken following fits using Random Forest (Breiman,

2001), where several variable importance measures allow practitioners to better interpret the fits

produced.

We now describe how importance measures can be obtained for MRS mapping. Let f̂ : Rp → R
be the regression function created following MRS mapping, and let f̂i := f̂(xi). Furthermore, for

1 ≤ k ≤ p, let f̂ (−k) := f̂(x
(−k)
i ), where x

(−k)
i is equal to xi but with kth component set to zero.

The vector f̂ − f̂ (−k) is the difference in predictions obtained when fitting to X, and those

obtained when fitting to X with the kth column set to zero. When the underlying model in X

contains only main effects (4.4) and no structural error is present, we might expect that

f̂ − f̂ (−k) ≈ β∗kXk.

To obtain a measure of variable importance, one could look at the `2-norm of f̂− f̂ (−k), for example

(Breiman, 2001).

The difference in predictions can be computed relatively easily by storing an n × L matrix S̃

with entries given by S̃il = ΨH̃ill
XiH̃il

, where

H̃il := arg min
k∈zi\Hil

πl(k).
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Thus H̃il is the variable index in zi whose value under permutation πl is second smallest among

{πl(k) : k ∈ zi}. If zi \Hil = ∅, we simply set S̃il = 0. Then

f̂i − f̂ (−k)
i =

L∑
l=1

(Sil − S̃il)1{Hil=k}}b̂l. (4.17)

Note that we only need to store the three n × L matrices S, S̃ and H to compute the variable

importance for all variables.

Interaction effects are not directly visible, but do manifest themselves in the form of a higher

variability among {f̂i − f̂ (−k)
i : xi ≈ x}, for any given value of x, if variable k is involved in an

interaction term. In principle, one could attempt to detect this increased variability, but further

investigation of this is beyond the scope of the current work.

4.5.3 Other fitting procedures

Here we have only considered OLS, ridge regression and `2-penalised logistic regression as predic-

tion methods after reducing the design matrix. However, it is also conceivable that other fitting

procedures could be suitable. In particular, it would be interesting to look at matching pursuit,

boosting and the Lasso, for which results in (Bühlmann, 2006; Tropp, 2004; van de Geer, 2008)

could be leveraged. Matching pursuit would have the computational advantage that the entire S

matrix would not need to be held in memory. Instead, one could create the columns during the

fitting process. Such an approach may be useful for problems where the dimension of the mapping,

L, needs to be very large to achieve a desired predictive accuracy.

4.6 Numerical examples

4.6.1 Regression: simulation

Here we compare the predictive performance of MRS mapping followed by OLS to ridge regression,

the Lasso and Random Forest (Breiman, 2001). We apply the procedures to datasets of moderate

size generated under various simulation settings. We generate data points i = 1, . . . , n from the

model

Yi =

p∑
k=1

Xikβ
∗
k + κ

∑
(k1,k2)∈I

Xik1Xik2 + εi := f∗i + εi, (4.18)

where X ∈ {0, 1}n×p is a binary design matrix, I is a collection of indices for interaction terms,

and the εi are independent N(0, σ2)-distributed. The interaction strength κ controls the amount

the interaction terms contribute to the signal. The design matrix is generated in the following

way. The components of the first predictor variable are independent Bernoulli(ς) for a sparsity

parameter ς ∈ (0, 1). For variables, k = 2, . . . , p, we set the entry Xi,k equal to Xi,k−1 with

probability ρ ∈ [0, 1) and equal to a Bernoulli(ς) variable otherwise. The main effects β∗k are

identically 0 except for s non-zero coefficients randomly selected from {1, . . . , p} whose values are

chosen independently from a N(0, 1) distribution and rescaled so that n−1‖Xβ∗‖22 = 1. Each

variable index within each pair corresponding to an interaction term is drawn at random from

{1, . . . , p}. We measure predictive performance by the MSPE (4.5) with Xβ∗ replaced by f∗.

Some representative results for different choices of ς, p, n, s, σ, ρ and κ are shown in Figure 4.1.

For MRS mapping, we show the prediction error under progressively larger values of L. A two-fold
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Figure 4.1: The MSPE of OLS after MRS mapping (MRS) with different choices of L, under differ-
ent parameter settings in the model (4.18) compared to the MSPEs of ridge regression (RIDGE),
the Lasso (LASSO) and Random Forests (RF). For each setting, the MRS mapping procedure
looks at increasing values of L until the corresponding cross-validated error curve starts to rise;
the MSPE for the selected value of L is shown in the first column to the right of the curve. The
different curves and points correspond to one of ten different repetitions of each experiment.
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cross-validated error is computed for each L and once this reaches above 5% of the minimum value,

we stop increasing L further (it also stops once a value of L = 4000 is reached). To make OLS

numerically stable we apply a small ridge penalty by inflating the diagonal values of the covariance

matrix of the compressed matrix S by 1%. Predictions are averaged over B = 100 iterations (see

4.5.1). For comparison, we also present the prediction errors of Random Forest, the Lasso and

ridge regression; the tuning parameters for the latter two being chosen by five-fold cross-validation.

We see that

(i) In the absence of interactions, the MSPE is very similar to that of ridge regression;

(ii) When interactions are present, the MRS mapping procedure is able to fit the interaction

terms and predictive performance comes close to that of Random Forest whilst the purely

linear procedures fare poorly.

To fit interactions between p = 1000 variables in the conventional way we would first have

expand the original design matrix to include roughly 5 · 105 interaction terms and then perform

a penalised regression in the resulting very high-dimensional model. In contrast, MRS mapping

is able to account for a large fraction of the interaction effects when performing regression in a

roughly L = 1000-dimensional space.

4.6.2 Regression: text analysis

Kogan et al. (2009) analysed a corpus of financial reports of US companies (10-K filings) to study

the extent to which a change in the volatility of the underlying stock can be forecast based on the

report. One focus of their work was the change in predictive accuracy over time and tying this

change to underlying financial reforms. Here, we take a more simplistic view and use the 16, 087

reports provided at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets to try to forecast

the change in log-volatility in stock returns (comparing the 12 months after and before the report)

based on the predictor variables Xk, k = 1, . . . , p = 4, 272, 227 of log-scaled term frequencies of

unigrams and bigrams. The number of non-zero predictor variables is between a few thousand up

to roughly twenty thousand.

As well as using the original response values, we also generate linear and non-linear responses

using the same design matrix. For the linear model, we draw each regression coefficient at random

from a standard normal distribution, independently for all variables. For the non-linear exper-

iments, we first divide predictor variables randomly into 10 groups. For each group we form a

weighted average of the variables with independent standard normal distributed weights. For each

observation, we then subtract the median across all weighted averages from each weighted average.

Finally, a sign transformation is applied to each resulting value to form a 16, 087 by 10 transformed

design matrix Z with entries in {−1, 0, 1}.
In total we consider six different scenarios with the response generated as follows: (a) the log-

volatility in the 12 months after the report (not using the pre-report volatility); (b) the change

in log-volatility in the underlying stock; (c) the linear model Y = Xβ∗ + ε with standard normal

distributed coefficients β∗k , k = 1, . . . , p; (d) a two-way interaction model based on the transformed

data Z, Y =
∑9
k=1 ZkZk+1 + ε; (e) a three-way interaction model Y =

∑8
k=1 ZkZk+1Zk+2 + ε;

and finally (f) a four-way interaction model Y =
∑7
k=1 ZkZk+1Zk+2Zk+3 + ε. The noise term

ε has independent normally distributed components with mean zero and variance σ2 times the

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
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(f) Four-way interaction model.

Figure 4.2: Correlation between predicted and actual targets for the text regression example for
settings (a)–(f). For each noise level, the correlation is shown as a function of L, which varies
between 0 and 250. The red curve corresponds to MRS mapping; the blue, random projections.
For linear models and with the original response, the performance of MRS mapping and random
projections are similar here. MRS mapping has an advantage when the signal contains stronger
non-linearities.

empirical variance of the signal. We measure predictive accuracy with 5-fold cross-validation and

show the resulting correlation between predicted and actual target values in Figure 4.2.

In this example, the dimensionality of the data prohibits computation of penalised regression

models using the original design matrix. Thus, for comparison, we use random projections with

i.i.d. standard normal entries in the projection matrix (see Section 4.2.4). Figure 4.2 shows the

results. We see that random projections and MRS mapping perform similarly for the linear model

in scenario (c), with the former doing slightly better. The original data (a) and (b) show a very

similar pattern across the various noise levels. For the non-linear scenarios (d)–(f), however, MRS

mapping outperforms random projections. While latter can only attempt to fit the best linear

approximation in these examples, there is more scope to fit interactions with the MRS mapping-

based regression.

4.6.3 Classification: URL identification

Ma et al. (2009) reported on a large-scale classification task of identifying malicious URLs in (near)

real time. Each URL is associated with both lexical (derived for example from host name and path

tokens) and host-based binary predictor variables (derived for example from WHOIS info and the

IP prefix). Data was collected over the course of 4 months. On each day, 20, 000 URLs were



94 CHAPTER 4. LARGE-SCALE REGRESSION AND CLASSIFICATION

100 400 800 1600

L

B: 1

0.
05

0.
10

0.
20

m
is

cl
as

si
fic

at
io

n 
er

ro
r

●

●

● ●
●

●

●
●

● ●

●

●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

● ●
● ●

●

●
●

●
●

●

●

● ●
●

●●

●
● ●

●

● ●
●

●

●●
●

●
●

●

● ●
●

●

●
●

●
● ●

●

●

● ●
●

●●

●
● ●

●
●

●
● ●

●

●
●

●
●

●

●
●

● ●

●

●
●

● ●

●

●
●

● ●

50 200 400

L

B: 20
ridge

●
●

● ●

●

●
●

●

●

●
●

●

●

●
● ●

●

●

● ●

●
●

●
●

●

●

● ●

●

●
●

●

●

●
●

●

●

● ●
●

●
●

● ●

●
●

●
●

●

●
● ●

● ● ●
●

●
●

●
●

●

●
● ●

● ●

●
●

●

● ● ●

●

●
● ●

●

●
● ●

raw data
●●●●●
●

●

●●●
●●
●●●●●
●
●
●

100 400 800 1600

L

B: 1
0.

05
0.

10
0.

20

m
is

cl
as

si
fic

at
io

n 
er

ro
r

●
●

●

● ●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●

●

● ●

●
●

●
●

●

●

● ●

●
●

●

●
●

● ●

●
●

● ●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

●

●

●
●

●

●

● ●

● ●

●

●
●

●
●

●●

●
●

●

●

●

● ●

●

●●

●

●
●

●
● ●

● ●

50 200 400

L

B: 20
lasso

●

●
● ●

●
●

● ●

●

● ●
●

●

●
●

●

●

● ●
●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

● ●

●

● ●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

● ●

●

●
● ●

●

● ●
●

●

●
● ●

●
●

●
●

raw data

●

●
●
●

●

●

●

●●
●

●●●
●●
●
●
●

●

●

Figure 4.3: Prediction accuracy on the test data for the first 30 days of the URL identification
dataset. In each plot, the misclassification error is shown as a function of L for B = 1 (first
panel) and for B = 20 (second panel). The results for regression on the original data are shown
in the rightmost panel. In the top row, a ridge penalty is used in the logistic model for both the
transformed data and the original data, whereas a Lasso cross-validated penalty is used in the
bottom row.

collected, of which roughly 1/3 were malicious, and the remaining, benign.

For a given URL, a few hundred features will be active, that is, with a nonzero entry. For each

day, the total number of active features across all URLs for that day was at least 50, 000. Over

the course of all days, there are more than 3 · 106 active features.

An important issue is that the distribution of the data is changing over time. Ma et al. (2009)

propose a stochastic gradient approach that can learn in real time. Here we do not want to go

into all the details of the distributional change but simply compare MRS mapping-based logistic

regression with Lasso- and ridge-penalised logistic regression using the original data. Due to the

size of the dataset, the latter two approaches can only be performed in acceptable computational

time in a batch approach. Hence we treat the data from different days as different datasets and

for each day, we train on the first 10, 000 URLs, and test on the remaining 10, 000. We use five-

fold cross-validation with logistic loss to select the tuning parameters for penalised regressions,

with the fits computed using the glmnet package Friedman et al. (2010). We then apply these

same estimation procedures with the same tuning parameters to the MRS mapped data. The

dimension L of the mapping was varied between 100 and 2000. As well as standard MRS mapping-

based regression, we also looked at averaging over the predictions given by B ∈ {1, 20} different S

matrices, as described in Section 4.5.1. To measure performance, we record the misclassification

error when the classification threshold is chosen to produce the same error rate in both classes.

Some results are shown in Figure 4.3. The misclassification error drops as L increases. In all

four cases, for L in the thousands, the error approaches that when running Lasso on the original,

much higher-dimensional, data. This occurs for lower L when averaging over B = 20 predictions,

than when just using a single S matrix. Ridge regression on the original data performs much

worse. Note that we can easily extend MRS mapping to use all days as training input, since the

dimension L is low enough for subsequent regression to be computationally feasible.
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4.7 Discussion

The large-scale sparse data setting presents many new challenges to statisticians that require novel

approaches to overcome them. One could summarise the conventional process by which statistical

methodology is developed in two stages: first a procedure that is statistically optimal for the data-

generating process of interest is sought out; next, one may attempt to produce fast algorithms for

the procedure. In our ‘large p, large n’ context, it often makes more sense to consider computational

issues alongside, or even before, statistical ones.

In this work, we have taken b-bit min-wise hashing (Li and König, 2011) as our starting point.

From a computational point of view, it is clear that this is very well-suited to large-scale sparse

data, and can retain computational feasibility where other dimension reduction techniques, such as

those based on PCA, may fail. Its statistical properties, however, are harder to discern immediately.

Rather than studying b-bit min-wise hashing directly, here we considered a variant, MRS map-

ping. For this latter procedure, we were able to show that not only does it take advantage of

sparsity in the design matrix computationally, it also exploits this for improved statistical perfor-

mance. In particular, the MSPE of regression following dimension reduction by MRS mapping

is of the form
√
q/n‖β∗‖2 if the data follow a linear model with coefficient vector β∗ and q is

the maximal number of non-zero variables for an observation. The linear model can then be well-

approximated by the low-dimensional MRS mapped data if the norm of ‖β∗‖2 is low, as occurs,

for example if the signal is approximately replicated in distinct blocks of variables.

In addition, we have shown that interaction models can be fit by a regression on the MRS

mapped data that contains only main effects. Though a larger dimension of the mapped data L

may be required than when approximating a main effects model, no further changes are needed to

the procedure.

In summary, regression on MRS mapped data with only main effects can be a very powerful

prediction engine in settings with millions of predictors and observations. Moreover, the memory

footprint and computational cost of the procedure is such that this can be performed with ease

on standard computing equipment. We expect to see more extensions and applications of MRS

mapping and other methods based on b-bit min-wise hashing in the future.

4.8 Appendix

In the proofs which follow, we will let π := π1, ψ := Ψ1. Note that then π and ψ have the same

distribution as πl and Ψl respectively, for any l. Similarly, we will write Mi and Hi for Mi1 and Hi1

respectively, where M is defined as in (4.3) and H as in (4.1). Furthermore, we will let δ := q/p.

Proof of Theorem 20. There are three steps to the proof: first we determine conditions on w

that are necessary and sufficient for the unbiasedness property (i) to hold; in the second step, we

pick w to minimise Eπ,Ψ(‖b∗‖22); finally we compute the variance Eπ,Ψ(‖Sb∗ −Xβ∗‖22)/n.
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Step 1: We begin by computing

Eπ,Ψ((Sb∗)i) =
q

L

L∑
l=1

Eπl,Ψl

(
Sil

p∑
k=1

Ψklβ
∗
kwπl(k)

)

= qEπ,ψ

 p∑
j=1

Xij1{Hi=j}ψj

p∑
k=1

β∗kψkwπ(k)

 .

Using the independence of Ψ and π, and the fact that Eψ(ψjψk) = 1{k=j}, we have that the above

display equals

qEπ

(
p∑
k=1

Xikβ
∗
k1{Hi=k}

p∑
`=1

w`1{π(k)=`}

)
.

Now observe that

1{Hi=k}1{π(k)=`} = 1{Hi=k}1{Mi=`},

and 1{Hi=k} and 1{Mi=`} are independent. Thus we have

Eπ,Ψ((Sb∗)i) =

p∑
k=1

Xikβ
∗
k

p∑
`=1

Pπ(Mi = `)w`. (4.19)

Note that

Pπ(Mi = `) =

(
p− `
q − 1

)/(p
q

)
,

so in order for unbiasedness to hold, the inner product in (4.19) must satisfy

p∑
`=1

w`

(
p− `
q − 1

)/(p
q

)
= 1. (4.20)

Step 2: To compute Eπ,Ψ(‖b∗‖22), we first observe that the components of b∗ are independent

and each has expectation 0 as EΨl
(b∗l |πl) = 0. Therefore

Eπ,Ψ(‖b∗‖22) =
q2

L
Eπ,ψ


(

p∑
k=1

β∗kψkwπ(k)

)2


=
q2

L
Eπ

Eψ

(

p∑
k=1

β∗kψk

p∑
`=1

w`1{π(k)=`}

)2 ∣∣∣∣∣π



=
q2

L

p∑
k=1

β∗k
2

p∑
`=1

w2
`Pπ(π(k) = `)

=
q2

pL
‖β∗‖22‖w‖22. (4.21)

Thus to minimise the Eπ,Ψ(‖b∗‖22), we must minimise ‖w‖22 subject to the constraint (4.20).

Now by the the Cauchy–Schwarz inequality,

‖w‖22 ≥
1∑p

`=1

(
p−`
q−1

)2
/
(
p
q

)2 ,
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with equality if and only if

w` =

(
p−`
q−1

)2
/
(
p
q

)2∑p
`′=1

(
p−`′
q−1

)2
/
(
p
q

)2 . (4.22)

Applying part (i) of Lemma 30 with the sequences

b` =

(
p− `
q − 1

)/(p
q

)
, a` =

q

p

(
1− q

p

)`−1

,

we conclude that

p−q+1∑
`=1

(
p− `
q − 1

)2/(p
q

)2

≥ q2

p2

∞∑
`=1

(
1− q

p

)2`−2

=
q2

p2

1

1− (1− q/p)2

=
q

2p− q . (4.23)

This yields

‖w‖22 ≤
2p− q
q

. (4.24)

Substituting into (4.21) then gives part (ii) of the result.

Step 3: Turning to the variance,

1

n
Eπ,Ψ(‖Sb∗ −Xβ∗‖22) =

1

n

n∑
i=1

Varπ,Ψ((Sb∗)i)

=
1

n

n∑
i=1

L∑
l=1

Varπl,Ψl
(Silb

∗
l )

=
1

n

n∑
i=1

L∑
l=1

Eπl,Ψl
((Silb

∗
l )

2)− (xTi β
∗)2/L2.

Now if ‖X‖∞ ≤ 1 and hence ‖S‖∞ ≤ 1, we see that

1

n
Eπ,Ψ(‖Sb∗ −Xβ∗‖22) ≤ Eπ,Ψ(‖b∗‖22),

which is property (iii) after using (ii). For the case where this does not hold, we argue as follows.

L2

q2
EΨl,πl((Silb

∗
l )

2) = Eπ,ψ


p∑
j=1

X2
ij1{Hi=j}

(
p∑
k=1

ψkβ
∗
kwπ(k)

)2


= Eπ

∑
j∈zi

X2
ij1{Hi=j}

∑
k∈zi

β∗k
2w2

π(k) +
∑
k/∈zi

β∗k
2w2

π(k)

 .

We calculate the expectation of the terms involving k ∈ zi and k /∈ zi separately. For the second



98 CHAPTER 4. LARGE-SCALE REGRESSION AND CLASSIFICATION

set of terms we have

Eπ

∑
j∈zi

X2
ij1{Hi=j}

∑
k/∈zi

β∗k
2

p∑
`=1

w2
`1{π(k)=`}

 =
1

pq
‖w‖22

∑
j∈zi

X2
ij

∑
k/∈zi

β∗k
2

≤ 2− δ
q2

∑
j∈zi

X2
ij

∑
k/∈zi

β∗k
2. (4.25)

For the first, note that when j ∈ zi,

1{Hi=j}1{π(k)=`} =1{j=k}1{Hi=k}1{Mi=`}

+ 1{j 6=k}
∑
`′<`

1{Mi=`′}1{π(j)=`′}1{π(k)=`}.

Taking expectations we get

Pπ({Hi = j} ∩ {π(k) = `}) =
1

q

((
p−`
q−1

)(
p
q

) 1{j=k} +

`−1∑
`′=1

1

p− `′

(
p−`′
q−1

)(
p
q

) 1{j 6=k}

)
.

But

`−1∑
`′=1

1

p− `′

(
p−`′
q−1

)(
p
q

) =
q

p(q − 1)

`−1∑
`′=1

(
p−1−`′
q−2

)(
p−1
q−1

)
=

q

p(q − 1)

(
1−

p−1∑
`′=`

(
p−1−`′
q−2

)(
p−1
q−1

) )

=
q

p(q − 1)
− 1

q − 1

(
p−`
q−1

)(
p
q

) .

Thus

Eπ

∑
j∈zi

X2
ij1{Hi=j}

∑
k∈zi

β∗k
2

p∑
`=1

w2
`1{π(k)=`}


=

1

q

∑
j∈zi

X2
ij

∑
k∈zi

β∗k
2

p∑
`=1

w2
`

{
1{j=k}

(
p−`
q−1

)(
p
q

) + (1− 1{j=k})
1

q − 1

(
q

p
−
(
p−`
q−1

)(
p
q

) )}

=
1

q − 1

∑
k∈zi

X2
ikβ
∗
k

2
p∑
`=1

w2
`

((
p−`
q−1

)(
p
q

) − 1

p

)
+

1

q − 1

∑
j∈zi

X2
ij

∑
k∈zi

β∗k
2

p∑
`=1

w2
`

(
1

p
− 1

q

(
p−`
q−1

)(
p
q

) )
=(I) + (II).

As (
p−`
q−1

)(
p
q

) − 1

p
≤ q

p
− 1

p
=
q − 1

p
,

we have that

(I) ≤ 2− δ
q

p∑
k=1

X2
ikβ
∗
k

2. (4.26)



4.8. APPENDIX 99

Turning to (II), note that by Chebyshev’s order inequality (see page 76 of Steele (2004)),

p∑
`=1

w2
`

(
p−`
q−1

)(
p
q

) ≥ 1

p
‖w‖22,

whence

(II) ≤ 2− δ
q2

∑
j∈zi

X2
ij

∑
k∈zi

β∗k
2. (4.27)

Collecting together equations (4.25), (4.26) and (4.27), we get

L2

q2
EΨl,πl((Silb

∗
l )

2) ≤ 2− δ
q

(
1

q
‖xi‖22‖β∗‖22 +

p∑
k=1

X2
ikβ
∗
k

2

)
,

and so
1

n
Eπ,Ψ(‖Sb∗ −Xβ∗‖22) ≤ 2− δ

Ln

(
‖X‖2F ‖β∗‖22 + q

p∑
k=1

‖Xk‖22β∗k2

)
.

Proof of Theorem 21. Let b∗ ∈ RL be as in Theorem 20. Let us write

Y = α∗1 + Xβ∗ + γ + ε = α∗1 + Sb∗ + γ + ∆ + ε,

so ∆ is the approximation error of Sb∗. Then we have

MSPE((α̂, b̂)) =
1

n
Eε,π,Ψ(‖α∗1 + Xβ∗ + γ − α̂1− Sb̂‖22).

Now letting Š = (1 S), and PŠ be the projection on to the column space of Š (so PŠ = ŠŠ+,

where Š+ denotes the Moore–Penrose pseudoinverse of Š), we have the following decomposition.

α∗1 + Xβ∗ + γ − α̂1− Sb̂ = α∗1 + Xβ∗ + γ −PŠY

= α∗1 + Sb∗ + ∆ + γ −PŠ(α∗1 + Sb∗ + ∆ + γ + ε)

= (I−PŠ)(∆ + γ)−PŠε.

Hence

MSPE((α̂, b̂)) =
1

n
Eε,π,Ψ(‖(I−PŠ)(∆ + γ)−PŠε‖22)

=
1

n
Eπ,Ψ(‖(I−PŠ)(∆ + γ)‖22) +

1

n
Eπ,Ψ{Eε(‖PŠε‖22 |π,Ψ)}

≤ 1

n
Eπ,Ψ(‖∆‖22) +

σ2(L+ 1)

n
+

1

n
‖γ‖22 (4.28)

≤ (2− δ)q‖β∗‖22
L

+
σ2(L+ 1)

n
+

1

n
‖γ‖22,

where in (4.28) we used the fact that Eπ,Ψ(∆) = 0, and the final line follows from property (iii) in

Theorem 20 assuming bounded predictor variables with ‖X‖∞ ≤ 1. For general predictor variables,

we just use property (iv) instead of (iii) in Theorem 20.



100 CHAPTER 4. LARGE-SCALE REGRESSION AND CLASSIFICATION

Proof of Theorem 22. Let b∗ ∈ RL be as in Theorem 20. Let the event Λ be defined by

Λ =

{
‖b∗‖22 < (1 + η)

(2− δ)q‖β∗‖22
L

}
. (4.29)

We will drop the superscript η of b̂η in the following. Further, let a bar over any vector v denote the

average of the components of v, so v̄ =
∑
j vj . Note that α̂ = Y − Sb̂, and define â∗ = Y − Sb∗

and f∗ = α∗1 + Xβ∗ + γ. From the definition of b̂, we have the following two inequalities:

‖Y − α̂1− Sb̂‖221Λ ≤ ‖Y − â∗1− Sb∗‖221Λ

‖Y − α̂1− Sb̂‖221Λc ≤ ‖Y − Ȳ1‖221Λc .

Noting that for any v,u ∈ Rn, vT (u − ū1) = (v − v̄1)Tu, rearranging the inequalities above we

get

‖f∗ − α̂1− Sb̂‖221Λ ≤ −2(ε− ε̄1)TS(b̂− b∗)1Λ + ‖f∗ − â∗1− Sb∗‖221Λ, (4.30)

‖f∗ − α̂1− Sb̂‖221Λc ≤ −2(ε− ε̄1)TSb̂1Λc + ‖f∗ − Ȳ‖221Λc . (4.31)

Observe that as γ = 0,

‖f∗ − â∗1− Sb∗‖22 = ‖Xβ∗ −Xβ∗1− (Sb∗ − Sb∗1) + γ‖22 + nε̄2

≤ ‖Xβ∗ − Sb∗ + γ‖22 + nε̄2, (4.32)

and

‖f∗ − Ȳ‖22 = ‖Xβ −Xβ∗1 + γ‖22 + nε̄2. (4.33)

As both b∗ and 1Λ are independent of ε, adding together (4.30) and (4.31), simplifying using

(4.32) and (4.33), and then taking expectations yields

MSPE(b̂) =− 2

n
Eε,π,Ψ{(ε− ε̄1)TSb̂}+

1

n
Eπ,Ψ(‖Xβ∗ − Sb∗ + γ‖221Λ) +

σ2

n

+
1

n
‖Xβ∗ −Xβ∗1 + γ‖22Pπ,Ψ(Λc). (4.34)

Now using the fact that

‖b̂‖2 ≤
√

1 + η

√
(2− δ)q‖β∗‖2√

L
,

applying the Cauchy–Schwarz inequality we have

−Eε,π,Ψ{(ε− ε̄1)TSb̂} ≤
√

Eε,π,Ψ{‖ST (ε− ε̄1)‖22}Eε,π,Ψ(‖b̂‖22)

≤
√

Eπ,Ψ{Eε(‖ST (ε− ε̄1)‖22|π,Ψ)}
√

(1 + η)(2− δ)q‖β∗‖2√
L

.
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But

Eε(‖ST (ε− ε̄1)‖22|π,Ψ) = Eε[Tr{(ε− ε̄1)TSST (ε− ε̄1)}|π,Ψ]

= Eε{Tr{(ε− ε̄1)(ε− ε̄1)TSST }|π,Ψ]

= Tr[Eε{(ε− ε̄1)(ε− ε̄1)T }SST ]

= σ2‖(I− n−111T )S‖2F ≤ σ2‖S‖2F ≤ σ2nL,

whence

−Eε,π,Ψ{(ε− ε̄1)TSb̂} ≤ σ
√

1 + η
√

(2− δ)qn‖β∗‖2. (4.35)

Meanwhile, by Lemma 28 below, we have that Pπ,Ψ(Λc) ≤ ρ, with ρ defined as in (4.8). By

Theorem 20, property (i), we have

1

n
Eπ,Ψ(‖Xβ∗ − Sb∗ + γ‖22) =

1

n
Eπ,Ψ(‖Xβ∗ − Sb∗‖22) +

1

n
‖γ‖22, (4.36)

whilst property (iii) gives an upper bound on the approximation error Eπ,Ψ(‖Xβ∗ − Sb∗‖22).

Substituting into (4.34) gives the result.

Proof of Theorem 23. The proof is very similar to that of Theorem 22. Let the event Λ be

defined as in (4.29). By the definition of b̂ (dropping the superscript η), we have

1

n

n∑
i=1

[
−YisTi b̂ + log{1 + exp(sTi b̂)}

]
1Λ ≤

1

n

n∑
i=1

[
−YisTi b∗ + log{1 + exp(sTi b∗)}

]
1Λ.

Using this, analogously to (4.30) and (4.31) we get,

E(b̂)1Λ ≤
1

n

n∑
i=1

(Yi − pi){S(b̂− b∗)}i1Λ + E(b∗)1Λ,

E(b̂)1Λc ≤
1

n

n∑
i=1

(Yi − pi)(Sb̂)i1Λc + E(0)1Λc ,

where E(0) ≤ log(2) is the excess risk of the the zero-vector 0 ∈ RL. Let ε := Y−p be the residual

vector. Adding the two equations above and taking expectations yields

Eε,π,Ψ{E(b̂)} ≤ 1

n
Eε,π,Ψ(εTSb̂) + Eπ,Ψ{E(b∗)1Λ}+ E(0)Pπ,Ψ(Λc).

From Lemma 28, we get Pπ,Ψ(Λc) ≤ ρ. By the mean value theorem, we have

E(b∗) ≤ 1

n
sup
a∈R

∣∣∣∣ ea

1 + ea

(
1− ea

1 + ea

)∣∣∣∣ ‖Xβ∗ + γ − Sb∗‖22 =
1

4n
‖Xβ∗ + γ − Sb∗‖22.

By (4.36), we then have

Eπ,Ψ(E(b∗)) ≤ 1

4n
Eπ,Ψ(‖Xβ∗ − Sb∗‖22) +

1

4n
‖γ‖22,
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where (iii) of Theorem 20 give bounds on the quantity in the right-hand-side. Further, the same

argument that leads to (4.35) gives

1

n
Eε,π,Ψ(εTSb̂) ≤ 1

n

√
Eε,π,Ψ(‖STε‖22)

√
1 + η

√
(2− δ)q‖β∗‖2√

L
=

√
(1 + η)(2− δ)p̃

n
‖β∗‖2.

Collecting together the various inequalities, we get the required result.

Proof of Theorem 24. The proof proceeds similarly to that of Theorem 20. As in the latter,

we set

W1` := wl = Pπ(Mi = `), (4.37)

to ensure Eπ,Ψ(Sb∗,(1)) = Xθ∗,(1). Now we shall determine conditions on w2, the second row of

W, such that

Eπ,Ψ((Sb∗,(2))i) =
∑
k,k1

Xik1{Xik1=0}Θ
∗,(2)
kk1

. (4.38)

To this end, we compute

Eπ,Ψ((Sb∗,(2))i) =
pq

L

L∑
l=1

Eπl,Ψl

(
Sil

p∑
k=1

Ψkl

p∑
k1=1

Θ
∗,(2)
kk1

1{πl(k1)<πl(k)}W2πl(k)

)

= pqEπ,ψ

 p∑
j=1

Xij1{Hi=j}ψj

p∑
k=1

ψk

p∑
k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}W2π(k)


= pqEπ

(
p∑
k=1

Xik1{Hi=k}

p∑
k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

p∑
`=2

W2`1{π(k)=`}

)
.

Now observe that for k ∈ zi,

1{Hi=k}1{π(k1)<π(k)}1{π(k)=`} = 1{Xik1=0}1{Hi=k}1{Mi=`, π(k1)<`},

and 1{Hi=k} and 1{Mi=`, π(k1)<`} are independent. Thus we have

Eπ,Ψ((Sb∗,(2))i) =
∑
k,k1

Xik1{Xik1=0}Θ
∗,(2)
kk1

p∑
`=1

pPπ(Mi = `, π(k1) < `)W2`

=
∑
k,k1

Xik1{Xik1=0}Θ
∗,(2)
kk1

p∑
`=2

(`− 1)Pπ(Mi = `|π(k1) < `)W2`

=
∑
k,k1

Xik1{Xik1=0}Θ
∗,(2)
kk1

p∑
`=2

(`− 1)

(
p−`
q−1

)(
p−1
q

)W2`.

Thus if we choose w2 such that

p∑
`=2

(`− 1)

(
p−`
q−1

)(
p−1
q

)W2` = 1, (4.39)

property (4.38) will be satisfied.
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Turning now to the variance, as ‖S‖∞ ≤ ‖X‖∞ ≤ 1, we have

Varπ,Ψ((Sb∗)i) ≤
1

L
Eπ,Ψ(‖b∗‖22)− f∗i 2, (4.40)

and by the Cauchy–Schwarz inequality,

1

L
Eπ,Ψ(‖b∗‖22) = Eπ,ψ(b∗1

2) ≤
{√

Eπ,ψ
(
b
∗,(1)
1

2)
+

√
Eπ,ψ

(
b
∗,(2)
1

2)}2

=
1

L

{√
Eπ,Ψ(‖b∗,(1)‖22) +

√
Eπ,Ψ(‖b∗,(2)‖22)

}2

. (4.41)

We now compute Eπ,Ψ(‖b∗,(2)‖22) as follows.

Eπ,Ψ(‖b∗,(2)‖22) =
p2q2

L
Eπ,ψ


(

p∑
k=1

ψk

p∑
k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}W2π(k)

)2


=
p2q2

L
Eπ

Eψ

(

p∑
k=1

ψk

p∑
k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

p∑
`=2

W2`1{π(k)=`}

)2 ∣∣∣∣π



=
p2q2

L

p∑
k=1

p∑
`=2

W 2
2`Eπ

1{π(k)=`}

(
p∑

k1=1

Θ
∗,(2)
kk1

1{π(k1)<`}

)2


=
p2q2

L

p∑
`=2

W 2
2`

 `− 1

p(p− 1)

∑
k,k1

(Θ
∗,(2)
kk1

)2 +
(`− 1)(`− 2)

p(p− 1)(p− 2)

∑
k1 6=k2

∑
k

Θ
∗,(2)
kk1

Θ
∗,(2)
kk2


≤ pq2

(p− 1)L

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣ p∑
`=2

(`− 1)W 2
2`. (4.42)

By the Cauchy–Schwarz inequality, choosing

W2` =

(
p−`
q−1

)/(
p−1
q

)
∑p
`′=2(`′ − 1)

{(
p−`
q−1

)/(
p−1
q

)}2 (4.43)

minimises (4.42) subject to (4.39) to give

Eπ,Ψ(‖b∗,(2)‖22) ≤ pq2

(p− 1)L

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣

p−1∑
`=1

`

((
p−1−`
q−1

)(
p−1
q

) )2

−1

.

Finally, Lemma 31 bounds the right-most term from above to yield

Eπ,Ψ(‖b∗,(2)‖22) ≤ 2{(2− δ)q}2
L

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣ . (4.44)

Using property (ii) of Theorem 20 and substituting (4.44) into (4.41) gives (ii) of Theorem 24.

Substituting this into (4.40) then gives property (iii).
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Proof of Theorem 25. Let b∗ ∈ RL be as in Theorem 24. The proof is almost identical to that

of Theorem 21, the only difference being in the approximation error term ∆, here defined by

∆ = f∗ − Sb∗.

Analogously to (4.28), we get

MSPE((α̂, b̂)) ≤ 1

n
Eπ,Ψ(‖∆‖22) +

σ2(L+ 1)

n
+

1

n
‖γ‖22

≤ (2− δ)q`2(Θ∗)
L

+
σ2(L+ 1)

n
+

1

n
‖γ‖22,

the final line following from property (iii) in Theorem 24.

Proof of Theorem 26. Let b∗ ∈ RL be as in Theorem 24. The proof is almost identical to that

of Theorem 22, the only differences being in the definition of the event Λ and the upper bound on

the approximation error term. Here, we take

Λ =

{
‖b∗‖22 < (1 + η)

(2− δ)q`2(Θ∗)
L

}
,

and we note that Lemma 29 entails Pπ,Ψ(Λc) ≤ ρ2, with ρ2 defined as in (4.16). The proof

then follows through as before, replacing the approximation error term in the main effects setting,

Eπ,Ψ(‖Xβ∗ − Sb∗‖22), with Eπ,Ψ(‖f∗ − Sb∗‖22), and using property (iii) in Theorem 24 to bound

this from above.

Proof of Theorem 27. Modifying the proof of Theorem 23 in the same way as proof of Theo-

rem 22 is modified to prove Theorem 26 gives the result.

Lemma 28. Let b∗ ∈ RL be as in Theorem 24 with w defined as in (4.22). Then for η ≥ 0,

P
(
‖b∗‖22 ≥ (1 + η)

(2− δ)q‖β∗‖22
L

)
≤ exp

(
− Lη2

18(2− δ)q{18(2− δ) + η}

)
.

Proof. We first bound the moments of b∗l
2, in order to later apply Bernstein’s inequality (see

Lemma 2.2.11 of van der Vaart and Wellner (1996)).

E(b∗l
2m) =

q2m

L2m
Eπ

Eψ

(

p∑
k=1

β∗kψkwπl(k)

)2m ∣∣∣∣π



≤ (2m)!

2mm!

q2m

L2m
Eπ

{(
p∑
k=1

β∗k
2w2

π(k)

)m}
(4.45)

by Khintchine’s inequality (see Theorem 12.3.1 of Garling (2007)). Then

E(b∗l
2m) ≤ (2m)!

2mm!

q2m

L2m
Eπ

(
p∑
k=1

β∗k
2w2

π(k)

)
max
π

(
p∑
k=1

β∗k
2w2

π(k)

)m−1

≤ (2m)!

2mm!

q2m

L2m
‖β∗‖2m2 ‖w‖2m−1

∞ Eπ(w2
π(k)).
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By (4.24),

‖w‖∞ ≤
q/p

q/(2p− q) = 2− δ,

Eπ(w2
π(k)) ≤

2p− q
qp

=
2− δ
q

.

Using the inequalities

n! ≥
(n

3

)n
,

n! ≤
(n

2

)n
for n ≥ 6,

we get
(2m)!

2m(m!)2
≤
(

9

2

)m
, (4.46)

so

E(b∗l
2m) ≤ m!

1

q

(
9(2− δ)2q2‖β∗‖22

2L2

)m
,

whence by Minkowski’s inequality,

E[{b∗l 2 − E(b∗l
2)}m] ≤ m!

1

q

(
9(2− δ)2q2‖β∗‖22

L2

)m
.

Plugging this into Bernstein’s inequality, we finally arrive at

P
(
‖b∗‖22 ≥ (1 + η)

(2− δ)q‖β∗‖22
L

)
≤ P

(
‖b∗‖22 − E(‖b∗‖22) ≥ η (2− δ)q‖β∗‖22

L

)
≤ exp

(
−1

2

Lη2

9(2− δ)q{18(2− δ) + η}

)
.

Lemma 29. Let b∗ ∈ RL be as in Theorem 24 with W defined by equations (4.37) and (4.43).

Then

P
{
‖b∗‖22 ≥ (1 + η)

(2− δ)q
L

`2(Θ)

}
≤ exp

(
− Lη2

18(2− δ)q{18(2− δ) + η}

)
+ exp

(
− Lη2

36(2− δ)2q2(18 + η)

)
.

Proof. We proceed as in Lemma 28, which provides a bound on the tail probability of ‖b∗,(1)‖22.

To bound the moments of (bl
∗,(2))2, we argue as follows.

E{(bl∗,(2))2m} =
p2mq2m

L2m
Eπ

Eψ

(

p∑
k=1

ψk

p∑
k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}W2π(k)

)2m ∣∣∣∣π



≤ (2m)!

2mm!

p2mq2m

L2m
Eπ


p∑
k=1

(
p∑

k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

)2

W 2
2π(k)


m
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by Khintchine’s inequality. Now

Eπ


p∑
k=1

(
p∑

k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

)2

W 2
2π(k)


m ≤ Eπ


p∑
k=1

(
p∑

k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

)2

W 2
2π(k)


×max

π


p∑
k=1

(
p∑

k1=1

Θ
∗,(2)
kk1

1{π(k1)<π(k)}

)2

W 2
2π(k)


m−1

≤ 2(2− δ)2

p2

 ∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣
m

‖w2‖2(m−1)
∞ ,

the final line following from equations (4.42) and (4.44).

Next, appealing to Lemma 31, we see that ‖w2‖∞ ≤ 2(2− δ)2q/p. Thus we have

E{(bl∗,(2))2m} ≤ (2m)!

2mm!

1

2(2− δ)2q2

4(2− δ)4q4

L2

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣
m

,

so

E[{(bl∗,(2))2 − E((bl
∗,(2))2)}m] ≤ m!

1

2(2− δ)2q2

36(2− δ)4q4

L2

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣
m

,

by (4.46) and Minkowski’s inequality. By Bernstein’s inequality,

P

‖b∗,(2)‖22 − E(‖b∗,(2)‖22) ≥ η 2{(2− δ)q}2
L

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣
 ≤ exp

(
− Lη2

36(2− δ)2q2(18 + η)

)
.

Putting things together, we have

P
{
‖b∗‖22 ≥ (1 + η)

(2− δ)q
L

`2(Θ)

}
≤ P

{(
‖b∗,(1)‖2 + ‖b∗,(2)‖2)

)2 ≥ (1 + η)
(2− δ)q

L
`2(Θ)

}
≤ P

(
‖b∗,(1)‖22 ≥ (1 + η)

(2− δ)q‖θ∗(1)‖22
L

)

+ P

‖b∗,(2)‖22 − E(‖b∗,(2)‖22) ≥ η 2{(2− δ)q}2
L

∑
k,k1,k2

∣∣∣Θ∗,(2)
kk1

Θ
∗,(2)
kk2

∣∣∣


≤ exp

(
− Lη2

18(2− δ)q{18(2− δ) + η}

)
+ exp

(
− Lη2

36(2− δ)2q2(18 + η)

)
,

using Lemma 28 in the final line.

Lemma 30. Let (ai)
∞
i=1 and (bi)

∞
i=1 be two sequences of non-negative, non-increasing, real numbers

such that that there is some i∗ ∈ N for which

ai ≤ bi for all i ≤ i∗,
ai ≥ bi for all i > i∗.
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(i) If
∞∑
i=1

ai ≤
∞∑
i=1

bi <∞,

then ∞∑
i=1

a2
i ≤

∞∑
i=1

b2i .

(ii) If (ci)
∞
i=1 is a sequence of non-negative, non-decreasing real numbers and

∞∑
i=1

bi ≤
∞∑
i=1

ai <∞,
∞∑
i=1

ciai ,

∞∑
i=1

cibi <∞,

then ∞∑
i=1

ciai ≥
∞∑
i=1

cibi.

Proof. For (i), observe that

i∗∑
i=1

(b2i − a2
i ) =

i∗∑
i=1

(bi + ai)(bi − ai) ≥ (bi∗ + ai∗)

i∗∑
i=1

(bi − ai)

≥ (bi∗ + ai∗)
∑
i>i∗

(ai − bi) ≥
∑
i>i∗

(bi + ai)(ai − bi) =
∑
i>i∗

(ai
2 − bi2).

For (ii) we argue,

i∗∑
i=1

ci(bi − ai) ≤ ci∗
i∗∑
i=1

(bi − ai) ≤ ci∗
∑
i>i∗

(ai − bi) ≤
∑
i>i∗

ci(ai − bi).

Lemma 31. Let q, p ∈ N with q ≥ 1, p ≥ max{q, 3}. We have

p−1∑
`=1

`

((
p−1−`
q−1

)(
p−1
q

) )2

≥ 1

2(2− q/p)2

p

p− 1
.

Proof. Let the sequences (a`)
∞
`=1 and (b`)

∞
`=1 be defined by

a` =


(

(p−1−`
q−1 )

(p−1
q )

)2

if 1 ≤ ` ≤ p− 1

0 otherwise,

b` =



(
q
p−1

)2

if ` ≤
⌊

(p−1)2

{2(p−1)−q}q

⌋
q

2(p−1)−q −
(

q
p−1

)2 ⌊
(p−1)2

{2(p−1)−q}q

⌋
if ` =

⌊
(p−1)2

{2(p−1)−q}q

⌋
+ 1

0 otherwise.

Let the sequence (c`)
∞
`=1 be defined by c` = `. By (4.23), the sequences (a`)

∞
`=1, (b`)

∞
`=1 and (c`)

∞
`=1

satisfy the hypotheses of Lemma 30. Thus

p−1∑
`=1

`a` ≥
p−1∑
`=1

`b`,
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and

p−1∑
`=1

`b` =
1

2

(
q

p− 1

)2(⌊
(p− 1)2

{2(p− 1)− q}q

⌋
+ 1

)⌊
(p− 1)2

{2(p− 1)− q}q

⌋

+

(
q

p− 1

)2(
(p− 1)2

{2(p− 1)− q}q −
⌊

(p− 1)2

{2(p− 1)− q}q

⌋)(⌊
(p− 1)2

{2(p− 1)− q}q

⌋
+ 1

)
.

Letting x = (p− 1)2/[{2(p− 1)− q}q], we have

p−1∑
`=1

`b` =
1

2
(bxc+ 1) bxc+ (x− bxc)(bxc+ 1)

=
1

2
x(x+ 1)− 1

2
{(x− bxc) bxc+ (x− bxc)(x+ 1)}+ (x− bxc)(bxc+ 1).

Since 1 ≥ 1/2 + (x− bxc)/2, we see that

(x− bxc)(bxc+ 1) ≥ 1

2
(x− bxc)(x+ 1 + bxc),

so

p−1∑
`=1

`b` ≥
1

2
x(x+ 1)

=
1

2

(
(p− 1)2

{2(p− 1)− q}q + 1

)
q

2(p− 1)− q

=
1

2(p− 1)

p+ {2− q/(p− 1)}q − 1

{2− q/(p− 1)}2

≥ 1

2(p− 1)

p

{2− q/(p− 1)}2

≥ 1

2(2− q/p)2

p

p− 1
.
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L. Dümbgen and K. Rufibach. Maximum likelihood estimation of a log-concave density and its

distribution function: Basic properties and uniform consistency. Bernoulli, 15:48–60, 2009. 7



REFERENCES 111
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S. van de Geer, P. Bühlmann, and Y. Ritov. On asymptotically optimal confidence regions and

tests for high-dimensional models. arXiv preprint arXiv:1303.0518, 2013. 2

S.A. van de Geer. High-dimensional generalized linear models and the lasso. The Annals of

Statistics, 36:614–645, 2008. 90

A.W. van der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes. Springer-

Verlag, 1996. 104

M.J. Wainwright. Sharp thresholds for high-dimensional and noisy recovery of sparsity. IEEE

Transactions on Information Theory, 55:2183–2202, 2009. 44, 48, 49

G. Walther. Detecting the presence of mixing with multiscale maximum likelihood. Journal of the

American Statistical Association, 97:508–513, 2002. 7

J. Wu, B. Devlin, S. Ringquist, M. Trucco, and K. Roeder. Screen and clean: a tool for identifying

interactions in genome-wide association studies. Genetic Epidemiology, 34:275–285, 2010. 28

H.F. Yu, C.-J. Hsieh, K.-W. Chang, and C.-J. Lin. Large linear classification when data cannot

fit in memory. ACM Transactions on Knowledge Discovery from Data, 5:23, 2012. 78



REFERENCES 115

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal

of the Royal Statistical Society, Series B, 68:49–67, 2006. 37

M. Yuan, V. R. Joseph, and Y. Lin. An efficient variable selection approach for analyzing designed

experiments. Technometrics, 49:430–439, 2007. 28

M. Yuan, R. Joseph, and H. Zou. Structured variable selection and estimation. Annals of Applied

Statistics, 3:1738–1757, 2009. 28

C.-H. Zhang and S. S. Zhang. Confidence intervals for low-dimensional parameters with high-

dimensional data. Journal of the Royal Statistical Society, Series B, To appear, 2013. 2

P. Zhao and B. Yu. On Model Selection Consistency of Lasso. Journal of Machine Learning

Research, 7:2541–2563, 2006. 44

P. Zhao, G. Rocha, and B. Yu. The composite absolute families penalty for grouped and hierarchical

variable selection. Annals of Statistics, 37:3648–3497, 2009. 28, 38

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Associa-

tion, 101:1418–1429, 2006. 34, 44


	Contents
	1 Variable selection with error control
	1.1 Introduction
	1.2 Complementary Pairs Stability Selection
	1.3 Theoretical properties
	1.3.1 Worst-case bounds
	1.3.2 Improved bounds under unimodality
	1.3.3 Further improvements under r-concavity
	1.3.3.1 Lowering the threshold 

	1.3.4 How to use these bounds in practice
	1.3.4.1 Choice of parameters
	1.3.4.2 Obtaining upper bounds on p-values


	1.4 Numerical properties
	1.4.1 Simulation Study
	1.4.2 Real data example

	1.5 Appendix
	1.5.1 Proof of Theorem 1
	1.5.2 Proof of Theorem 2.
	1.5.3 Proofs of results on r-concavity
	1.5.4 Computing the r-concave tail probability bound


	2 Modelling interactions with Backtracking
	2.1 Introduction
	2.2 Motivation
	2.3 Backtracking with the Lasso
	2.3.1 A naive algorithm
	2.3.1.1 Cross-validation

	2.3.2 Speeding up computation
	2.3.2.1 An improved algorithm
	2.3.2.2 The final algorithm


	2.4 Further applications of Backtracking
	2.4.1 Multinomial regression
	2.4.2 Structural sparsity
	2.4.3 Nonlinear models
	2.4.4 Introducing more candidates

	2.5 Numerical results
	2.5.1 Simulations
	2.5.2 Real data analyses
	2.5.2.1 Communities and Crime
	2.5.2.2 ISOLET

	2.5.3 Methods and results

	2.6 Theoretical properties
	2.6.1 The entry condition
	2.6.2 Statement of results

	2.7 Discussion
	2.8 Appendix

	3 Random Intersection Trees
	3.1 Introduction
	3.2 Random Intersection Trees
	3.3 Computational complexity
	3.4 Early stopping using min-wise hashing
	3.5 Numerical Examples
	3.5.1 Tic-Tac-Toe endgame prediction
	3.5.2 Reuters RCV1 text classification

	3.6 Discussion
	3.7 Appendix

	4 Large-scale regression and classification
	4.1 Introduction
	4.2 MRS mapping and dimension reduction
	4.2.1 Notation
	4.2.2 Construction of S
	4.2.3 Connection to b-bit min-wise hashing
	4.2.4 Principal components and random projections

	4.3 Main effect models
	4.3.1 Approximation error
	4.3.2 Linear regression models
	4.3.2.1 Ordinary least squares
	4.3.2.2 Ridge regression

	4.3.3 Logistic regression

	4.4 Interaction models
	4.4.1 Approximation error
	4.4.2 Linear regression models
	4.4.2.1 Ordinary least squares
	4.4.2.2 Ridge regression

	4.4.3 Logistic regression

	4.5 Extensions
	4.5.1 Map aggregation
	4.5.2 Variable importance
	4.5.3 Other fitting procedures

	4.6 Numerical examples
	4.6.1 Regression: simulation
	4.6.2 Regression: text analysis
	4.6.3 Classification: URL identification

	4.7 Discussion
	4.8 Appendix

	References

