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Customers move through a series of M service stations. Each customer, independent of all others, requires service from 
only one of the stations, for a duration of 1 time unit, this being station i with probabilityp1. The customer has zero 
service at all the other stations, but there is no overtaking between the customers, and so queueing occurs. In the case 
where there is unlimited waiting room between the servers, we show that the system is interchangeable-permuting the 
order of the stations has no effect on the distribution of the output stream. When there is no waiting room between the 
stations we investigate optimal loads of the servers in terms of optimalpi's for up to 10 stations, and observe that optimal 
loads exhibit the bowlphenomenon. We also obtain some bounds on the throughput for equal loads as a function of M. 

A queue of people is moving along a cafeteria 
service counter. Each person wishes to pick up 

only one item, from its location along the line, and 
does not need to spend time anywhere else, except 
when blocked by preceding customers. Where along 
the line should we place the most popular items to 
increase its throughput? 

A line to manufacture electronic circuit boards in- 
cludes a series of automatic insertion machines. Each 
machine has a magazine containing a selection of 
parts it will insert. A mixed variety of boards of 
different types are assembled by the line, requiring 
different selections of parts to be inserted. The line 
operates in a synchronized fashion-all the parts 
move along the line, with no overtaking, until a num- 
ber of them are positioned under appropriate insertion 
machines, and movement of the line stops. The ap- 
propriate machines then perform the insertion oper- 
ations, within a constant synchronized amount of 
time, at the end of which the line is set in motion again 
to reposition the boards. What is the throughput of 
such a line? 

These two generic scenarios can be modeled by a 
series of queues in tandem, with the following unusual 
feature-the service requirements of the customers 
are deterministic (at least as a first approximation), 

and the random element is the location along the line, 
or the station in the series of queues, at which the 
service is given. 

We introduce the following model, which we name 
the cafeteria process: Customers move through a se- 
ries of M service stations. All the services are deter- 
ministic, with a duration of 1 time unit. Each 
customer requires service from only one of the sta- 
tions. Let Sn denote the station at which customer n 
is served; we assume Sn are independent identically 
distributed, n = 1, 2, ... , with P(Sn = i) = Pi, i = 

1, ... , M. We callpi the station loads, and refer to 

pi = 1!M as the equal load case. Customers can move 
through stations where they are not served with a 
delay of 0; however, no overtaking is allowed, and so 
customer n enters service in station i or moves 
through station i only after customer n - 1 leaves that 
station. Hence, queueing and congestion occur. 

We consider two versions of the system: The first 
version has infinite waiting room between the stations 
(but no jockeying for position in the waiting room), 
and we consider it with a general stream of customer 
arrivals. In the second version there is no waiting 
room between the stations, and there is an infinite 
supply of customers in front of the first station. 

Subject classifications: Production/scheduling, flexible manufacturing/line balancing: bowl shape phenomenon. Queues, optimization: cafeteria process. 
Queues, tandem: interchangeability, 0-1 dependent service times. 

Area of review: STOCHASTIC PROCESSES AND THEIR APPLICATIONS. 

Operations Research 0030-364X/94/4204.0895 $01.25 
Vol. 42, No. 5, September-October 1994 895 ?) 1994 Operations Research Society of America 



896 / WEBER AND WEISS 

Apart from its suitability to model the above and 
similarly applied scenarios, the cafeteria model has 
several interesting features, and sheds some new light 
on related research in tandem queues and flow lines. 

It is well known that infinite buffer flow lines in 
which jobs have either all deterministic or all expo- 
nentially distributed processing times have the re- 
markable property of interchangeability-for a 
general input process, the output process of the line is 
unchanged if the stations are permuted. The cafeteria 
model with infinite buffers between the stations pro- 
vides, as we show in Section 2, an unexpected third 
example. 

A little understood property of flow lines with man- 
ufacturing blocking is the bowl phenomenon, which 
has become part of the folklore of the optimal design 
of flow lines, yet is based principally on simulation 
studies. The cafeteria model in which there is no 
buffer space between the service stations provides 
perhaps the simplest nontrivial model of a flow line 
with manufacturing blocking. We present an elegant 
Markovian description for it. This Markovian formu- 
lation enables the analysis of fairly long lines, and a 
direct demonstration of the bowl phenomenon. This is 
the content of Sections 3-5. 

Calculating the throughput of a flow line with finite 
buffer space is a difficult problem in general. Of par- 
ticular interest are symmetric systems where one 
studies the throughput as a function of the number of 
stations. In Sections 6 and 7 we study the throughput 
of the cafeteria process with zero buffers and equal 
loads, as M becomes large. We obtain an upper bound 
of V!(2/7-r)M on the throughput and conjecture that it 
is asymptotically equal to \/( 1/2)M. Section 8 con- 
cludes with a literature survey and a discussion that 
puts our results in context. 

1. PRELIMINARY REMARKS 

1.1. The Bowl Phenomenon 

A flow line is a production line that is arranged as a 
series of stations in tandem. The throughput of 
the line is governed by the speed of the machines, the 
amount of work performed by each machine, and 
the buffer space between the machines. It is not nec- 
essarily the case that a uniform line, in which all the 
stations are identical and perform similar amounts of 
work, achieves the highest possible throughput. The 
bowl phenomena occurs if the throughput can be 
increased either by allocating resources such as pro- 
cessing capacity or buffer space unequally, with more 
resources in the center of the line and less at the two 
ends, or alternatively, by dividing the work to be done 

on the products so that more work is done by the 
machines at both ends of the line and less in 
the center. 

The bowl phenomena was first noted by Hillier and 
Boling (1966), and has been much studied since. Some 
intuition as to why it occurs can be obtained by con- 
sidering the effects of starvation and blocking. A sta- 
tion is blocked if there is no room in the buffer 
immediately downstream for a job that has com- 
pleted; a station is starved if the machine at the station 
is free, but there is no upstream job waiting to start 
service. Notice that the last station in a flow line is 
never blocked. Also, if, as commonly occurs, there 
is always a queue of jobs in front of the line available 
to begin service, then the first station is never starved. 
In contrast, stations in the middle of the line can 
experience both blocking and starvation. This argues 
that stations in the middle of the line need a greater 
share of resources than those at the ends, or, alter- 
natively, should be assigned a lighter workload. 

Despite many years of research a theoretical dem- 
onstration of the bowl phenomenon has not yet been 
provided. The aim of this paper is to present a simple 
model of a flow line, for which it is possible to conduct 
a theoretical analysis that goes further than for any 
models previously considered. In our model, each 
customer requires service at exactly one station, and 
no service at the other stations. The bowl phenome- 
non here means placing the less frequently requested 
stations toward the middle of the line, and our results 
confirm its advantage for up to 10 stations. If a proof 
of the optimality of bowl-shaped allocations is to be 
accomplished, then it is likely that this simple model 
is a good place to start. 

1.2. Dependent Service Times 

In much of the work on tandem queueing systems it is 
assumed that each customer's service times at suc- 
cessive stations are independent. Yet in two of the 
major application areas of tandem queues the service 
times at successive stations will, as a rule, not be 
independent: In communication networks, messages 
travel through a series of relay nodes-the transmis- 
sion time at each node is related to the message 
length, and so the service times of a given message in 
the successive nodes are positively dependent. Such 
systems were analyzed by Kelly (1982, 1984). 

In manufacturing flow lines, one can think of chop- 
ping the total amount of work required by a part into 
work for the various machines. Often this chopping 
will introduce additional variability into the process; 
thus, if a typical part requires an amount X of pro- 
cessing in total, it may be divided into X1, . . . , XM so 
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that Var(X) < Var(X1) + ... + Var(XM), and 
hence the series of processing times may be nega- 
tively correlated. The cafeteria process offers an ex- 
treme example of the latter kind: While X = 1 with 
zero variance the processing time on machine i is 1 or 
0 with probabilities pi and 1 - pi, respectively, and 
has variance pi(1 - pi). 

1.3. A Note on Scheduling of the Cafeteria 
Process 

In the definition of the cafeteria process it has been 
assumed that station Sn at which customer n is served 
is independent of the stations at which other custom- 
ers require service. Suppose instead that there is an 
infinite supply of waiting customers and we are al- 
lowed to choose which one to serve next, or in other 
words, we are allowed to schedule or sequence the 
customers. We will require from our schedule that 
the long-run average fraction of customers scheduled 
for service at each station equals the station load. 
Then the marginal distribution of Sn will be the same 
as if the customers were taken in random order, but 
the service requirements of successive customers will 
no longer be independent. Kelly (1984) discusses a 
similar scheduling problem. 

Consider the equal load casepi = 1/M. It is easy to 
determine schedules that maximize or minimize the 
throughput. To maximize throughput one should or- 
der the customers cyclically, so that each cycle of M 
customers requires their services at stations M, M - 
1, .. . , 2, 1. For this order, at each time period all the 
stations will be loaded by a full cycle, all the machines 
will process all the customers in the cycle simulta- 
neously, and all the M customers will depart after one 
time unit. The throughput of this schedule is A = M, 
it achieves full utilization of the service stations, and 
hence is maximal. 

We conjecture that the worst schedule that can be 
based on cycles of length M is to order the customers 
in each cycle so that they need service at stations 1, 
2, ... , M - 1, M. (This is to be read as a sequence 
in which a customer needing service at station M is 
followed by one needing service at station M - 1, 
etc.) Now each cycle takes M time units to complete, 
because when a customer is served in station k the 
succeeding customer will be waiting behind it in sta- 
tion k - 1, for service at station k + 1, and no other 
customers are served. Cycles, however, overlap, and 
it is easy to see that cycles start at intervals of 
[M/21, so the throughput is A = 2 if M is even, and 
A = 2M/(M + 1) if M is odd. One can, however, get 
arbitrarily close to the absolutely smallest possible 
throughput of 1 by using longer cycles: 1, 1, 1, .. .. 

i1l 2, ..., 2, ..., M-1 - 1 - 1, ..,M - 1, 
M, ... , M, in which each service station is sched- 
uled r times. For r > M - 1 this has a throughput of 
A = rM/(rM - M + 1). 

Our results so far lead us to conjecture that the 
random, independent case that we study has a 
throughput of A = O(V7i). 

2. INFINITE BUFFER SPACE AND 
INTERCHANGEABILITY 

In this section, we imagine that the buffer space be- 
tween every two stations is infinite. The result of this 
section is the following. 

Proposition 1. The distribution of the departure 
stream from the final station is invariant under any 
permutation of stations. 

This result is similar to a result that is known to hold 
when service times at station i are independent and 
exponentially distributed with rate Ai, i = 1, . .. , Ml 
and customers require service from all stations. 
Burke (1956) proved that if there are Poisson arrivals 
to the first station, then the output process is a 
Poisson process of the same rate in the stationary 
regime. A stronger result says: Given that the system 
starts empty and an arbitrary arrival process, the 
distribution of the transient output process is the same 
for all orders of the servers. This result, the inter- 
changeability of /M/1 queues, has been proved by 
Weber (1979). Lehtonen (1986), Tsoucas and Walrand 
(1987), and Anantharam (1987) provided alternative 
proofs. An extension to the case M = 2, with a finite 
buffer at station two has been given by Chao, Pinedo 
and Sigman (1989). Kijima, Makimoto and Shirakawa 
(1990) proved a more general interchangeability 
result. 

Proposition 1 can be seen as a special case of an 
even more general interchangeability result of Weber 
(1992). However, that result is more than is needed 
for the cafeteria model, and an interesting proof of 
Proposition 1 can be constructed using the result for 
interchangeability of /M/1 queues. 

Proof of Proposition 1. The proof is in three parts: 
First, the case of two stations and all customers 
present at time 0, second, two machines and a general 
arrival stream, third, extension to any number of 
machines. The proof of the first part is the most 
interesting; the others are based essentially on induc- 
tive bookkeeping. 

Part i. (Two stations, no arrivals) Suppose that there 
are just two stations and letp = Pl, q = P2 = 1 - p. 
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Server i is assigned to station i, so each customer has 
its service time of 1 at the first station with probability 
p, or at the second station with probability q. Let 
Dn,o be the arrival time of customer n. Let Dn,i 
denote its departure time from station i and X,,,i its 
service time at station i. Consider first the special 
case Dno -0 for all n. That is, assume all customers 
are at station 1 at the start. Then 

Dn,l -Dn-1,1 + Xn,l (1) 

Dn2= max{Dn,l, Dn -1,2} + Xn,2 . (2) 

Define Nnj = n -Dn,i Using the fact that Xn,1 + 

Xn,2 = 1, simple algebra gives 

Nn,1 = Nn-1,1 + Xn,2 (3) 

Nn,2 = min{Nn-1,1 Nn-1,2 + Xn,l} (4) 

Interestingly, (3) and (4) have a useful interpretation. 
Consider two tandem queues with an infinite interme- 
diate buffer and an infinite number of customers 
present at station 1 at the start. Suppose that service 
times at the first and second stations are distributed as 
independent, exponential random variables with pa- 
rameters q andp, respectively. Let Z(t) be the num- 
ber of customers that at time t have completed service 
at station 1 but not at station 2. In a uniformization of 
this queueing system potential transitions of Z(t) oc- 
cur as a Poisson process of rate 1. At the time of a 
potential transition either Z(t) decreases by 1 (corre- 
sponding to a potential service completion at station 
2 when Z(t) > 0), or Z(t) increases by 1 (correspond- 
ing to a potential service completion at station 1), or 
Z(t) does not change (if there is a potential service 
completion at station 2 when Z(t) = 0). It is clear that 

Nn,j, as defined by (3) and (4), can be interpreted as 
the number of customers that have completed service 
at station i following the nth such potential transition. 
Now the interchangeability result for tandem /M/1 
servers implies that the output process {Nn,2, n = 
1, ... .} is stochastically unchanged by an exchange of 
p and q. Since Dn,2 = n - Nn,2 it follows that {Dn,2 
n = 1, ... } is also stochastically unchanged by ex- 
changingp and q. This proves Proposition 1 for this 
special case. 

The argument above made use of a novel identity: 
The depaiture time of the nth customer in one queue- 
ing system was identified as the number of departures 
by the nth observation time in a second queueing 
system. We are not aware of any previous use of this 
sort of argument. 

Part ii. (Two stations, general arrivals) Consider the 
case in which customers are not all present at 

the start. This requires that (1) be modified. The equa- 
tions which define the Dn 'is are now (2) and 

Dn,1 = max{Dn,O, Dn1,1} + Xn,l . (5) 

Except for D1 0 = 0, we allow the arrival process 
to be arbitrary, with Dn,0 perhaps depending on D1 , 

D2,2! I, Dn,-1,2. Take as an inductive hypothesis 
that regardless of the arrival times of the first n - 1 
customers the joint distribution of (D1, 2, D2,2, 
Dn- 1,2) is symmetric inp and q. This is true for n = 

2. Fix numbers (d1, 2, d2,2, ... , dn-1,2) Consider 
the eventAi,j that (Di,2, D ifl,, ..., Dj,2) = (di,2, 
di+1,2, II., dj,2). Let B1 be the event that D1,0 o 
D1-1,2 and Dj 0 < Dj 1,2 for all j < 1. That is, 
customer 1 is the first customer who arrives to find the 
system empty. Since B1 is a function of D1,0, 
D2,0, ... , D1,0 and D1,2, D2,2, ..., D-1,2, the in- 
ductive hypothesis implies that P(A1,1I1 n B1) is 
symmetric inp and q for 2 < 1 < n. It is clear that the 
inductive hypothesis also implies that P(AlI I 
A1,1, l nB1) is symmetric in p and q because the 
distribution of (D1, 2 D1 1,2, ... , Dn,2) conditional 
on B1 is the same as one would obtain for the first n - 
/ + 1 departure times in a problem where customers 
1, ... , n + I - 1 arrive at times D1,o, ..., Dn, o 

Now let C be the event that none of B2, ..., Bn 
occurs: i.e., Dj 0 < Dj11,2for all 2 < j < n. Consider 
a realization of {(X1,1, X1,2), I I I , (Xn,1, Xn,2)} such 
that C occurs. This means that each of the first n 
customers arrives before the previous customer de- 
parts station 2. We claim that for this realization the 
departure times would be unchanged if all customers 
were present at the start. Suppose a subsidiary induc- 
tive hypothesis that (D1 2, D2,2, ... , Dj11,2) are 
unchanged if the arrival times of all the first] - 1 
customers are reduced to 0. Recalling that D1, 0 = 0, 
this is true for j = 2. Suppose this is the case and 
consider the arrival of customer j at time Dj,o. 

Since Dj,o < Dj-1,2 and Dj-1,2 is unchanged by 
making customers 1, ..., j - 1 arrive earlier, cus- 
tomer j - 1 is yet to complete service at station 2 
when customer j arrives. There are two cases to 
consider. On the one hand, if customer j - 1 is yet 
to complete service at the first station, then it is clear 
that the whole journey of customer j is unaltered by 
setting his arrival to 0. On the other hand, if customer 
j - 1 has completed service at the first station, and is 
yet to complete service at the second station, then 
customer j will start service as soon as he arrives at 
station 1 and be available for service at station 2 no 
later than Dj,o + 1. However, by hypothesis C and 
the inductive hypothesis that Dj-1,2 is unchanged if 
the arrival times of customers 1, ... , j - 1 are 
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reduced to 0, we have Dj11,2 ? Dj,o + 1. So cus- 
tomer j cannot start service at station 2 any earlier 
than Dj1o + 1, even if it is available for service earlier. 
Thus, there can be no decrease in the time at which 
customer j starts service at station 2 even if Dj,0 is 
also reduced to 0, along with D1,0, ... ., Dj 1,0. This 
concludes an inductive step of the subsidiary induc- 
tive hypothesis and we see that on realizations for 
which C occurs the departure times are the same as if 
all customers had been present at the start. Applying 
the result of part i, we see that P(A, n c) is 
symmetric in p and q. Proposition 1 for two stations 
and any arrival process, follows from 

P(A 1,n )=P(A 1,n n C) 
n 

+ I P(A1,njA1,1_1 nB1)P(A1,1 1 nB1) 
1=2 

and the above arguments, which show that every term 
on the right-hand side is symmetric in p and q. 

Part iii. (Any number of stations) The generalization 
to more than two stations is clear. Suppose that server 
i is assigned to station i. Consider stations i and i + 
1. The arrivals to these stations are the output of 
stations 1, 2, ... , i - 1. Each customer requires 
service at station i, or service at station i + 1, 
or service at neither station, with probabilities pi, 
pi+, and 1 - Pi - pi+,, respectively. By the result 
stated in the previous paragraph the output process 
from station i + 1 is statistically unchanged if the 
servers at stations i and i + 1 are swapped. The 
output process from station i + 1 feeds into the 
downstream stations. Making use of the theorem for 
these stations, we see that the output process from 
station m is unchanged by a swap of the servers at 
stations i and i + 1. This proves Proposition 1. 

In fact, if there are just two stations, then the result 
holds even if the intermediate buffer, for customers in 
addition to the one being served, is of finite size b ? 

0. This means that customer n may not begin service 
at station 1 until customer n - b - 2 has departed 
station 2. Then the appropriate equations defining the 

Dn,i's are (2) and 

Dn,1 = max{Dn,O, Dn-1,1, Dn-b-2,2} + Xn,l,. (6) 

But consider a new arrival process for which Dn,O = 

max{Dn, 0, Dn - b 2 2}, a nondecreasing function of n. 
Then (6) becomes 

Dn1 = max{DnO , Dn-1,1 } + Xn,l (7) 

Recall that in the proof above, we allowed the 
arrival time of customer n to be a function of 

D1,2, D2,2, ..., D1,2. The result follows immedi- 
ately. This argument for the finite buffer case is sub- 
stantially simpler than that given by Chao, Pinedo and 
Sigman and is equally valid for tandem /M/1 queues 
with a finite intermediate buffer, as considered in their 
paper. 

3. THREE OR FOUR MACHINES WITH NO 
BUFFER SPACE 

Throughout the remainder of the paper we assume 
that there is no buffer space between stations and that 
there is an infinite supply of customers in front of the 
first station. In this section, we analyze cafeteria sys- 
tems with three and four stations. We can obtain an 
explicit formula for the long-run throughput of the 
system, as a function of the station loads, and obtain 
the optimal loads. 

We begin by considering the 3-station system. 
Number the stations as 1, 2, 3 with loadsp1, P2, P3, 
and let {S,, n = 1, 2, ... } be the sequence of stations 
at which customers n - 1, 2, ... are served. Hence, 
the Sn's are i.i.d., taking the values 1, 2, 3 with 
probabilities P1, P2' P 3 

We will derive a formula for the throughput A(p) of 
the system as a function of p = (P1, P2, P3). Note 
that any two successive customers either leave simul- 
taneously, or with a difference of one time unit. Let 
Q(p) = P(interdeparture time is 0) be the steady- 
state probability that the interdeparture time is 0, so 
that 1 - Q(p) is the steady-state probability that the 
interdeparture time is 1, and the steady-state through- 
put is (A(p) = 1/(1 - Q(p)). 

We study Q(p) by considering an infinite sequence 
of customers . ., , -2, -1, 0, 1, 2, . . ., and looking at 
a fixed customer n. By considering customer n and 
some of its predecessors, n - 1, n - 2, etc., it is 
possible to determine if n departs simultaneously with 
n - 1, and so obtain Q(p). 

Note first that if customer n requires service 
at station i, and customer n - 1 requires service at 
station j, and i < j, then customer n will receive 
service at station i at the same time or earlier than the 
time at which customer n - 1 receives service at 
station j, and subsequently, the two customers will 
both be completed, will, henceforth, occupy adjacent 
stations, and leave the system together; this argument 
holds for any number of servers. For three servers 
this means that the interdeparture time is zero if 
(Sn, Sn-l) is (1, 2), (1, 3) or (2, 3). At the same time, 
we will have interdeparture time between n - 1 and 
n equal to 1 if Sn = 3, or if the pair (Sn, Sn - l) is (2, 2) 
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or (2, 1). There is one more possibility for an inter- 
departure time of 0, namely when (Sn, S,-1, Sn-2, 

Sn_3) = (1, 1, 3, 3). To see that the interdeparture 
time is indeed 0 in this case, note that when customer 
n - 3 is served in station 3, customer n - 2 is queueing 
behind him at station 2, and customer n - 1 is served at 
station 1. At the next time unit, customer n - 3 will 
have departed, and customer n - 2 will be served at 
station 3. Simultaneously, customer n - 1, who has 
been served, will be waiting at station 2, and customer 
n will be served at station 1. At the end of this time unit 
all three customers, n, n - 1, n - 2, will leave together. 
It is easy to see that we have covered all the possible 
cases, and so we have the following. 

Proposition 2. The probability of zero interdeparture 
time Q(p) for a three-server system with zero buffer 
space is: 

Q(P) =P1P2 +P1P3 +P2P3 +pJJ3. 

From this result we obtain: 

Proposition 3. The throughput of the 3-server zero 
buffer system is maximized by Pl = P3 = 

-1/2 + \/3/2 = 0.3660,P2 = 2 - = 0.2679, 
and has the value A = 1.5339. 

Proof. Direct calculus shows that the optimal load 
hasp1 = p3 = 1/2 (1 - P2), so the maximal through- 
put is obtained by maximizing p4 - 3p1 + 2p1. 
Simple calculus shows this is maximized by Pi = 
-1/2 + V3/2. 

We now consider the throughput of a 4-station sys- 
tem, again with no buffers. As before, we list the 
complete set of possible sequences of service stations 
for customers n, n - 1, ... for which customers n 
and n - 1 will depart the system together. 

There is an infinite number of such sequences. The 
following example illustrates this fact: Consider the 
sequence 2 1 4 1 4 1 4 2 4 4, which are the stations at 
which customers n, n - 1, ..., n - 9, are served. 
At time t, customers n - 6, ..., n - 9 occupy the 
four stations, and customers n - 7, n - 9 are served 
in stations 2 and 4. At t + 1 customers n - 5 ... n - 
8 occupy the servers, and customers n - 5, n - 8 are 
served in stations 1 and 4. For each of the next two 
time periods, t + 2 and t + 3, two customers will be 
served, one each in stations 1 and 4. At period t + 4 we 
finally have customers n, n - 1, n - 2 occupying 
machines 2 3 4; customers n, n - 2 are served and 
customer n - 1, who has had its service in period t + 3, 
is queueing between them. At the end of period t + 4 all 
three customers n, n - 1, n - 2 will leave together. It 

is clear from this example that one can obtain other 
sequences in which customers n, n - 1 leave together 
by adding an arbitrary additional number of pairs of 
customers that are served at stations 1 4 into the middle 
of the sequence 2 1 4 1 4 1 4 2 4 4. We will use the no- 
tation 2 1 4 2 4 4 to denote all the sequences having a 
run of one or more than 14 pairs in place of 14. 

Proposition 4. The probability of zero interdeparture 
time Q (p) for a 4 -server system with zero buffer space 
is: 

Q(P) =P1P2 +P3P4 + (plp4)2(p2 +P3 +P1P4) 

+ 1 4 (PlP4 +P2P3 +P1P3 

+P2P4 + (P1P3)2 + (pi2P4)2 

+ (PlP4)2(p1P3 +P2P4 +P2P3))- 

Proof. By looking at all the possible sequences of 
customers, lexicographically, we obtain the complete 
list of cases of the simultaneous departure of custom- 
ers n, n - 1: 

34 14 1133 
2 4 1 3 1 1 3 2 4 4 
2 3 1 2 1 1 3 1 4 4 
2244 1 144 1 13 143 

2144 1 143 1 13 14244 

2143 1 14244 1 1244 

214244 11344 111444 

The proof is completed by adding the probabilities; 
for the groups with an infinite number of sequences, 
e.g., 2 1 4 2 4 4 we sum a geometric series of 
probabilities. 

The optimal load and throughput are given by: 

Proposition 5. The throughput of the 4-server zero 
buffer system is maximized by Pi = P4 = 0.3048, 
P2 = p3 = 0.1952, and has the value A = 1.68939. 

Proof. Since it is straightforward but laborious calcu- 
lus we give only a sketch of the proof. We used the 
Mathematica package to perform the algebraic steps, 
so the reader can verify them with this or any other 
algebraic manipulation package. Since the throughput 
is 1/(1 - Q(p)), we need to maximize Q(p). We 
reparameterize Pi, P2, P3, p4 via 2a = Pl + P4, 
2b = Pi - p4, and 2c = p3 - P2, where 0 < a 6 
1/2, -a 6 b < a, a - 1/2 > c < 1/2 - a. 

Writing Q(p) in terms of a, b, c, note that it is 
quadratic in c, and c2 has a negative coefficient. It is, 
therefore, immediate to obtain the value of the max- 
imizing c as a function of a and b, and substitute it 
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into Q(p) to obtain a function of a and b only, which 
is the value of Q(p) maximized over c. The new 
expression is a rational function of b, which can be 
factored into a ratio of two linear terms divided by 
two linear terms, the whole multiplied by a 6th-order 
polynomial. It can now be shown that the whole 
expression is maximized over the range -a < b - a 
by b = 0 for all 0 < a < 1/2. Substituting into the 
maximizing c, one obtains likewise that c = 0. Thus, 
the maximal value of Q(p) for a given a is obtained 
when b = c = 0, that is, when the loads are sym- 
metric. Substituting b = c = 0 into Q(p), one obtains 
an expression which is optimized over b and c, and is 
a rational function of a alone, of order 8 in the nu- 
merator, and 2 in the denominator. It is now straight- 
forward to find the optimal value of a and of the 
throughput, as stated in the proposition. 

4. A MARKOV CHAIN DESCRIPTION OF THE 
CAFETERIA PROCESS 

While the approach of Section 3 gave us the through- 
put of a cafeteria of 3 and 4 stations, it is impractical 
to extend it to 5 or more stations. In this section, we 
present an alternative approach that is based on a 
Markov chain formulation. The Markov chain will 
have as its parameter not time, but customers; its 
states are defined in terms of a vector W, E {0, I}M- 1 
that describes the journey of customer n through the 
system. The components of Wn are Os and ls and they 
indicate in which of the stations 2, ... , M customer 
n spends 1 unit of time, and through which stations he 
passes with no delay (sojourn 0). We let 

= 1 customer n stays in station i 
Wn-1 0 to otherwise i = 2, ..., M. 

Note that Wn describes where customer n stops, 
without specifying at which of these stations he is 
actually served. 

Given Wn, the journey of customer n through sta- 
tions 2, ... , M, we now consider the journey of 
customer n + 1 through stations 1, . . ., M. Assume 
first that customer n + 1 requires no service at all. 
Then if customer n stops at station i, customer n + 1 
will stop simultaneously at station i - 1. We can 
therefore define 

Wo, i =1 ,..., M -1 
Un+l,i 0l i=M 

to describe the journey of customer n + 1 through 
stations 1, ... , M, if he requires no service. 

Now suppose customer n + 1 requires service at 
station k. The journey U +1 must be modified. First 
we need to make U,,+l,k = 1. Next, let 

fmin(i: i > k, W,o, = 1) if such exists 

0 otherwise 

and note that if such a nonzero 1 exists, then the stay 
and service of a customer n + 1 in station k is 
simultaneous with the stay of customer n in station 
1 + 1, and therefore customer n + 1 will not actually 
stay in station 1. Define ei as the unit vector in the ith 
coordinate direction of kM and take eo = 0. We can 
write Un,1 = U +1 + ek - el, to describe the 
journey of customer n + 1 through stations 1, ... 

M. Finally, let 

Wn+l,i-1 = Un+l,i i = 2, ..., M. 

Then Wn+1 is fully determined by Wn, the route of the 
previous customer, and by k, the station at which 
customer n + 1 is served. Hence, Wn is Markovian 
and has M possible transitions from Wn to Wn+1, 
occurring with probabilitiespk, k = 1, ... , M. Now 
let 

M 
Xn= 2i-2Wn,,_) + 1. 

i=2 

Then Xn - 1 has Wn as its binary representation, and 
so Xn is an isomorphic chain to Wn with state-space 
1, ..., 2m-1. The following MATLAB algorithms 
calculate the transitions and the probability transition 
matrix for the Markov chain Xn: 

function j = transition(i, k) 
% set j to the value of X_n + 1 when X_n = i and 

customer n + 1 is served in station k 
q = fix((i - 1)/2'(k - 1)); r = rem((i- 1)/2- 

(k - 1)); 
if q == Oql = 0; 
else 

x = q; / = 0; 
while rem(x, 2) == 0 x = x/2;1 = + 1; 

end 
q 1 (x -1) * 2/1; 

end 
j = r + (ql + 1)*2^(k - 1); 

j = fix(j1/2) + 1; 

function A = mat(m, p) 
construct the transition matrix for an m station caf- 

eteria with loads p 
n = 2'(m - 1);A = zeros(n); 

for i = 1:n 
fork = 1:m 

j = transition(i, k); A(i, j) = A(i, j) + 
p(k); 

end 
end. 
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As an illustration here are the first few transition 
matrices: 

Pi P2 p3 0 

A: PI ( ) A3 Pi P2 p3 ? 

PI P2 Pi P2 0 P3 

? P1 +P2 0 P3 
A4 

P I P2 P3 0 p4 0 0 0 

PI P2 p3 0 p4 0 0 0 

PI P2 0 P3 0 P4 0 0 

O PI +P2 0 P3 0 P4 0 0 

_ PI P2 P3 0 0 0 P4 0 

o P2 P1 +P3 0 o 0 P4 0 

O O Pi P2 +P3 0 0 0P4 

o 0 O 0 P1 +P2 +P3 0 0 0 P4 

In principle we can use these transition matrices to 
completely analyze the M station cafeteria model. 
However, the state space grows rapidly, being of size 
2M-1. We have not been able to derive any general 
properties of these Markov chains; instead, we have 
carried out numerical calculations for up to M = 10 
stations by using the MATLAB package on an IBM 
PC and a MacIntosh IIci. The calculations involved 
matrices as large as 512 x 512. 

Given the transition matrix A for the M station 
cafeteria, one can solve for wr, the 2M- 1 steady-state 
probability vector of Xn. It is clear that Xn is irreduc- 
ible and aperiodic: If M - 1 successive customers all 
require their service at station 1, then the state will 
become Xl+M 1 = 0, and after one additional such 
customer the state will be Xn +M - 0. So state 0 can 
be reached from every other state, and it has period 1. 
To see that every state can be reached from state 0, 
consider any 1 S X, < 2M-1, and let W,, be the 
corresponding vector of Os and ls. Let the number of 
ls in Wn be r, and the location of the last 1 be 1. Then 
Wn is reached with probability Pl+ 1 from Xn - 1 = 
2(Xn - 1 - 21-1) + 1, and the corresponding Wn_1 
has only r - 1 ls. Hence, by induction on r, Xn can 
be reached from 0. 

Define the sojourn probability 0k. k = 1, ... , M 
as the steady-state probability that customer n stays 
at station k. For k = 2, ..., M one obtains Ok by 
summing 7ri over all i for which Wn has 1 in position 
k - 1, that is 

Ok- = 0v k ={i : rem((i-1)/2k2, 2)>0}. 
iEc-k 

For k = 1,1 = Pi + (1 - P1)02 because customer 
n + 1 will stay in station 1 if it is served in station 1, 
or if customer n stays in station 2. 

We now turn to calculating A, the steady-state 
throughput of the M station cafeteria. One way to 
obtain A is to apply Little's formula, L = AW, 
to station 1. In this case L = 1, because station 1 is 
always occupied by a customer. Also, the sojourn of 
each customer is either 0 or 1, and it is 1 with prob- 
ability 0,; so W = 01. Hence, A = 1/01. 

Applying Little's formula to station k, k = 2, ... 

M, we can also obtain the fraction of time or steady- 
state probability OCk that the station is occupied. 
Now the expected number of customers in the station 
is L = OCk, while W = Ok, hence OCk = AOk = 

?kI? 1 

In addition, the average number of customers in the 
system is Y-m=1 OCk, and the average sojourn time of 
a customer in the system is MkM=1 Ok- 

There is another way to calculate the throughput. 
Consider the steady-state probability that customer 
n + 1 departs later than customer n, say P1 - 
P(interdeparture = 1). Let Ln denote the last station 
at which customer n stops. The interdeparture time 
between customers n and n + 1 is 1 if customer n + 
1 is served in station k, and Ln % k. So P1 = 

Xk=lpkP(Ln S k), or equivalently, P1 = Em=1 P(Ln = 1) 

>kM=lPk- If Xn = i, then Ln = 1 if 21 2 < i < 21-. Define 
wi = >kZ=lPk, where 212 < i < 21-1, i - 1, ..., 2M-1 

Then in steady state: 1/A = P1 = 2=1 wirT. 

5. COMPUTATIONAL RESULTS FOR UP TO 
TEN MACHINES 

The Markov chain formulation of the M station caf- 
eteria model in Section 4 provides a complete picture 
of the process and all the quantities of interest. Un- 
fortunately, the state space grows rapidly as 2M- 1, 
and we have been unable to derive general results for 
the steady-state behavior of this chain. Numerical 
calculations can be used to explore the throughput 
for M > 4. This section summarizes our results for up 
to M = 10 stations. 

Calculations were carried out for equal loads, 
Pl P2 = =' - PM = 1/M. Calculations were also 
performed for loads Pi = PM - 2/(M + 2), P2 = 

P3 - * * * = PM-1 = 1/(M + 2), the '2-1 loads' case, 
discussed by Yamazaki, Sakasegawa and 
Shanthikumar (1992). Finally we searched numeri- 
cally for loads that maximize the throughput, and 
calculated quantities related to these "optimal" 
loads. The results of our search for the optimal loads 
are: 

* Optimal loads seem to be symmetric:pk = PM-k+1, 

k= 1,...,M. 
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* Optimal loads seem to be "bowl-shaped": 
P 1 > - >P M+ 1/2J = p[M+ 1/21 - . . < p. 

* The bowl is very flat, so that approximatelyP2 
P3 PM-1- 

* To a lesser extent, the optimal loads for the first and 
last machines are approximately double the optimal 
loads of the other machines: P1 = PM : 2Pk, k = 

2,...M- 1. 

The increase in the throughput due to optimal, as 
against other, loadings is very slight. It amounts to 2% 
relative to the equal loads, and only 0.07% relative to 
the 2-1 loads. 

The results of our numerical search for the optimal 
loads can only be regarded as conjectured opti- 
mal loads. This is because we searched for a local 
optimum, and we have no guarantee that it is a 
global optimum. We do, however, conjecture that the 
throughput is a concave function of the loads, in 
which case any local optimum is global; we also con- 
jecture that the optimal loads are symmetric. One 
numerical feature of the local maximum which we 
found is that the throughput is a flat function of the 
loads in the neighborhood of the maximum. Thus, 
even when we approached the maximal value of A to 
within 10-15, the values of the loads could only be 
pinpointed to within 10-7. All the results in this sec- 
tion are accurate in all the digits displayed. 

Table I lists the optimal loads obtained through 
numerical search for 2-10 machines. The value for 
two machines is trivial. The optimal loads for 3 and 4 
machines are proven optimum values. For 5-10 ma- 
chines these are conjectured optimal loads. The sym- 
metric solution was obtained from a search over all 
possible loads for up to 7 machines. For 8-10 ma- 
chines we searched only over symmetric loads. 

Table II shows the throughput for equal loads, 2-1 
loads, and optimal loads. Also included are upper and 
lower bounds on the throughput, as derived in 
Section 6. 

Table III lists some quantities that measure the 
"bowl phenomenon" in the cafeteria system. The 
first half of the table describes the actual shape of 
the bowl. The first column gives the "rim-to-center 
ratio" of the bowl, measured by the ratio of the load 
of station 1 (or station M) over the average of the 
loads of stations 2, ..., M - 1; the second column 
gives the "flatness of the inside of the bowl,' mea- 
sured by the standard deviation of the loads divided 
by their mean for the center stations 2, ... , M - 1. 
The second half of the table gives a comparison be- 
tween the optimal throughput achieved by the 
"bowl, " and the throughput of equal loads and of 2-1 
loads. 

6. AN UPPER AND A LOWER BOUND OF THE 
THROUGHPUT 

It is clear that the throughput of a cafeteria system is 
an increasing function of the number of stations, be- 
cause the amount of work per customer is constant, 
and adding stations increases the total service capac- 
ity. However, blocking also increases with the num- 
ber of servers. 

In this and the next section, we will assume that the 
stations are equally loaded with Pi = PM = 

1/M, and we study the behavior of the throughput A 
as a function of the number of the stations M. As we 
saw in Section 5, the equal load case is quite close to 
the optimal. 

In Section 4, we described the journey of a cus- 
tomer through the system by means of the Markov 
processes U,,, the binary M-vector indicating in the 
ith coordinate a stop at station i. Recall also Ln, the 
last station at which the customer stopped on his 
journey, and let Y, = M - L, + 1. From the 
equations at the end of Section 4 we have in the equal 
load case: 

Table I 
Optimal Loads for Cafeteria Stations 

M Pi P2 P3 P4 P5 

1 1 
2 0.5 
3 0.3660254 0.2679492 
4 0.3048205 0.1951795 
5 0.2678645 0.1554610 0.1533490 
6 0.2422009 0.1301452 0.1276539 
7 0.2229412 0.1124547 0.1099665 0.1092752 
8 0.2077598 0.0993096 0.0969503 0.0959803 
9 0.1953766 0.0891115 0.0869109 0.0858433 0.0855154 

10 0.1850167 0.0809431 0.0788989 0.0778133 0.0773279 
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Table II 
Throughput of Cafeteria Processes 

Lower Equal 2-1 Optimal Upper 
M Bound Loads Loads Loads Bound 

1 1 1 1 1 1 
2 1.3333 1.3333 1.3333 1.3333 1.33333 
3 1.5000 1.52830189 1.52811736 1.53392163 1.58824 
4 1.6000 1.67498160 1.68554913 1.68938733 1.80282 
5 1.6667 1.79792344 1.81988240 1.82149141 1.99171 
6 1.7143 1.90643322 1.93822049 1.93854243 2.16240 
7 1.7500 2.00496150 2.04475858 2.04478722 2.31931 
8 1.7778 2.09601450 2.14221272 2.14276860 2.46532 
9 1.8000 2.18117116 2.23244800 2.23415967 2.60242 

10 1.8181 2.26150678 2.31680080 2.32013312 2.73208 

Proposition 6. The throughput of the M station sta- 
tionary cafeteria process with equal loads is A = 

M/E(Yn) - 

It is instructive to think of Un as representing a 
Markovian particle system on M locations: Unk = 1 

if location k is occupied by a particle at time n. The 
transition of the particle system from Un to Un, +1 

when Sn +1 = k (customer n + 1 is served in station 
k) is: 

1. each particle moves one location to the left; a 
particle that was in position 1 is dropped, and 
location M is now unoccupied; 

2. a "new" particle is added at location k (we may 
now have two particles in location k); 

3. the first of the "original" particles that lies at or to 
the right of k is located, if such exists; this particle 
is dropped (we say it is "killed" by the new par- 
ticle at k). 

The transitions of the particle system can also be 
seen as a motion to the left: Each particle moves one 
location to the left, except for the particle that is 
"killed," which moves all the way to position k. In 

addition, a particle that occupies position 1 moves out 
on the left, while if k is ? the rightmost occupied 
position, a particle moves in from the right to posi- 
tion k. 

Let u = max{k: Un,k= 1} and v = max{k: k < u, 
Un, k = 1} be the locations of the two rightmost particles 
at time n, and let Sn+1 = k. If k < v the leftmost parti- 
cle at time n + 1 is unchanged, and its position becomes 
u - 1. If k > v the new particle becomes leftmost, and 
its position at time n + 1 is k-if v < k < u the particle 
at u is killed, if u S k the previous leftmost particle at u 
now becomes the second leftmost particle, in position 
u - 1. In addition, the motion of the particle at v 
depends on the remaining particles of Un. 

Recall that Yn = M - u + 1 and denote Yn = x, 
z = M - v + 1. It is easy to see thatP(Yn+1 = x + 
1) = (M - z + 1)/M, and P(Yn +1 = y) = 1/M for 
y S z, y ? x + 1. Note that Yn is not Markovian, but 
it is ergodic. 

Upper and lower bounds on the throughput are 
obtained by defining two modified particle systems, in 
which the position of the last particle Yn evolves as a 
Markov chain. 

Table III 
Describing the Bowl Phenomena for the Cafeteria System 

Bowl Shape Characteristics Comparison of Throughput 

Rim-to-Center Center Coefficient Equal Loads 2-1 Loads 
M Ratio of Variation % Suboptimal % Suboptimal 

3 1.366 0.368 0.380 
4 1.562 0.860 0.228 
5 1.731 0.00788 1.311 0.0884 
6 1.879 0.0112 1.684 0.0166 
7 2.012 0.0137 1.986 0.0014 
8 2.133 0.0157 2.231 0.0259 
9 2.245 0.0174 2.429 0.0767 

10 2.350 0.0204 2.527 0.1436 
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6.1. An Upper Bound on the Throughput 

We begin with the upper bound. Denote the processes 
describing the modified system by Uk, Yu. The tran- 
sition of the modified system from n to n + 1 for 
Sn = k follows the same rules as 1-3 above, for the 
unmodified system, except for step 3, where if the 
particle that is to be killed is the rtightmost, then it is 
not killed. 

Proposition 7. Assume that UO = Uu, and 
assume that the processes Un and U' are coupled 
by the same sequence of newly arriving particles 
Sn. Then for all n > 0, Ufi - Un,i i = 1, 

...,M. 

Proof. The proposition trivially holds for 0, so we 
assume that it holds for n and prove it for n + 1. 
If UJi ', Un,i, then the inequalities clearly still 
hold after steps 1 (move to the left), and 2 (add 
particle in position Sn = k). Let UCn, u0U denote 
the resulting vectors. In step 3, assume that a 
particle in location 1 ? k is killed in the modified 
process. Then u,f = 1, while for k $ i < 1, 
UjUC = 0. Then by induction U 0, = 0 for k > 

i < 1, and so if Un ,= 1, it will also be killed in the 
unmodified system. This is all that one needs to 
prove. 

The conclusion from this is that if the unmodified 
cafeteria and the modified system start with 
UO - UO and have coupled inputs, then for all n, 
Yr S Yn. Hence, if UO UO, then for all 
n: Y' SST Yn. Hence, as n oo, the same relation 
holds for the steady-state distributions, Y!j <-ST Y.o 

and hence A = M/E(Y,) % M/E(Y!j), which gives 
our upper bound. 

We now analyze Yf. Note that if the new particle 
is at or to the right of the original last particle, it 
becomes last, while if the new particle falls to the left 
of the original last particle, then in the modified sys- 
tem, because the original last particle cannot be 
killed, it will just move to the left by one location. 
Hence, for equal loads, 

Pkj =P(Y,(=Y1 n =k) 

J1/M if j k 
t(M - k)/M if j = k + 1. 

Clearly this is a Markov chain, and the transition 
matrix for YU is 

M M 0 ...O 
1 1 M-2 0 

M M M 
P = 

1 1 
M M 
1 1 

_-M M 

Proposition 8. The steady-state probabilities for Y' 
are: 

k (M-1)! 
ak = lim P(YY = k) = -(Mk)! 

Proof. We need to show that the axk satisfy the 
steady-state equations and sum to one. It is easy to 
check by induction starting from M that for 1 S k S 
M 

M (M- 1)! 1 

i=k (M - k)! Mk-1 

In particular, putting k = 1, we get EM 1 ai = 1. The 
steady-state equation for ak, k = 2, ..., M, is 

M-k+ 1 1 M 
aSk = 

a{k-1 + M- > ai, ak= M k 
M i=k 

which is easy to verify. Finally, for k = 1 the steady- 
state equation reads 

1M 1 
1M M 

as required. 

From Proposition 8 we can now calculate the ex- 
pected value of Yj: 

M M M 

KM =E(Y'u) = kak=- > ai 
k=1 k=1 i=k 

-=1 + M - 1 (M - 1) * (M - k) 

(M- 1)! 

M-1 
- E (1-O/M)(1-1/M)*..(1-k/M). 

k=O 

Interestingly, KM is also the solution to a problem that 
can be posed in terms of an urn of M balls. Suppose 

that balls are drawn at random from the urn one at a 
time, with replacement. It follows from the right-hand 
side above that KM is the expected number of draws 
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until some ball is drawn for the second time. We now 
have an upper bound 

A - M/KM - 1(2w7r )M. 

The asymptotic form was discovered numerically and 
confirmed by some additional heuristic arguments. A 
direct justification is as follows. By the inequality that 
the geometric mean is less than the arithmetic mean, 

(1 -1/M)(1 - 2/M) ..(1 - kM) (1_k1+ 1 

f e k(k + 1)/2M > e -k 2/2M 

Thus 

M-1 O0 
KM S 1l+ > ek 2/2M < + |ex2/2Mdx 

k=1 J0 

= 1 + F(rr/2)M. 

On the other hand, 

log( _-jIM) = -jIM + (j /M ). 

Hence 

k 

H (1 -j/AMI) = e -k(k+1)/2M+O(k3/M2) 
j=0 

Consider the lower bound obtained by summing (6.1) 
over 0 S k < M0 for 1/2 < 0 < 2/3. Then 

KM/VM . e -(k+1)2/2M+O(M30- 
k=O M 

_ 
[ l-~e dx = V7r/i2 

6.2. A Lower Bound on the Throughput 
To obtain a lower bound we define Ut, YL of a 
modified system whose evolution from time n to n + 
1 for input Sn +I - k follows the steps: 

1. Each particle moves one location to the left. 
2. A "new"' particle is added in location k. 
3. All the particles to the right of k are "killed." 

The difference from the unmodified system is that 
more particles, all those to the right of the new par- 
ticle and not just the leftmost one, are killed at every 
step. 

Proposition 9. Assume that UO = UO, and assume 
that the processes Un and UL are coupled by the 
same sequence of newly arriving particles Sn. Then 
for alln 0, U,iS Unj, i = 1,..., M. 

Proof. This clearly holds for n = 0, so we assume 
that it holds for n and prove it for n + 1. By the 
induction hypothesis, UL,i < Un,i, i = 1, ... , 

and steps 1 and 2 certainly preserve this relationship. 
Let Un,, LT denote the resulting vectors. In step 3, 
assume that a particle in location 1 3 k is killed in the 
unmodified process. Then, if Ufl, = 1, the particle in 
location 1 of the modified process will also be killed. 
This is all that one needs to prove. 

The conclusion is that if the unmodified cafeteria 
and the modified system start with UO = UOj, and 
have coupled inputs, then for all n, YL > Yn. Hence, 
as in subsection 6.1, M/E(YL), is a lower bound. 

We now analyze YL. Note that in the modified 
system the new particle always becomes the right- 
most particle. Hence, the analysis of Yf is trivial, YL 

are simply independent identically distributed with 
P(yL = i) 1/M, i = 1, ..,M. Hence, E(Yn) 
(M + 1)/2, and we have A ? 2M/(M + 1) - 2. 
Recall from subsection 1.3 that the value of 2 for the 
throughput is the lowest we could get for cyclic 
scheduling. 

7. GRAPHIC DISPLAY, ASYMPTOTICS, AND 
SIMULATION RESULTS 

In this section we present a graphic display of the 
realization of the cafeteria process. This display may 
be useful for gaining additional insight to the system. 
We then consider rescaling the system by rescaling 
both the stations and the customers by a factor of 
V/M. We suggest that this rescaling may be useful in 
obtaining asymptotic properties of the cafeteria pro- 
cess as the number of stations grows. Simulation 
results support this scaling. We repeat our description 
of the journeys of successive customers given in 
Section 4. Consider, for example, an 11-station cafe- 
teria, and a customer that stops at stations 1, 5, 6, 10. 
The stations at which he stops are indicated in the first 
line below: 

1 0 0 0 1 1 0 0 0 1 0 
0 O 0 1 1 0 1 0 0 0 0 

I * * 

Here if the customer's journey starts at time t, he will 
be in station 1 at time t (that is, during the interval 
(t, t + 1)), in station 5 at time t + 1, etc., and leave 
the line after 4 time units, at time t + 4. 

Consider the next customer, and assume first that 
he does not require any service. He will then enter the 
system when the first customer leaves station 1 at t + 
1, and stop first in station 4, behind, and simultaneous 
with, the stay of the first customer at station 5. The 
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whole journey will include stops at stations 4, 5, 9 
from time t + 1 to t + 4. The journey of the second 
customer is represented by the second line of the 
three above, where we have shifted the second cus- 
tomer's journey one position to the right-here ls 
that are placed vertically above each other represent 
a simultaneous stop of the customers at two succes- 
sive stations, for example, at time t + 3 (that is, 
during the interval (t + 3, t + 4)) the two customers 
occupy stations 10, 9. 

Now assume that the second customer requires 
service at station 7. Then at time t + 3, instead of 
moving into station 9 the second customer will move 
into station 7, and stop there for service, while the 
first customer is in station 10. Note that during that 
time interval stations 8, 9 are unoccupied, as we have 
indicated by *s in the third row above. 

Figure 1 shows the journey of 8 customers through 
a line of 11 stations (the customers discussed above 
are customers 3, 4 in the drawing and t = 0). Each 
horizontal bar represents the journey of a customer, 
the circles represent no stopping, the figures repre- 
sent stops, filled figures are service periods, and hol- 
low ones represent queueing behind (being blocked 
by) a previous customer. Successive customers are 
drawn vertically below each other, going down, so the 
vertical pointing down axis counts customers. 

The 11 machines are represented by the top right to 
bottom left diagonals. For each machine one can read 

along the diagonal the customers that stopped at that 
machine, for example, machine 7 had stops of cus- 
tomers 1, 2, 4, of whom customer 4 received service, 
and the others were queueing (blocked). In addition, 
the diagonal line of machine 7 shows that at time 4 
(during the time interval (4, 5)) it was unoccupied. 
Successive stations occupy successive diagonals 
from left to right, so the horizontal, left-to-right axis 
counts machines. 

The heavy lines through the drawing represent time 
points. Time t (the interval (t, t + 1) is represented 
by a heavy line that zigzags through the stations. The 
vertical portions represent stations that are occupied 
by successive customers (the first, the top one, is 
always being served, the others are blocked though 
some may be lucky enough to be sewed while being 
blocked). The horizontal portions of the line represent 
stations which are idle. The direction of the time axis 
is diagonal from top right to bottom left. The drawing 
keeps track of three different quantities-machines, 
customers and time-and is, therefore, almost a 
three-dimensional drawing. 

To represent the evolution of the cafeteria process 
for many stations and customers, we use a slightly 
different drawing. Figure 2 represents a part of a 
simulated cafeteria process with 100 stations, which 
we ran for 500 customers. The drawing is obtained by 
rotating the previous drawing, as in Figure 1, through 
450, so that now each machine is represented by a 

Stations 
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Figure 1. Eight customers moving through an 11-station cafeteria. 
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Figure 2. Simulation of a 100-station cafeteria over 7 
time periods. 

narrow vertical strip, and the machine axis is left to 
right. Each customer is represented by a narrow di- 
agonal strip pointing from top left to bottom right, and 
the customer's axis runs vertically down. Each of the 
zigzag lines describes one time unit; the time axis also 
points vertically down. In each line, the diagonally 
ascending portions represent customers queueing at 
successive machines, and the descending portions 
represent unoccupied stations. 

In the zigzag line of time t, a breakpoint from 
ascending to descending indicates service, because it 
represents the head of a line of customers queueing in 
successive stations, with a number of empty stations 
in front of them, and the customer at the head of the 
line, at the breakpoint, is being served. In Figure 2, 
the 7 successive time periods include 8, 7, 5, 6, 4, 6, 
7 breakpoints, indicating at least that number of ser- 
vices (some services may occur without breakpoints, 
when a queueing customer is served). 

Figure 2 suggests a rescaling and a possible asymp- 
totic process that will describe the behavior of the 
cafeteria process for a large number of stations. Con- 
sider a lozenge-shaped quadrangle, of \/M succes- 
sive machines and VM successive customers. Fix 
a customer, who will require service from each 
machine with probability 1/M (exclusive, not inde- 
pendent, events), and the probability that he will re- 
quire service from one of the \/M machines is 
therefore 1/VM. For all of the_\/M customers, the 
number of services on the \/M machines will be a 
binomial random variable, with \/M independent 

trials, 1/VM probability of success, and with expec- 
tation 1. For large M (and, hence, large \/M), the 
number of services in the lozenge will converge to a 
Poisson random variable with rate 1. Furthermore, 
for large M the number of services in disjoint lozenges 
is nearly independent. Finally, as M becomes large 
the overwhelming majority of services will be at 
breakpoints of the zigzag lines. Rescaling the process 
of Figure 2 into units of \/M machines and \/'M 
customers (time is not rescaled), and letting M -* oo, 
the ascending-descending breakpoints of the line pro- 
cess will form a Poisson process of rate 1 in the plane. 

We were unable to pursue the analysis of this pro- 
cess any further. However, we performed some sim- 
ulation runs which confirm our conjecture that \/M is 
the correct scaling for this process. In these runs we 
simulated cafeteria processes with various numbers 
of stations, in the range 3 - M < 1,000; starting from 
empty systems, we ran 1 5M customers for each value 
of M and discarded the initial 20%. Table IV summa- 
rizes the results, giving approximate 95% confidence 
limits for the throughputs. The values which were 
obtained are fitted extremely well by a linear function 
of \/M. In the table we show the values of \/2/rr + 
1/2VM for comparison. We also include the upper 
and lower bounds of Section 6. Based on these re- 
sults, we conjecture that the throughput of the cafe- 
teria process is asymptotically -1/2V/M. 

8. DISCUSSION 

Four types of problems are discussed in the literature 
with regard to the optimal design of a flow line: For 
flow lines with infinite buffer space the objective is to 
minimize the average waiting time of a customer (the 
flow time). In the case of finite or zero buffer space the 
objective is to maximize the throughput (or minimize 
the time required to process a batch of customers- 
the makespan). In both cases, one is interested in the 
optimal order for given service stations, or one has a 
total amount of resources for the whole line, and is 
searching for the optimal allocation of these to the 
individual service stations. 

In tandem queues with infinite buffer space the 
throughput of the line is essentially not affected by 
permuting the service stations: If the system is fed by 
a stationary input stream with an input rate lower than 
the service rate of all the stations, then the throughput 
will equal the input rate, each station will have finite 
queues in front of it, and the system will stabilize. If 
the input rate is higher than the service rates of some 
of the stations, then the throughput rate will equal the 
service rate of the slowest, or most heavily loaded, 
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Table IV 
Estimated Throughput of Cafeteria Processes 

Lower Simulation Conjectured Upper 
M Bound Estimates Asymptotics Bound 

12 1.846 2.483 ? 0.336 2.530 2.973 
15 1.875 2.727 ? 0.315 2.734 3.300 
20 1.905 2.927 ? 0.462 3.034 3.778 
25 1.923 3.333 ? 0.307 3.298 4.200 
30 1.936 3.396 ? 0.530 3.536 4.581 
40 1.951 4.000 ? 0.447 3.960 5.257 
50 1.961 4.317 ? 0.457 4.333 5.853 
75 1.974 5.085 ? 0.231 5.128 7.121 

100 1.980 5.581 ? 0.310 5.798 8.190 
200 1.990 7.818 ? 0.520 7.869 11.495 
300 1.993 9.375 ? 0.550 9.458 14.031 
500 1.996 11.858 ? 0.521 11.978 18.053 

1,000 1.998 16.238 ? 0.656 16.609 25.443 

station. Infinite queues will form in front of all the 
stations that are slower than all their predecessors, 
and all other stations will have finite queues; the 
system will be unstable. Even though permuting 
the stations has no effect on the throughput, different 
permutations may produce different waiting times for 
the jobs. 

If the queues are interchangeable, as discussed in 
Section 2, then the total waiting time in the system is 
the same for all permutations (though the waiting 
times and queue sizes in front of the individual sta- 
tions will be affected). The property of interchange- 
ability remains a rare property, shared by only some 
special flow lines, including deterministic service 
times (when station i has a constant service time xi 
which is the same for all customers (see Friedman 
1965), independent exponential services, and the 
cafeteria process. 

In the absence of interchangeability, one may wish 
to find the order of stations that will minimize the total 
expected waiting time of a customer for a stable sys- 
tem with a stationary input stream. This is a difficult 
question, which has received much attention in the 
literature. See, for example, Tembe and Wolff (1974), 
Pinedo (1982), Greenberg and Wolff (1988), as well as 
Whitt (1985) and Wein (1988). 

If the problem is to design the optimal line by 
dividing a certain amount of resources, then for in- 
terchangeable lines, symmetry and convexity imply 
that equal allocation to all the stations is optimal, 
hence there is no "bowl shape." For general nonin- 
terchangeable lines that have infinite buffers between 
stations, it is a reasonable conjecture that the through- 
put is maximized by allocating equal service rates. It 
is possible that further gains in the average waiting 

times may be obtained from a bowl shape allocation of 
the variability. 

Research on lines with zero or finite buffers pre- 
sents many additional problems beyond the usual tan- 
dem queues. Early research in this area includes the 
pioneering papers of Avi-Itzhak and Yadin (1965) 
and of Avi-Itzhak (1965), as well as the more 
practice-oriented paper of Buzacott (1967). For fur- 
ther results, including discussions of dependent ser- 
vice times, see Boxma (1979), Wolff (1982), and 
Pinedo and Wolff (1982). 

Work on optimal scheduling of customers through 
flow shops includes Foley and Suresh (1984, 1986), 
Wie and Pinedo (1986), and McCormick et al. (1989). 
When the buffer space between the stations is limited, 
and, in particular, in the case of zero buffer space, not 
only the waiting time but also the throughput may be 
affected by permuting the stations, and it makes sense 
to look for the order which maximizes the throughput. 
Interchangeability is even rarer in lines with finite 
buffers. In fact, the only known cases are those dis- 
cussed in Section 2, namely deterministic, exponen- 
tial, or cafeteria processes with two service stations 
and a finite buffer between them. 

An important property of most flow lines, with 
zero, finite, or infinite buffers, which is much weaker 
than interchangeability, is the property of reversibil- 
ity: If the order of the stations is reversed, the 
throughput remains unchanged. Reversibility of flow 
lines was proved by Muth (1979), Dattatreya (1978), 
and Yamazaki and Sakasegawa (1975). Yamakazi, 
Kawashima and Sakasegawa (1985) proved that if the 
system starts empty, then the distribution of the nth 
departure is the same if the line is reversed. Chao and 
Pinedo (1992) show that for three exponential stations 
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the output process (and not just the throughput) is the 
same if the order of the servers is reversed, They 
conjectured that this is true for any number of expo- 
nential stations in tandem. 

The problem of obtaining the optimal order of sta- 
tions among all possible permutations is hard, and has 
received much attention. It appears that a bowl shape 
permutation is optimal for 3 or 4 machines, but for 
more than 4 machines, a "saw tooth" solution may be 
optimal (Pinedo). Yamazaki phrased the following 
heuristic rule: "the optimal permutation is to keep the 
slow stations as far apart as possible." There are 
results to the effect that the first and last machines 
ought to be slower than the second and the one before 
last, in other words, the first and the last two ma- 
chines should be arranged in a bowl shape (Ding and 
Greenberg 1991, Huang and Weiss 1991, 
Shanthikumar, Yamazaki and Sakasegawa 1991). 

Finally, the problem that we address principally in 
this paper is that of designing the best flow line, by 
allocating resources to the stations to maximize 
throughput. Attempts to learn more about the bowl 
phenomenon for this problem have been extensive. 
Makino (1964), extending Hunt's (1956) early work 
for the same problem as Hillier and Boling, obtained 
improvements by assigning lower mean service time 
to the middle station. Patterson (1964) suggested al- 
ternating the mean service times between high and 
low along the line, while Davis (1966) conjectured that 
a low-medium-high pattern might be best. El-Rayad 
(1979a) conducted statistical tests for exponential, 
lognormal and normal distributions and found that 
only bowl-shaped designs performed consistently bet- 
ter than balanced lines. Muth (1984) showed that the 
optimality of the bowl shape was due to unbalancing 
the mean service times, not the variances (which 
might have been another interpretation of Hillier and 
Boling's results for exponential distributions). Hillier 
and Boling (1979) extended their early work to longer 
lines and service times drawn from Erlang distribu- 
tions. In all cases, the optimal allocations were bowl 
shaped. They examined the effect of increasing buffer 
space and the shape parameter of the Erlang distri- 
bution, finding that curvature of the optimal bowl 
became less as the buffer size increased. They con- 
cluded that the optimal allocations are robust, in the 
sense that the throughput function has a flat maxi- 
mum. El-Rayad (1979b), Chow (1987) and Kijima, 
Makimoto and Shirakawa (1989) discuss the alloca- 
tion of buffers along the line. 

Shanthikumar and Yao (1991) defined a property of 
a collection of parametrized random variables that 
they call strong stochastic convexity and discussed 

applications to tandem queues. For example, in a 
model with exponentially distributed service times, 
finite buffers and an infinite number of customers in 
front of the first station, the expected departure time 
of the nth customer is a convex decreasing function of 
the service rates. This fact, combined with the fact 
that the reversed line has the same throughput, im- 
plies that the allocations of service rates should be 
symmetric about the middle. Similarly, for the same 
model, Meester and Shanthikumar (1990) established 
that the throughput is an increasing and concave func- 
tion of the buffer sizes. It follows that an optimal 
buffer allocation should be nearly symmetric about 
the middle to within t 1 that is due to the discrete 
nature of buffer sizes, All these results point to, but 
still leave open, the challenge to say something more 
precise about the optimality of bowl-shaped 
allocations. 

In Sections 5, 6, 7, we analyze the throughput of the 
equal load zero buffer cafeteria process, as a function 
of M the number of stations. The throughput of bal- 
anced flow lines with blocking is another topic which 
is far from being well understood. Massey (1991a, b) 
analyzes a flow line of M exponential rate 1 servers 
with communications blocking. Other references are 
Kelly (1982, 1984), Srinivasan (1992), and Glynn and 
Whitt (1991). Note the throughput of our cafeteria 
process could be increased from < O(V'M) to O(M) 
by using a scheduling buffer of size O(M) in front of 
the system, as mentioned in subsection 1.3. The idea 
of using buffers for rescheduling, and increasing the 
throughput appears in Kelly (1984). 

ACKNOWLEDGMENT 

This research was supported in part by NSF grants 
DDM-8914863 and DDM-9215233. 

REFERENCES 

ANANTHARAM, V. 1987. Probabilistic Proof of Inter- 
changeability of IM/1 Queues in Series. Queueing 
Syst. Theory and Applic. 2, 387-392. 

AvI-ITZHAK, B. 1965. A Sequence of Service Stations 
With Arbitrary Input and Regular Service Times. 
Mgmt. Sci. 11, 565-571. 

AVI-ITZHAK, B., AND M. YADIN. 1965. A Sequence of 
Two Servers With No Intermediate Queue. Mgmt. 
Sci. 11, 553-564. 

BOXMA, 0. 1979. On the Random Queueing Model With 
Identical Service Times at Both Counters, Parts I 
and II. Adv. Appl. Prob. 11, 616-659. 



WEBER AND WEISS / 911 

BURKE, P. J. 1956. The Output of a Queueing System. 
Opns. Res. 4, 699-704. 

BUZACOTr, J. A. 1967. Automatic Transfer Lines With 
Buffer Stocks. Int. J. Prod. Res. 5, 183-200. 

CHAO, X., AND M. PINEDO. 1992. On Reversibility of 
Tandem Queues With Blocking, Naval Res. Logist. 
39, 957-974. 

CHAO, X., M. PINEDO AND K. SIGMAN. 1989. On the 
Interchangeability and Stochastic Ordering of Ex- 
ponential Queues in Tandem With Blocking. Prob. 
Engin. and Info. Sci. 3, 223-236. 

CHOW, W. 1987. Buffer Capacity Analysis for Sequential 
Production Lines With Variable Processing Times. 
Int. J. Prod. Res. 25, 1183-1196. 

DATTATREYA, E. S. 1978. Tandem Queueing Systems 
With Blocking. Ph.D. Dissertation, University of 
California, Berkeley. 

DING, J., AND B. S. GREENBERG. 1991. Bowl Shapes are 
Better With Buffers-Sometimes. Prob. Engin. and 
Infor. Sci. 5, 159-169. 

EL-RAYAD, T. E. 1979a. The Efficiency of Balanced and 
Unbalanced Production Lines. Int. J. Prod. Res. 17, 
61-75a. 

EL-RAYAD, T. E. 1979b. The Effect of Inequality of 
Interstage Buffer Capacity and Operation Time 
Variability on the Efficiency of Production Systems. 
Int. J. Prod. Res. 17, 77-89. 

FOLEY, R. D., AND S. SURESH. 1984. Stochastically 
Minimizing the Makespan in Flowshops. Naval 
Res. Logist. Quart. 31, 551-557. 

FOLEY, R. D., AND S. SURESH. 1986. Scheduling n 
Nonoverlapping Jobs and Two Stochastic Jobs in a 
Flow Shop. Naval Res. Logist. Quart. 33, 123-128. 

FRIEDMAN, H. D. 1965. Reduction Methods for Tandem 
Queueing Systems. Opns. Res. 13, 121-131. 

GLYNN, P. W., AND W. WHITT. 1991. Departures From 
Many Queues in Series. Ann. Appl. Prob. (to 
appear). 

GREENBERG, B. S., AND R. W. WOLFF. 1988. Optimal 
Order of Servers for Tandem Queues in Light 
Traffic. Mgmt. Sci. 34, 500-508. 

HILLIER, F. S., AND R. M. BOLING. 1966. The Effect of 
Some Design Factors on the Efficiency of Produc- 
tion Lines With Variable Operation Times. J. 
Indus. Eng. 17, 651-658. 

HILLIER, F. S., AND R. M. BOLING. 1979. On the Optimal 
Allocation of Work in Symmetric Balanced Produc- 
tion Line Systems With Variable Operation Times. 
Mgmt. Sci. 25, 721-728. 

HUANG, C. C., AND G. WEISS. 1990. On the Optimal 
Order of M Machines in Tandem. 0. R. Letts. 9, 
299-303. 

HUNT, G. C. 1957. Sequential Arrays of Waiting Lines. 
Opns. Res. 4, 674-683. 

KELLY, F. P. 1982. The Throughput of a Series of 
Buffers. Adv. Appl. Prob. 14, 663-653. 

KELLY, F. P. 1984. Blocking, Reordering, and the 
Throughput of a Series of Servers. Stoch. Proc. 
Applic. 17, 327-336. 

KIJIMA, M., N. MAKIMOTO AND H. SHIRAKAWA. 1990. 
Stochastic Minimization of the Makespan in Flow 
Shops With Identical Machines and Buffers of 
Arbitrary Size. Opns. Res. 38, 924-928. 

LEHTONEN, T. 1986. On the Ordering of Tandem Queues 
With Exponential Servers. J. Appl. Prob. 23, 
115-129. 

MCCORMICK, S. T., M. L. PINEDO, S. SHENKER AND B. 
WOLF. 1989. Sequencing in an Assembly Line With 
Blocking to Minimize Cycle Time. Opns. Res. 37, 
925-935. 

MAKINO, T. 1964. On the Mean Passage Time Concern- 
ing Some Queueing Problems of the Tandem Type. 
J. Opns. Res. Soc. Japan 7, 17. 

MASSEY, W. A. 1991a. Balanced Queues in Series With 
Communication Blocking. Math. 0. R. (to appear). 

MASSEY, W. A. 1991b. Continuous Node Limits for 
Series Networks With Blocking (to appear). 

MEESTER, L. E., AND J. G. SHANTHIKUMAR. 1990. Con- 
cavity of the Throughput of Tandem Queueing Sys- 
tems With Finite Buffer Storage Space. Adv. Appl. 
Prob. 22, 764-767. 

MUTH, E. J. 1979. The Reversibility Property of 
Production Lines. Mgmt. Sci. 25, 152-158. 

PINEDO, M. 1982. On the Optimal Order of Stations in 
Tandem Queues. InApplied Probability-Computer 
Science: The Interface, R. Disney and T. Ott (eds.). 
Birkhauser, Boston, Mass., 307-326. 

PINEDO, M., AND R. W. WOLFF. 1982. A Comparison 
Between Independent and Dependent Service 
Times in Tandem Queues. Opns. Res. 30, 464-479. 

SHANTHIKUMAR, J. G., AND D. D. YAO. 1991. Strong 
Stochastic Convexity: Closure Properties and 
Applications. J. Appl. Prob. 28, 131-145. 

SHANTHIKUMAR, J. G., G. YAMAZAKI AND H. 
SAKASEGAWA. 1991. Characterization of 
Optimal Order of Servers in a Tandem Queue With 
Blocking. 0. R. Letts. 10, 17-22. 

SRINIVASAN, R. Queues in Series Via Interacting Particle 
Systems. Math. 0. R. (to appear). 

TEMBE, S. V., AND R. W. WOLFF. 1974. The Optimal 
Order of Service in Tandem Queues. Opns. Res. 30, 
148-162. 

TSOUCAS, P., AND J. WALRAND. 1987. On the Interchange- 
ability and Stochastic Ordering of /M/1 Queues in 
Tandem. Adv. Appl. Prob. 16, 515-520. 

WEBER, R. R. 1979. The Interchangeability of -/M/1 
Queues in Series. J. Appl. Prob. 16, 690-695. 

WEBER, R. R. 1992. The Interchangeability of Tandem 
Queues With Heterogeneous Customers and De- 
pendent Service Times. J. Appl. Prob. (to appear). 

WEIN, L. M. 1988. Ordering Tandem Queues in Heavy 
Traffic. Technical Report, Sloan School of Manage- 
ment, MIT, Cambridge, Mass. 



912 / WEBER AND WEISS 

WHrrr, W. 1985. The Best Order for Queues in Series. 
Mgmt. Sci. 31, 475-487. 

WIE, S. H., AND M. L. PINEDO. 1986. On the Minimiza- 
tion of Expected Makespan and Flowtime in Sto- 
chastic Flowshops With Blocking. Math. 0. R. 11, 
336-342. 

WOLFF, R. W. 1982. Tandem Queues With Dependent 
Service Times in Light Traffic. Opns. Res. 30, 
619-635. 

YAMAKAZI, G., AND H. SAKASEGAWA. 1975. Properties of 
Duality in Queueing Systems. Ann. Instit. Statist. 
Math. 27, 201-212. 

YAMAKAZI, G., H. SAKASEGAWA AND J. G. 
SHANTHIKUMAR. 1992. On Optimal Arrangement of 
Stations in a Tandem Queue System With Blocking. 
Mgmt. Sci. 38,137. 

YAMAKAZI, G., T. KAWASHIMA AND H. SAKASEGAWA. 

1985. Reversibility of Tandem Blocking Queueing 
Systems. Mgmt. Sci. 31, 78-83. 


	Article Contents
	p. 895
	p. 896
	p. 897
	p. 898
	p. 899
	p. 900
	p. 901
	p. 902
	p. 903
	p. 904
	p. 905
	p. 906
	p. 907
	p. 908
	p. 909
	p. 910
	p. 911
	p. 912

	Issue Table of Contents
	Operations Research, Vol. 42, No. 5 (Sep. - Oct., 1994), pp. 789-981
	Front Matter [pp.  789 - 789]
	In This Issue [pp.  790 - 792]
	OR Forum
	Using Values in Operations Research [pp.  793 - 813]

	OR Practice
	A Sea Story: Implementing the Navy's Personnel Assignment System [pp.  814 - 822]
	A Policy Analysis of Dutch River Dike Improvements: Trading off Safety, Cost, and Environmental Impacts [pp.  823 - 836]

	A Constructive Method for Improving Lower Bounds for a Class of Quadratic Assignment Problems [pp.  837 - 845]
	A Branch-And-Bound Algorithm for the Capacitated Vehicle Routing Problem on Directed Graphs [pp.  846 - 859]
	A Greedy Randomized Adaptive Search Procedure for Maximum Independent Set [pp.  860 - 878]
	Minimizing Transportation and Inventory Costs for Several Products on a Single Link [pp.  879 - 894]
	The Cafeteria Process-Tandem Queues with 0-1 Dependent Service Times and the Bowl Shape Phenomenon [pp.  895 - 912]
	The Stability of a Capacitated, Multi-Echelon Production-Inventory System under a Base-Stock Policy [pp.  913 - 925]
	M/G/1//N Queues with Server Vacations and Exhaustive Service [pp.  926 - 939]
	Accelerating Procedures of the Value Iteration Algorithm for Discounted Markov Decision Processes, Based on a One-Step Lookahead Analysis [pp.  940 - 946]
	Stability of Flexible Manufacturing Systems [pp.  947 - 957]
	Dynamic Capacity Expansion Problem with Multiple Products: Technology Selection and Timing of Capacity Additions [pp.  958 - 976]
	Technical Note
	Note on the Complexity of the Shortest Path Models for Column Generation in VRPTW [pp.  977 - 978]

	Back Matter [pp.  979 - 981]





