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ABSTRACT. The kth-nearest neighbour rule is arguably the simplest and most

intuitively appealing nonparametric classification procedure. However, application

of this method is inhibited by lack of knowledge about its properties, in particular

about the manner in which it is influenced by the value of k; and by the absence

of techniques for empirical choice of k. In the present paper we detail the way in

which the value of k determines the misclassification error. We consider two models,

Poisson and Binomial, for the training samples. Under the first model, data are

recorded in a Poisson stream and are “assigned” to one or other of the two popula-

tions in accordance with the prior probabilities. In particular, the total number of

data in both training samples is a Poisson-distributed random variable. Under the

Binomial model, however, the total number of data in the training samples is fixed,

although again each data value is assigned in a random way. Although the values

of risk and regret associated with the Poisson and Binomial models are different,

they are asymptotically equivalent to first order, and also to the risks associated

with kernel-based classifiers that are tailored to the case of two derivatives. These

properties motivate new methods for choosing the value of k.
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1. INTRODUCTION

In the classification or discrimination problem with two populations, denoted by X

and Y , one wishes to classify an observation z to either X or Y using only training

data. The kth-nearest neighbour classification rule is arguably the simplest and

most intuitively appealing nonparametric classifier. It assigns z to population X

if at least 1
2k of the k values in the pooled training-data set nearest to z are from

X, and to population Y otherwise. The first study of this method was undertaken

by Fix and Hodges (1951). Since then there have been many investigations into

the method’s statistical properties. Little is known about the structure of its error

probabilities, however, and neither are formulae available for optimal choice of k.

Practical methods for optimal empirical choice of k have apparently not been given.

The present paper resolves these issues, and focuses on expansions of the error

rate of kth-nearest neighbour classifiers which are associated with optimal choice

of k. We show that the values of risk of nearest-neighbour classifiers can be rep-

resented quite simply in terms of properties of the two populations, and that this

leads to new, practical ways of choosing the value of k.

The sizes of the training samples used to construct classifiers might fairly be

viewed as random variables. Consider, for example, the case where a classifier is

used by a bank to determine, from the bank’s data, whether a new customer is likely

to default on a loan. The sizes of the two training samples could be the number,

M , of previous customers who defaulted, and the number, N , who did not default,

respectively. An appropriate model for the distributions of M and N might be

that they are statistically independent and Poisson, with means µ and ν, say. For

example, the Poisson sample-size model could arise if the population of potential

customers were much larger than the number of customers who sought loans from

the bank.

Thus, Poisson rather than deterministic models for training-sample sizes can be

motivated. Here, the total number of data in the two training samples is random,

and data in a Poisson stream are “assigned” to one or other of the two popula-

tions using a formula which based on the respective prior probabilities. A different

approach, which gives rise to a Binomial-type model, involves the total number of

training data being pre-determined, but apportions these data among the two pop-
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ulations in a manner similar to the Poisson model. We shall show that these two

approaches produce nearest-neighbour classifiers with risks that are different but

are nevertheless first-order equivalent.

For fixed k the risk of a k-nearest neighbour classifier converges to its limit

relatively quickly, at rate T−2, as total sample size, T , increases (Cover, 1968).

However, the limiting value is strictly larger than the Bayes risk of the “ideal”

classifier that would be used if both population densities were known. By way

of comparison, in the case of imperfect information about the population, and in

particular in parametric settings, the risk of empirical Bayes classifiers converges

to the Bayes risk no more rapidly than T−1; see Kharin and Duchinskas (1979).

In nonparametric settings the rate of convergence to Bayes risk is slower still, but

may nevertheless be asymptotically optimal; see, for example, Marron (1983) and

Mammen and Tsybakov (1999).

In most previous work on nearest-neighbor classifiers, the value of k was held

fixed. Cover and Hart (1967) gave upper bounds for the limit of the risk of nearest-

neighbor classifiers. Wagner (1971) and Fritz (1975) treated convergence of the

conditional error rate when k = 1. Devroye and Wagner (1977, 1982) developed

and discussed theoretical properties, particularly issues of mathematical consistency,

for k-nearest-neighbor rules. Devroye (1981) found an asymptotic bound for the

regret with respect to the Bayes classifier. Devroye et al. (1994) gave a particularly

general description of strong consistency for nearest-neighbour methods. Psaltis et

al. (1994) generalised the results of Cover (1968) to general dimension, and Snapp

and Venkatesh (1998) further extended the results to the case of multiple classes.

Bax (2000) gave probabilistic bounds for the conditional error rate in the case where

k = 1. Kulkarni and Posner (1995) addressed nearest-neighbour methods for quite

general dependent data, and Holst and Irle (2001) provided formulae for the limit

of the error rate in the case of dependent data. Related research includes that of

Györfi (1978, 1981), and Györfi and Györfi (1978), who investigated the rate of

convergence to the Bayes risk when k tends to infinity as T increases.

In the case of classifiers based on second-order kernel density estimators, and

for populations with twice-differentiable densities, the risk typically converges to the

Bayes risk at rate n−4/(d+4), where d denotes the number of dimensions. See, for
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example, Kharin (1982), Raudys and Young (2004) and Hall and Kang (2005). In a

minimax sense that Marron (1983) makes precise, this rate is optimal. As we show

in this paper, nearest-neighbour classifiers with Poisson or Binomial interpretations

of sample size have the same property.

Recent work on properties of classifiers focuses largely on deriving upper and

lower bounds to regret in cases where the classification problem is relatively difficult,

for example where the classification boundary is comparatively unsmooth. Research

of Audibert and Tsybakov (2005) and Kohler and Krzyzak (2006), for example,

is in this category. The work of Mammen and Tsybakov (1999), which permits

the smoothness of a classification problem to be varied in the continuum, forms

something of a bridge between the smooth case, which we treat, and the rough

case.

There is a literature on empirical choice of k; see, for example, Chapter 26 of

Devroye et al. (1996) and sections 7.2 and 8.4 of Györfi et al. (2002). More generally,

Devroye et al. (1996) explored the properties and features of nearest-neighbour

methods in the setting of pattern recognition. Chapter 5 of that monograph gives

a good guide to the literature in this setting.

2. MAIN RESULTS

2.1. Different interpretations of sample size. Assume we have m identically dis-

tributed data X = {X1, . . . , Xm}, and n identically distributed data Y = {Y1, . . . ,

Yn}, all of them d-variate and mutually independent. Let the respective probability

densities be f and g. Given a compact set R ⊆ IRd, we wish to use the data to

classify a new datum z ∈ R as coming from the X or Y population. Note that

we do not assume f and g themselves to be compactly supported; the constraint

is only that we confine attention to the problem of classifying new data that come

from a given compact region R.

In many instances the ratio of the sizes of the datasets is a good approximation

to the ratio of the prior probabilities of observing the respective populations. We

shall adopt this viewpoint, which raises the issue of how we should interpret m

and n. Two models arise in a natural way: the Poisson, where the individual sample

sizes are Poisson-distributed and data are assigned randomly to one proportion
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or another, in proportion to the respective likelihoods; and the Binomial, where

the sum of the two training-sample sizes is deterministic but data are ascribed to

populations in the same fashion as before. The Poisson case can be viewed as the

result of taking a sample from a marked point process in IRd, and assigning marks

in a way that reflects prior probabilities; and the Binomial case is the result of

conditioning on total sample size in the Poisson setting.

In the sense that it avoids the conditioning step, the Poisson case is the more

natural and has the greater degree of symmetry. Therefore we take that as the

basis for analysis, and tackle the Binomial model by reference to the solution in the

Poisson case.

In multi-population cases, the kth nearest-neighbour classifier would typically

be used to assign z to population j if that population accounted for the greatest

number of data among the k values in the pooled dataset that are nearest to z. Our

results apply directly to this case, provided we work within a compact region at

each point of which the maximum value of the population densities is achieved by

no more than two densities. Another straightforward extension is to the case where

distance is measured in a weighted Euclidean metric; we shall work only with the

standard, unweighted form.

2.2. Poisson model. Assume that X = {X1, X2, . . .} and Y = {Y1, Y2, . . .} represent

points of type X and type Y , respectively, in a two-type marked Poisson process,

P, in IRd, with intensity function µ f + ν g, and respective probabilities

ψ(z) =
µ f(z)

µ f(z) + ν g(z)
(2.1)

and 1 − ψ(z) that a point of P at z is of type X or of type Y . In particular,

the respective prior probabilities of the X and Y populations are µ/(µ + ν) and

ν/(µ+ ν). It will be assumed that f and g are held fixed, and that µ and ν satisfy:

µ = µ(ν) increases with ν, in such a manner that µ/(µ+ν) → p ∈ (0, 1)

as ν →∞ .
(2.2)

Define ρ = p f/{p f + (1− p) g}, a function on IRd.

Suppose too that the respective densities, f and g, of the X and Y populations,

satisfy:

the set S ⊆ R, defined as the locus of points z for which ρ(z) = 1
2 , is of

codimension 1 and of finite measure in d− 1 dimensions.
(2.3)
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the distributions with densities f and g have finite second moments;

f and g are both continuous in an open set containing R, and both

have two continuous derivatives within an open set containing S;

and f + g > 0 on R;

(2.4)

The first part of (2.3) asks that S be a (d − 1)-dimensional structure — a set of

isolated points if d = 1, a set of curves in the plane if d = 2, and so on.

The assumption of two derivatives in (2.4) is to be expected since, as noted in

section 1, the convergence rate of regret that is achieved by nearest-neighbour meth-

ods is optimal under that smoothness assumption. The condition that the deriva-

tives assumed in (2.4) are continuous is imposed only so that a concise asymptotic

formula for regret can be given; see (2.8) below. Without the precision provided by

the continuity assumption we could state only an upper bound for regret, in which

the right-hand side of (2.8) was replaced by O{k−1 + (k/ν)4/d}.

We ask too that the slopes at which the two densities, weighted in proportion

to their prior probabilities, meet along S, be bounded away from zero along S. That

is, the function

a(z)2 ≡
d∑

j=1

{
p
∂f(z)

∂zj
− (1− p)

∂g(z)

∂zj

}2

is bounded away from zero on S. (2.5)

Equivalently, the prior-weighted densities cross at an angle, rather than meet in a

tangential way. If the prior-weighted densities were to have exactly equal gradients

at crossing places then there would be an explicit and intimate connection between

the distributions of X and Y populations that could hardly arise by chance. It

is difficult to envisage that perfect alignment of densities at crossing points would

actually occur commonly in practice.

Write dz0 for an infinitesimal element of S, centred at z0. Let ad = πd/2/Γ(1+

1
2d) denote the content of the unit d-dimensional sphere, define λ = p (1−p)−1 f+g

and

α(z) =
d

d+ 2
λ(z)−1−(2/d) a

−2/d
d d−1

d∑

j=1

{
ρj(z)λj(z) + 1

2 ρjj(z)λ(z)
}
, (2.6)

where z = (z(1), . . . , z(d)), λj(z) and ρj(z) denote the first derivatives of the respec-

tive functions with respect to z(j), and ρjj(z) is the second derivative of ρ(z) with

respect to z(j). Put ρ̇ = (ρ1, . . . , ρd).
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Let Φ denote the cumulative distribution function of the standard normal dis-

tribution and let Ψ1(z) = ‖ρ̇(z)‖−1
{
pḟ(z) − (1 − p)ġ(z)

}T
ρ̇(z). It can be shown

that, on S, a(z) = Ψ1(z) = 4h(z) ‖ρ̇(z)‖, where h(z) denotes the common value

that p f(z) and (1 − p) g(z) assume at z ∈ S. Therefore, since assumptions (2.3)–

(2.5) imply that a and h are bounded away from zero and infinity on S, they also

ensure that Ψ1(z) and ‖ρ̇(z)‖ are bounded away from zero and infinity there. It

follows that the constants C1 and C2, given by

C1 =

∫

S

Ψ1(z0)
(
8 ‖ρ̇(z0)‖

2
)−1

dz0 = 1
2

∫

S

h(z0)

‖ρ̇(z0)‖
dz0 ,

C2 = 4

∫

S

Ψ1(z0)
(
8 ‖ρ̇(z0)‖

2
)−1

α(z0)
2 dz0 = 2

∫

S

h(z0)

‖ρ̇(z0)‖
α(z0)

2 dz0 ,

(2.7)

are finite, that C1 is nonzero, and that C2 = 0 if and only if α is identically zero

on S.

The Bayes classifier assigns z to the X or Y population according as ψ(z) ≥ 1
2

or ψ(z) < 1
2 , respectively. Therefore, the Bayes risk for classification on R is:

riskPois
Bayes =

∫

R

min

(
µf

µ+ ν
,
νg

µ+ ν

)
,

where, here and below, the superscript “Pois” will indicate that the setting of the

Poisson model is being considered. The risk of the k-nearest neighbour classifier,

which assigns z to population X if at least 1
2k of the k values of Poisson data nearest

to z are from X, and to population Y otherwise, is:

riskPois
k−nn =

µ

µ+ ν

∫

R

f(z)PPois(z classified by k-nn rule as type Y ) dz

+
ν

µ+ ν

∫

R

g(z)PPois(z classified by k-nn rule as type X) dz .

A proof of the following result is given in section 4.

Theorem 1. Assume the Poisson model, that (2.2)–(2.5) hold, and that 1 ≤

k1(ν) < k2(ν), where k1(ν)/ν
ε → ∞ and k2(ν) = O(ν1−ε) for some 0 < ε < 1.

Then,

riskPois
k−nn − riskPois

Bayes = C1 k
−1 + C2 (k/ν)4/d + o

{
k−1 + (k/ν)4/d

}
, (2.8)
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uniformly in k1(ν) ≤ k ≤ k2(ν).

Result (2.8) implies that, provided α is not identically zero, the optimal k

satisfies kPois
opt ∼ const. ν4/(d+4). To set (2.8) into context, we note that a general

formula for the difference between the risk of an empirical classifier and the Bayes

risk can be developed from the theory of “plug-in decisions”; see Theorem 2.2, p. 16

of Devroye et al. (1996), and Theorem 6.2, p. 93 of Györfi et al. (2002). When

specialised to the case of nearest-neighbour methods, this argument bounds the

left-hand side of (2.8) by a constant multiple of {k−1 + (k/ν)2/d}1/2, the minimum

order of which is ν−1/(d+2). Mammen and Tsybakov (1999) showed that, in the

case where discrimination boundaries are smooth, substantially faster convergence

rates are possible. Result (2.8), and its analogues in the setting of Theorem 2, give

concise accounts of those faster rates in the case of nearest-neighbour methods.

Expansion (2.8) has a close analogue in the setting of second-order, kernel-

based methods. See, for example, formulae (3) of Kharin (1982) and (A.2) of Hall

and Kang (2005).

2.3. Binomial model. In the Poisson model we can think of the data as arriving in

a stream (Z1, L1), (Z2, L2), . . ., where Z1, Z2, . . . comprise a Poisson process in IRd,

with intensity function µf + νg, and the “labels” Li form a sequence of zeros and

ones, independent of one another conditional on the Zi’s, with P (Li = 0 |Zi) =

ψ(Zi) and ψ defined by (2.1). If Li = 0 then Zi is labelled as coming from the

X-population, whereas if Li = 1 then Zi is labelled as Y . Since the integral of the

Poisson-process intensity over IRd equals µ+ν, then the number of points Zi equals

a Poisson-distributed random variable, T say, with mean µ + ν. In the Binomial

model we use the same process to generate data, but now we condition on T .

It is convenient to think of T as m + n, where m = µT/(µ + ν) and n =

νT/(µ+ν) are the respective average numbers of points that would occur in the two

training samples if we were to adopt the procedure indicated above. (In particular,

m and n are not necessarily integers.) In this notation the risk for the nearest-

neighbour classifier under the Binomial model can be written as

riskBin
k−nn =

m

T

∫

R

f(z)PBin(z classified by k-nn rule as type Y ) dz
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+
n

T

∫

R

g(z)PBin(z classified by k-nn rule as type X) dz ,

where we use the superscript Bin to indicate that we are sampling under the Bino-

mial model. If we suppose that

µ+ ν = T , a nonrandom integer , (2.9)

then these manipulations are unnecessary, and so we shall assume (2.9) below. This

condition also implies that the Bayes risk under the Binomial model, riskBin
Bayes, is

identical to its counterpart under the Poisson model, and that helps to further

simplify comparisons.

Theorem 2. Assume the Binomial model, that (2.2)–(2.5) and (2.9) hold, and

that k1 and k2 satisfy the conditions imposed on them in Theorem 1. Then,

riskBin
k−nn − riskPois

k−nn = o
{
k−1 + (k/ν)4/d

}
, (2.10)

uniformly in k1(ν) ≤ k ≤ k2(ν).

A proof of Theorem 2 is given in the appendix.

Formula (2.10) asserts that the difference between riskBin
k−nn and riskPois

k−nn is

of smaller order than the difference between riskPois
k−nn and riskPois

Bayes (see (2.9) for

the latter difference), and hence implies that the expansion of regret at (2.8) is

equally valid if riskPois
k−nn and riskPois

Bayes there are replaced by riskBin
k−nn and riskBin

Bayes,

respectively.

2.4. Empirical choice of kopt. The theoretical results described earlier can be used

to motivate practical methods for choosing k. We shall treat the Poisson model;

the Binomial model can be addressed similarly.

Let M and N be the respective sizes of the training samples X and Y. Generate

M∗ and N∗, respectively, from the Poisson distributions with means equal to M

and N . Let 0 < r < 1. Draw bootstrap resamples X ∗ and Y∗, of respective sizes

M∗
1 = [ rM∗] , N∗

1 = [ rN∗]

from X and Y. Here, [x] denotes the integer part of x. This choice of M ∗
1 and

N∗
1 implies that the total resample size equals r(M ∗ + N∗), except for rounding
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errors arising from taking integer parts. Note too that M ∗
1 /(M

∗
1 +N∗

1 ) equals the

sampling fraction M∗/(M∗ + N∗) (again modulo integer-part rounding). This is

necessary if our bootstrap algorithm, based on repeated resamples of sizes M ∗
1 and

N∗
1 , is to mimic properties of the original sampling algorithm.

Draw additional resamples X ∗
test and Y∗test, of respective sizes M∗ −M∗

1 and

N∗ − N∗
1 from X and Y. Build near-neighbour classifiers based on X ∗ and Y∗.

Use them to classify the data X ∗
test and Y∗test, and compute the resulting error rate.

Average this rate over a large number of choices of {X ∗,X ∗
test} and {Y∗,Y∗test}.

Choose k = k̂opt to minimise the average error rate; it is an estimator of the value

of kopt(rµ, rν) that we would use if the true intensity function were r(µf + νg),

rather than µf + νg. Convert k̂opt to an empirical value, k̃opt = r−4/(d+4)k̂opt, that

is of the right size for classification starting from the samples X and Y.

In the case of the binomial sample-size model, one may follow the same boot-

strapping procedure as in the Poisson case, but generating M ∗ from Binomial(M +

N,M/(M +N)) and taking N∗ = M +N −M∗.

3. NUMERICAL PROPERTIES

We present the results of a numerical experiment demonstrating the effectiveness

of the empirical choice k̃opt introduced in section 2. We simulated 500 training

datasets from Poisson sample-size models for selected pairs of intensity constants

(µ, ν). Each dataset was obtained as follows. First, we generated a random number,

say N , from a Poisson distribution with mean µ+ν. Then, we drew N independent

data from the density λ(z) = {µf(z)+νg(z)}/(µ+ν); let these be Z1, . . . , ZN . For

i = 1, . . . ,N , we marked “type X” or “type Y ” on Zi with respective probabilities

ψ(Zi) = µf(Zi)/{µf(Zi) + νg(Zi)} and 1−ψ(Zi). An equivalent way of doing this

would be to draw N independent data each of which is sampled from the density f

or g with respective probabilities µ/(µ+ ν) and ν/(µ+ ν). Each datum would then

be marked “type X” if it was from f , and “type Y ” otherwise.

We took (µ, ν) = (100, 100) and (100, 200) and considered the cases d = 1, 2.

For d = 1, we chose f to be the density function of N(−0.5, 1) and g to be the

density function of N(0.5, 1). For d = 2, we considered two pairs of densities. One

was (f, g), where f ∼ N2

(
(0.5,−0.5), I2

)
and g ∼ N2

(
(−0.5, 0.5), I2

)
. Here, Id is



10

the d× d identity matrix. The other was a pair of bivariate normal densities, as in

the first case but with correlation ρ = 0.5.

For each z we evaluated

P̂Pois
(
z classified as type X

)

=
1

500

(
# training samples that classify z as type X

)
.

The error rate was then estimated by the formula,

Êrr =
µ

µ+ ν

∫

R

f(z)
{
1− P̂Pois(z classified as type X)

}
dz

+
ν

µ+ ν

∫

R

g(z) P̂Pois(z classified as type X) dz .

We took R = [−2.5, 2.5 ]d, which covered most of the sampling region. To see the

effect of the bootstrap resampling fraction on the performance of k̃opt, the three

choices r = 1/3, 1/2, 2/3 were considered, where r was defined in section 2.4. For

computation of k̃opt, 100 bootstrap resamples were drawn.

Table 1. Error rates of classifiers based on 500 training datasets from Poisson sample-size

models with intensity λ = µf+νg, where f and g are densities of normal distributions as

specified in the text. Here, r denotes the subsampling fraction that appears in section 2.4.

d (µ, ν) ρ Bayes kopt k-nn k-nn with k̃opt

with kopt r = 1/3 r = 1/2 r = 2/3

1 (100, 100) .3072 103 .3119 .3119 .3118 .3120

(100, 200) .2685 61 .2735 .2759 .2784 .2814

2 (100, 100) 0 .2371 71 .2444 .2445 .2450 .2454

0.5 .1566 39 .1654 .1682 .1708 .1731

(100, 200) 0 .2125 45 .2199 .2236 .2274 .2310

0.5 .1430 27 .1514 .1684 .1784 .1870

Table 1 shows the estimated error rates of the k-nearest neighbour classifier

with kopt, and the k-nearest neighbour classifier with k̃opt, for each simulation

setting. Here, kopt denotes the value of the deterministic k that minimised the

estimated error rate of the k-nn classifier. The Monte Carlo sampling variability of

the estimated error rates can be measured by

s.e.(Êrr) =

√
Êrr(1− Êrr)/500.
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It is seen that the empirical choice k̃opt works particularly well. The error rates

of the k-nn classifier with k̃opt are not far from the error rate of the corresponding

classifier with kopt. The interval Êrr ± s.e.(Êrr), where Êrr is the estimated error

rate of the k-nn classifier with k̃opt, contains the optimal error rate achieved by

the corresponding classifier with kopt, except in the correlated case with (µ, ν) =

(100, 200). For the latter case, confidence intervals with two standard errors include

the corresponding optimal value. Overall, the subsampling fraction r = 1/3 gave

the best results. However, the error rate does not change much for different choices

of r; the differences are not statistically significant. This suggests that k̃opt may not

be sensitive to choice of the resampling fraction. In the simulations we tried other

populations with different mean vectors and covariance matrices. Also, we tried

other training sample sizes. The lessons that we learned from the other simulation

settings were basically the same as those obtained from Table 1.

Table 1 also suggests that the optimal choice kopt for the case µ 6= ν tends to

be smaller than the one for µ = ν. Our theory for the rate of kopt also was evident

empirically. For example, we found that kopt changed from 27 to 71 when (µ, ν)

increased from (100, 200) to (400, 800) in the case corresponding to the bottom row

of Table 1. The rate of increase in this case was 71/27 = 2.63, which was roughly

consistent with the theoretical value 44/(2+4) = 2.52. To obtain similar empirical

evidence in higher-dimensional feature spaces, we considered a case with d = 16.

We simulated 500 training datasets from Poisson sample-size models, with f and

g being the densities of N16

(
(0.25, . . . , 0.25), I16

)
and N16

(
(−0.25, . . . ,−0.25), I16

)
,

respectively, when (µ, ν) = (100, 200) and (10000, 20000). The relative increase

of kopt in this case was 61/25 = 2.44, which is not far from its theoretical value

1004/(16+4) = 2.51.

4. PROOF OF THEOREM 1

Let Sε denote the set of points in R that are distant no further than ε > 0

from S. Write R\ Sε for the set of points in R that are not in Sε. Using Markov’s

inequality it can be shown that, for each fixed C, ε > 0, we have as ν →∞,

PPois(z classified by k-nn rule as type X) = I
{
ψ(z) > 1

2

}
+O

(
ν−C

)
, (4.1)

uniformly in z ∈ R \ Sε. By letting ε = ε(ν) converge to zero sufficiently slowly in
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(4.1) we ensure that that result remains true for decreasingly small ε. We need (4.1)

only when C = 1, and for ε(ν) decreasing sufficiently slowly to zero. This version

of (4.1) implies that:

∫

R\Sε

g(z)PPois(z classified by k-nn rule as type X)

=

∫

R\Sε

g(z) I
{
ψ(z) > 1

2

}
dz +O

(
ν−1

)
. (4.2)

In view of (4.1) and (4.2), properties of f and g away from S ε do not affect

the size of regret up to any polynomial order. Hence, there is no loss of generality

in working with distributions for which f and g have two continuous derivatives on

Rε, rather than simply on Sε. This simplifies notation, and so we shall make the

assumption below without further comment.

Given z ∈ R, let Z(1), Z(2), . . . denote the point locations of the marked point

process P, ordered such that ‖z−Z(1)‖ ≤ ‖z−Z(2)‖ ≤ . . .; let z(1), z(2), . . . represent

particular values of Z(1), Z(2), . . . , respectively; and put ~z = (z(1), . . . , z(k)) and

~Z = (Z(1), . . . , Z(k)). Denote by ΠPois(~z, k) the probability, conditional on ~Z = ~z,

that among the points z(1), . . . , z(k) there are at least 1
2k points with marks X. We

may write

ΠPois(~z, k) = P

( k∑

i=1

Ji ≥
1
2 k

)
,

where J1, . . . , Jk are independent zero-one variables,

P (Ji = 1) = qi ≡ ψ(z(i)) , ψ =
µ f

µ f + ν g
. (4.3)

To aid interpretation of (4.3), note that, since we are here conditioning on ~Z = ~z,

P (Ji = 1) = P (Ji = 1 | Z(i) = z(i)).

Note that, uniformly in 1 ≤ i ≤ k ∈ [k1(ν), k2(ν)],

E{ψ(Z(i))} = ψ(z) +

d∑

j=1

E(Z(i) − z)(j) ψj(z)

+ 1
2

d∑

j1=1

d∑

j2=1

E
{
(Z(i) − z)(j1) (Z(i) − z)(j2)

}
ψj1j2(z)

+ o
(
E‖Z(k) − z‖2

)
, (4.4)
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where (Z(i) − z)(j) denotes the jth component of Z(i) − z, ψj(z) = (∂/∂z(j))ψ(z)

and ψj1j2(z) = (∂2/∂z(j1)∂z(j2))ψ(z). To obtain (4.4) we have used (2.4), which

implies that for sufficiently small ε > 0, f and g have two continuous derivatives on

Rε, the latter denoting the set of all points in IRd that are distant no further than ε

from some point in R. It follows from this result that, under (2.4), the probability

that Zi = Zi(z) ∈ Rε for all 1 ≤ i ≤ k2(ν) and all z ∈ R, equals 1 − O(ν−C) for

all C > 0. This implies the Taylor expansion of ψ(Z(i)) that leads to (4.4), and,

in combination with the moment condition in (2.4), ensures the correctness of the

remainder term in (4.4).

Under the conditions of Theorem 1, E‖Z(k)− z‖
2 = O{(k/ν)2/d}, and so (4.4)

implies that

k∑

i=1

{Eψ(Z(i))− ψ(z)} =
k∑

i=1

d∑

j=1

E(Z(i) − z)(j) ψj(z)

+ 1
2

k∑

i=1

d∑

j1=1

d∑

j2=1

E
{
(Z(i) − z) (Z(i) − z)T

}
j1j2

ψj1j2(z)

+ o
{
k (k/ν)2/d

}
. (4.5)

Since R is compact and the remainder in (4.5) is of the stated order for each z ∈ R,

then the remainder is of that order uniformly in z.

Writing τ = (µ/ν) f + g and κ(u, z) =
∫

v : ‖v‖≤‖u‖ τ(z + v) dv, we see that the

density of Z(i) − z at u is

fi(u, z) = ν τ(z + u)
{ν κ(u, z)}i−1

(i− 1)!
e−νκ(u,z) .

Therefore,

k∑

i=1

E(Z(i) − z) = ν

∫
u τ(z + u)P{W (u, z) ≤ k − 1} du , (4.6)

k∑

i=1

E
{
(Z(i) − z) (Z(i) − z)T

}
= ν

∫
uuT τ(z + u)P{W (u, z) ≤ k − 1} du , (4.7)

where the random variable W (u, z) is Poisson-distributed with mean ν κ(u, z), and

the integrals are over IRd.
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In (4.6) and (4.7) we shall make the change of variable,

u =
{ k

ν ad τ(z)

}1/d

v . (4.8)

If ε1 > 0 is chosen so small that ν−3ε1{ν/k2(ν)}
2/d → ∞, then, with v defined by

(4.8), and tj = ν−jε1 {ν/k2(ν)}
2/d, we have for all sufficiently large ν, and for all

‖v‖ > t1 and all k ∈ [k1(ν), k2(ν)],

k − 1− E{W (u, z)}

{EW (u, z)}1/2
≤
k − 1− kt2

(kt2)1/2
≤ − 1

2 (kt2)
1/2 = − 1

2

(
kνε1t3

)1/2
.

It follows that for all sufficiently large ν, and for all ‖v‖ ≥ t1, all k ∈ [k1(ν), k2(ν)]

and each C > 0,

P{W (u, z) ≤ k − 1} ≤ P

{
−
W (u, z)− EW (u, z)

{EW (u, z)}1/2
≥ 1

2

(
kνε1t3

)1/2
}

≤
(
4
/
νε1

)C
E

[∣∣∣∣
W (u, z)− EW (u, z)

{EW (u, z)}1/2

∣∣∣∣
2C

]
≤ C1 ν

−Cε1 , (4.9)

where C1 > 0 depends only on C. Here we have used the fact that W (u, z) is

Poisson-distributed with a mean that is bounded below by 1 for ‖v‖ ≥ t1 and

large ν.

Combining (4.5), (4.6), (4.7) and (4.9), and noting that the distribution of

W (u, z) is symmetric in u, we deduce that

k∑

i=1

{
Eψ(Z(i))− ψ(z)

}

= ν

∫

u : ‖v‖≤t1

ψ̇(z)Tu {τ(z + u)− τ(z)}P{W (u, z) ≤ k − 1} du

+ 1
2 ν

∫

u : ‖v‖≤t1

uTψ̈(z)u τ(z + u)P{W (u, z) ≤ k − 1} du+ o
{
k (k/ν)2/d

}
, (4.10)

uniformly in z ∈ R.

Writing τ̇ = (τ1, . . . , τd)
T; defining ψ̇ and τ̇ analogously; defining ψ̈ = (ψij), a

d× d matrix; and taking T to be the set of v such that ‖v‖ ≤ t1, and T ′ to be the

corresponding set of u, given by (4.8); we deduce from (4.10) that

k∑

i=1

{
Eψ(Z(i))− ψ(z)

}
= ν

∫

T ′

{
ψ̇(z)T uuT τ̇(z) + 1

2 u
T ψ̈(z)u τ(z)

}
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× P{W (u, z) ≤ k − 1} du+ o
{
k (k/ν)2/d

}

= ν

∫

T ′

[ d∑

j=1

(u(j))2 {ψj(z) τj(z) + 1
2 ψjj(z) τ(z)}

]

× P{W (u, z) ≤ k − 1} du+ o
{
k (k/ν)2/d

}

= {k/ad τ(z)} {k/ν ad τ(z)}
2/d

×

∫

T

[ d∑

j=1

(v(j))2 {ψj(z) τj(z) + 1
2 ψjj(z) τ(z)}

]

× P{W (u, z) ≤ k − 1} dv + o
{
k (k/ν)2/d

}
, (4.11)

uniformly in z ∈ R.

To control the value of P{W (u, z) ≤ k − 1} in (4.11) we shall use a normal

approximation to the distribution of a Poisson random variable with large mean,

and a crude bound to that distribution when the mean is small. Specifically, let

Zζ have a Poisson distribution with mean ζ. Then, for each C > 0 there exists a

constant C1 = C1(C) > 0 such that, whenever ζ ≥ 0,

(a) for ζ ≥ 1, sup−∞<x<∞ (1 + |x|)C |P (Zζ ≤ ζ + ζ1/2x) − Φ(x)| ≤

C1 ζ
−1/2, and (b) for 0 ≤ ζ ≤ 1, supx>0 (1 + |x|)C P (Zζ > x) ≤ C1 ζ.

(4.12)

Since κ(u, z) = ad τ(z) ‖u‖
d {1 + O(‖u‖2)} as ‖u‖ → 0, uniformly in z ∈ R,

then if u is given by (4.8), ν κ(u, z) = k ‖v‖d [1 + O{(k/ν)2/d ‖v‖2}], uniformly in

z ∈ R. It follows that

k − 1− EW (u, z)

{EW (u, z)}1/2
=
k1/2 (1− ‖v‖d)

‖v‖d/2

[
1 +O

{
(k/ν)2/d ‖v‖2

}]

+O
{
k1/2 (k/ν)2/d ‖v‖2+(d/2) + k−1/2 ‖v‖−d/2

}
.

Noting that

P{W (u, z) ≤ k − 1} = P

[
W (u, z)− EW (u, z)

{varW (u, z)}1/2
≤
k − 1− EW (u, z)

{EW (u, z)}1/2

]
; (4.13)

using (4.12)(a) to produce an approximation to the right-hand side of (4.13) when

k−1/d ≤ ‖v‖ ≤ t1, and using (4.12)(b) for the same purpose when ‖v‖ ≤ k−1/d; we

deduce from (4.11) that

k∑

i=1

{
Eψ(Z(i))− ψ(z)

}
= k (k/ν)2/d α1(z) + o

{
k (k/ν)2/d

}
, (4.14)
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uniformly in z ∈ R, where

α1(z) ≡ {ad τ(z)}
−1−(2/d)

∫

‖v‖≤1

[ d∑

j=1

(v(j))2
{
ψj(z) τj(z) + 1

2 ψjj(z) τ(z)
}]
dv

= {ad τ(z)}
−1−(2/d) d−1

[ d∑

j=1

{
ψj(z) τj(z) + 1

2 ψjj(z) τ(z)
}]

×

∫

‖v‖≤1

{ d∑

j=1

(v(j))2
}
dv , (4.15)

the latter being identical to α(z), defined at (2.6), except that there, ψ and τ are

replaced by their respective limits, ρ and λ.

In our proofs throughout section 4.1, it is convenient to work not with S but

with the locus Sν of points z0 such that

µ f(z0)

µ f(z0) + ν g(z0)
= 1

2 . (4.16)

(In this notation, S∞ = limν→∞ Sν is the set of z0 such that ρ(z0) = 1
2 .) We shall

suppress the subscript on Sν , however, instead showing at the end of the proof (see

the argument below (4.23)) that the transition from S = Sν to S∞ is elementary.

We wish to develop an approximation to

Kν(g) ≡

∫

Sε

g(z)PPois(z classified by k-nn rule as type X) dz

=

∫

Sε

g(z)E
{
ΠPois(~Z, k)

}
dz . (4.17)

If we reinterpret J1, . . . , Jk as random variables with distributions depending on ~Z,

independent conditional on ~Z, and satisfying P (Ji = 1 | ~Z) = ψ(Z(i)), then

E
{
ΠPois(~Z, k)

}
= P

( k∑

i=1

Ji ≥
1
2k

)
. (4.18)

Let Tz0 be the infinite line perpendicular to S at z0, and let u denote a point

on Tz0 . Now, Tz0 has two “halves,” one in the direction where ψ(u) immediately

increases above 1
2 as u is moved away from z0, and the other where ψ(u) immediately

decreases below 1
2 . Call these Tz0+ and Tz0−, respectively. Note that Tz0 = {z0 +

t ψ̇(z0) : −∞ < t <∞} and Tz0+ = {z0 + t ψ̇(z0) : 0 < t <∞}.
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Put µk(z) =
∑

i≤k E(Ji), σk(z)2 = var(
∑

i≤k Ji), Wk(z) = {
∑

i≤k Ji −

µk(z)}/σk(z) and χ(z) = I{ψ(z) ≤ 1
2}. Assume ε ↓ 0 and k1(ν)

1/2 ε → ∞ as

ν →∞. Then,

σk(z)2 = 1
4 k {1 + o(1)} , uniformly in z ∈ Sε , (4.19)

as ν →∞. By (4.17) and (4.18),

K ′
ν(g) ≡ Kν(g)−

∫

Sε

g(z) (1− χ)(z) dz

=

∫

Sε

g(z)
[
P{Wk(z) > wk(z)} − (1− χ)(z)

]
dz ,

K ′
ν(f) ≡ Kν(f)−

∫

Sε

f(z)χ(z) dz

=

∫

Sε

f(z)
[
P{Wk(z) ≤ wk(z)} − χ(z)

]
dz ,

where

wk(z) = −
1

σk(z)

k∑

i=1

{
Eψ(Z(i))−

1
2

}
.

Hence,

K ′′
ν ≡

µ

µ+ ν
K ′

ν(f) +
ν

µ+ ν
K ′

ν(g)

=

∫

Sε

{µf(z)− νg(z)

µ+ ν

} [
P{Wk(z) ≤ wk(z)} − χ(z)

]
dz . (4.20)

In view of (4.19), a standard application of the nonuniform version of the Berry-

Esseen theorem to the sum of independent random variables represented by Wk(z)

implies that, for each C > 0,

sup
z∈Sε

sup
−∞<w<∞

(1 + |w|)C |P{Wk(z) ≤ w} − Φ(w)| = O
(
k−1/2

)
.

Hence, (4.20) entails, for all C > 0,

K ′′
ν =

∫

Sε

{µf(z)− νg(z)

µ+ ν

}
[Φ{wk(z)} − χ(z)] dz

+O

[
k−1/2

∫

Sε

∣∣∣µf(z)− νg(z)

µ+ ν

∣∣∣ {1 + |wk(z)|}−C dz

]
. (4.21)



18

Using (4.14), (4.15) and (4.19) it can be shown that, if we take z = z0+k−1/2u,

with z0 ∈ S and u given by z0 + k−1/2u ∈ Tz0 , then

−wk(z) = {1 + o(1)} 2 k−1/2 k
[
ψ(z)− 1

2 + (k/ν)2/d α1(z) + o
{
(k/ν)2/d

}]

= {1 + o(1)} 2

[ d∑

j=1

u(j) ψj(z0) + k1/2 (k/ν)2/d α1(z0)

+ o
{
‖u‖+ k1/2 (k/ν)2/d

}]
,

uniformly in z ∈ Sε. Hence, writing Uz0 = Tz0 − z0, Uz0± = Tz0± − z0, and

ck = k1/2(k/ν)2/d, we obtain from (4.21):

kK ′′
ν =

∫

S

∫

Uz0

{
p ḟ(z0)− (1− p) ġ(z0)

}T
u

(
Φ

[
− 2

{
ψ̇(z0)

Tu+ ck α1(z0)
}]

− I(u ∈ Uz0−)
)
du dz0 + o

(
1 + c2k

)

=

∫

S

∫ ∞

−∞

{
p ḟ(z0)− (1− p) ġ(z0)

}T
ψ̇(z0) ‖ψ̇(z0)‖

−1

× t
(
Φ

[
− 2 {‖ψ̇(z0)‖ t+ ck α1(z0)}

]
− I(t < 0)

)
dt dz0 + o

(
1 + c2k

)

= C1(S) + C2(S) c2k + o
(
1 + c2k

)
, (4.22)

where, to obtain the second identity, we take u = t ψ̇(z0)/‖ψ̇(z0)‖. In (4.22), C1(S)

and C2(S) have the definitions at (2.7), except that here S is interpreted as the set

of points z0 for which (4.16) holds.

Combining (4.2) and (4.22) we deduce that

riskPois
k−nn − riskPois

Bayes = C1(S) k−1 + C2(S) (k/ν)4/d + o
{
k−1 + (k/ν)4/d

}
. (4.23)

Under the conditions assumed in Theorem 1, µ/(µ+ ν) → p as ν →∞, from which

it follows that C1(S) and C2(S) converge to the values they would take if we were

to define S as the set of points z0 for which, instead of (4.16), p f(z0)/{p f(z0) +

(1− p) g(z0)} = 1
2 . This is the definition used for S at (2.7). Note too that ψ → ρ

and τ → λ as ν → ∞, and that these limits are arise in a very simple way. For

example, τ = (µ/ν) f+g converges to λ = p (1−p)−1 f+g since µ/ν → p (1−p)−1;

the functions f and g remain fixed. Since C1(S) and C2(S) converge to their values

at (2.7), then Theorem 1 follows from (4.23).
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APPENDIX: PROOF OF THEOREM 2

Recall that T = µ+ν. A refined version of the argument leading to (4.1) shows

that that result continues to hold uniformly in z ∈ R\S ε, for both the Binomial and

Poisson models,if ν in (4.1) is replaced by T and if ε is taken to equal ε = k−1/2 T δ,

for any fixed δ > 0. Therefore, uniformly in z ∈ R \ Sε,

PBin(z classified by k-nn rule as type Y )

− PPois(z classified by k-nn rule as type Y ) = O
(
T−C

)

for all C > 0. Hence, defining

D(T ) ≡
µ

T

∫

T

f(z)
{
PBin(z classified by k-nn rule as type Y )

− PPois(z classified by k-nn rule as type Y )
}
dz

+
ν

T

∫

T

g(z)
{
PBin(z classified by k-nn rule as type X)

− PPois(z classified by k-nn rule as type X)
}
dz

=
1

T

∫

T

{µf(z)− νg(z)}
{
PBin(z classified by k-nn rule as type Y )

− PPois(z classified by k-nn rule as type Y )
}
dz ,

for any set T ⊆ R, we have for ε = k−1/2 T δ and all C, δ > 0,

D(R \ Sε) = O
(
T−C

)
. (A.1)

Take z ∈ R and let ~z = (z(1), . . . , z(k)) and ~Z = (Z(1), . . . , Z(k)) be as in the

first paragraph of section 4. Let ~j = (j1, . . . , jk) denote a vector of zeros and ones,

and set

pi =





µf(z(i))

µf(z(i))+ν(z(i))
if ji = 1

νg(z(i))

µf(z(i))+νg(z(i))
if ji = 0 .

Define θ(Z(i)) = 1 if the point at Z(i) comes from the X population, and θ(Z(i)) = 0

otherwise. Write π(~z,~j) for the probability that, conditional on Z(i) = z(i) for

1 ≤ i ≤ k, θ(Z(i)) = ji for 1 ≤ i ≤ k. Then,

πBin(~z,~j) = πPois(~z,~j) = p1 . . . pk . (A.2)
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The probability Π(~z, k) that there are at least 1
2k values from X among the k

values from Z that are nearest to z, conditional on the latter k values being located

at points z(1), . . . , z(k), equals the sum of π(~z,~j) over ~j for which j1 + . . .+ jk ≥
1
2k.

Therefore, in view of (A.2),

ΠBin(~z, k) = ΠPois(~z, k) = P

( k∑

i=1

Ji ≥
1
2 k

∣∣∣∣ ~Z = ~z

)
, (A.3)

where where the zero-one random variables J1, . . . , Jk are independent conditional

on ~Z, and have the distribution at (4.3).

For z′ ∈ IRd, define H(z′) = P (‖z − Zi‖ ≤ ‖z − z′‖) and β = T−1 (µf + νg),

the latter being a probability density. The joint densities of ~Z under the Binomial

and Poisson models, respectively, are

φBin(~z) =
T !

(T − k)!
β(z(1)) . . . β(z(k)) {1−H(z(k))}

T−k ,

φPois(~z) = T k β(z(1)) . . . β(z(k)) exp{−T H(z(k))} .

Let

φ(~z) =
φBin(~z)

φPois(~z)
=

T !

(T − k)!T k
{1−H(z(k))}

T−k exp{T H(z(k))} . (A.4)

Thus, φ(~z) depends on ~z only through z(k), and so we shall write it as φ(z(k)). In

this notation, and in view of (A.3),

PBin(z classified by k-nn rule as type X) =

∫
ΠBin(~z, k)φBin(~z) d~z

=

∫
φ(z(k))ΠPois(~z, k)φPois(~z) d~z

=

∫
φ(z(k))P

Pois
(
z classified by k-nn rule as type X

∣∣∣ Z(k) = z(k)

)

× hZ(k)
(z(k)) dz(k) , (A.5)

where hZ(k)
denotes the density of Z(k).

Using the analogue of (A.5) in the case of classifying z as type Y , we deduce

that the version of (4.20) which addresses the difference of the risks of the nearest-

neighbour rule under Binomial and Poisson models, and for classifying z ∈ S ε, is,

D(Sε) =

∫

Sε

T−1 {µf(z)− νg(z)} ξ(z) dz , (A.6)
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where

ξ(z) =

∫
{φ(z(k))− 1}PPois

(
z classified by k-nn rule as type Y

∣∣∣ Z(k) = z(k)

)

× hZ(k)
(z(k)) dz(k) .

Next we change variable, in (A.6), from z to u defined by z = z0 + k−1/2u,

with z0 ∈ S and u given by z0 + k−1/2u ∈ Tz0 , where notation is as in the sentence

below (4.21). We obtain,

D(Sε) = O
{
k−1/2 · k−1/2 · T δ sup

z∈Sε

|ξ(z)|
}

= O
{
k−1 T δ sup

z∈Sε

|ξ(z)|
}
, (A.7)

where, on right-hand side of the first identity in (A.7), the first factor k−1/2 comes

from the factor T−1 {µf(z) − νg(z)} in the integrand at (A.6); the second factor

k−1/2 derives from the infinitesimal element dz in (A.6), after changing variable;

and the factor T δ comes from the integral over u.

It remains to bound |ξ(z)|. Define

PPois(z, z(k)) = PPois
(
z classified by k-nn rule as type Y

∣∣∣ Z(k) = z(k)

)
,

and define PBin analogously. Stirling’s formula can be used to show that,

qk ≡
T !

(T − k)!T k
=

(
T

T − k

)T−k+(1/2)

e−k
{
1 +O(T−1

)}
. (A.8)

Defining W by H(Z(k)) = (k/T ) eW , we may show by Taylor expansion that,

Qk ≡ {1−H(Z(k))}
T−k exp{T H(Z(k))}

= exp
{
k eW + (T − k) log

(
1− T−1 k eW

)}
= exp

( ∞∑

`=0

c`
W `

`!

)
, (A.9)

where

c` = k − (T − k)

∞∑

j=1

( k
T

)j

j`−1 . (A.10)

Thus,

c0 = k + (T − k) log(1 − T−1k), c1 = 0, c2 = −k2/(T − k) and, for

each ` ≥ 2, c` < 0 and satisfies |c`| = O(k2/T ) as T →∞.
(A.11)
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Note that H(Z(k)) is distributed as the k’th order statistic of a sequence of T

independent random variables each uniformly distributed on [0, 1], and so the dis-

tribution of H(Z(k)) does not depend on z. Neither do the constants c` depend

on z.

Using Rényi’s representation for order statistics it can be shown that W =

−(Wk + wk), where Wk =
∑

k≤j≤T j−1 (Vj − 1) and has zero mean and variance

O(k−1), the random variables Vj are independent and exponentially distributed

with unit mean (their construction depends, of course, on choice of z, T and k),

and wk is nonrandom, does not depend on z, and satisfies wk = O(k−1). Therefore,

E|W |c = O
(
k−c/2

)
for all c ≥ 1 . (A.12)

Observe too that, in view of (A.4), (A.8) and (A.9), φ(Z(k)) = qk Qk. From these

properties, (A.8) and (A.11) it can be proved that φ(Z(k)) − 1 = qk Qk − 1 =

Op(k/T ). This property suggests, although of course does not prove, that

ξ(z) = E
{
(qk Qk − 1)PPois(z, Z(k))

}
= O(k/T ) , (A.13)

uniformly in z ∈ Sε. Substituting (A.13) into (A.7) we deduce that, for each δ > 0,

D(Sε) = O
(
T δ−1

)
. (A.14)

Theorem 2 follows from (A.1) and (A.14).

To complete the proof of (A.13) we require a Taylor-expansion argument that

enables us to convert the in-probability bound (qk Qk−1)PPois(z, Z(k)) = Op(k/T )

into the moment bound (A.13). Standard moderate-deviation arguments can be

used to show that, under the conditions imposed on k in the theorem, for C1 > 0

and for all sufficiently large T ,

P
(
|Wk| ≥ C1 k

−1/2 log T
)
≤ C3 exp

(
− C2 C

2
1 log T

)
= C3 T

−C2
1 C2 ,

where C2, C3 > 0 are absolute constants. Therefore, if C4 > 0 is given then we

may choose C5 > 0 sufficiently large to ensure that the event E = {|Wk| ≤

C5 k
−1/2 log T} holds with probability 1− O(T−C4). The regularity conditions as-

sumed in Theorem 2 imply that, for some η > 0, T η ≤ k ≤ T 1−η for all sufficiently
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large T . Hence, for each C4 > 0 there exist r1 ≥ 2 and T0 ≥ 1 such that, whenever

T ≥ T0,

(T − k)

∞∑

j=r1+1

1

j

(
k e|W |/T

)j
≤ T−C4 , k

∞∑

`=r1+1

|W |`

`!
≤ T−C4 ,

both with probability 1 on E . From this property, (A.9) and (A.10) it follows that

if T ≥ T0 then,

Qk = exp

( r1∑

`=0

c`
W `

`!
+ Θ1 T

−C4

)
,

where |Θ1| ≤ 2 with probability 1 on E . From this result and (A.8) we deduce that,

for r2 ≥ 2 chosen sufficiently large, and for d3, . . . , dr2 depending on k and T but

satisfying |d`| = O(k2/T ), we have:

Qk = ec0

(
1 + 1

2 c2W
2 + d3W

3 + . . .+ dr2 W
r2 + Θ2 T

−C4

)
, (A.15)

where, for a constant C6 > 0,

P (|Θ2| ≤ C6 | E) = 1 . (A.16)

We may equivalently write E as the event “Z(k) ∈ F”, where F is a subset of

the real line. Let F̃ denote the complement of F in IR. Then,

ξ(z) =

∫
{φ(z(k))− 1}PPois(z, z(k))hZ(k)

(z(k)) dz(k)

=

∫

F

{φ(z(k))− 1}PPois(z, z(k))hZ(k)
(z(k)) dz(k)

+

∫

F̃

{
PBin(z, z(k))− PPois(z, z(k))}hZ(k)

(z(k)) dz(k) . (A.17)

Since |PBin − PPois| ≤ 1 then
∣∣∣∣
∫

F̃

{
PBin(z, z(k))− PPois(z, z(k))}hZ(k)

(z(k)) dz(k)

∣∣∣∣

≤

∫

F̃

hZ(k)
(z(k)) dz(k) = 1− P (E) = O

(
T−C4

)
. (A.18)

Moreover,∣∣∣∣
∫

F

{φ(z(k))− 1}PPois(z, z(k))hZ(k)
(z(k)) dz(k)

∣∣∣∣

≤

∫

F

|φ(z(k))− 1|hZ(k)
(z(k)) dz(k) = E{|qk Qk − 1| I(E)} = O(k/T ) , (A.19)

by (A.8), (A.11), (A.15) and (A.16). Result (A.13) follows from (A.17)–(A.19).

Since the upper bounds in (A.18) and (A.19) do not depend on z ∈ S ε then we have

established (A.13) uniformly in z.


