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Prior distributions
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Introduction

• The need for prior distributions should not be an

embarrassment!

• Here we focus on breaking multivariate blocks into independent

univariate priors

• It is quite reasonable that the prior should influence the

analysis, as long as the influence is recognised and justified

• Importance of transparency and sensitivity analysis

Need to think about and understand all prior assessments
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Normal data with unknown mean and unknown variance (for

reference)

Suppose we have an independent sample of data

yi ∼ Normal(μ, σ2), i = 1 . . . n

where σ2 and μ are unknown. The bivariate conjugate prior

p(μ, σ2) is expressed as p(μ, σ2)p(σ2), where

μ|σ2 ∼ Normal(γ, σ2/n0)

where γ is assumed specified, and

1/σ2 ∼ Gamma(α, β) :

we say that σ2 has an Inverse-Gamma distribution, or alternatively

that ω = 1/σ2 has a Gamma distribution.
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Then after observing y = y1, ..., yn, the joint posterior p(μ, σ2|y) is

expressed as p(μ|σ2, y)p(σ2|y), where

p(μ | σ2, y) = Normal(γn, τ2
n)

where γn =
n0γ + ny

n0 + n
and τ2

n =
σ2

n0 + n

and

1/σ2|y ∼ Gamma(αn, βn)

where αn = α + n
2, βn = β + 1

2

∑n
i=1(yi − y)2 + n0n(y−γ)

n0+n

• Nice conjugate result, but prior dependence of μ and σ2 may be

unrealistic

• We shall see that assuming independence gives attractive

results
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Useful distribution theory

Conjugate prior is equivalent to (μ− γ)
√

n0/σ ∼ Normal(0,1).

Also 1/σ2|y ∼ Gamma(α, β) is equivalent to

2β/σ2 ∼ χ2
2α.

Now if Z ∼ Normal(0,1), X ∼ χ2
ν/ν, then Z/

√
X ∼ tν.

Therefore the marginal prior distribution for μ in the bivariate

conjugate prior is such that (μ− γ)
√

n0α/β ∼ t2α
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Corresponding result for the posterior, so that

(μ− γn)
√

(n0 + n)αn/βn ∼ t2αn

Suppose we try to be ’uninformative’ by letting n0, α, β → 0. Then

we get that

(μ− y)/
√

s2/n ∼ tn

where s2 =
∑n

i=1(yi − y)2/n. So looks like the ’classical’ result, but

with no loss of a degree of freedom.

Will see how to deal with this later.
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‘Non-informative’ / reference priors

• In some circumstances would like to minimise judgemental

input

• There has been a long search for an ‘off-the-shelf’ objective

prior to use in all circumstances

• Does not exist, although useful guidance exists (Berger, 2006)

• Sometimes use improper priors (that do not integrate to 1)

• OK if lead to well-behaved posterior distributions

• Care needed in certain circumstances - just because ‘proper’

does not mean not influential

• If the form of ‘non-informative’ prior matters, then you should

not be trying to be non-informative!
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The problem with uniform priors for continuous parameters

• Tempting to adopt a uniform prior for all θ

• But this does not generally imply a uniform distribution for a

function of θ

• eg θ = chance a (biased) coin comes down heads, assume

θ ∼ Uniform(0,1)

• Let φ = θ2 = chance of it coming down heads in both of the

next 2 throws

• p(φ) = 1/(2
√

φ): a beta(0.5, 1) distribution and is certainly not

uniform.
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Jeffreys priors

• Harold Jeffreys (1939) suggested invariant prior distributions

• ie a ‘Jeffreys’ prior for θ would be formally compatible with a

Jeffreys prior for any 1-1 transformation φ = f(θ)

• pJ(θ) ∝ I(θ)1/2 where I(θ) is Fisher information for θ

I(θ) = −EY |θ

[
∂2 log p(Y |θ)

∂θ2

]
= EY |θ

⎡
⎣(∂ log p(Y |θ)

∂θ

)2
⎤
⎦ .

• Jeffreys’ prior is invariant to reparameterisation because

I(φ)1/2 = I(θ)1/2

∣∣∣∣∣dθ

dφ

∣∣∣∣∣
and so

pJ(φ) = pJ(θ)

∣∣∣∣∣dθ

dφ

∣∣∣∣∣
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Location parameters

• Location parameter θ: p(y|θ) is a function of y − θ, and so the

distribution of y − θ is independent of θ

• pJ(θ) ∝ constant

• In BUGS could use dflat() to represent this distribution

• Tend to use proper distributions such as dunif(-100,100) or

dnorm(0,0.0000001)

• We recommend the former with appropriately chosen limits
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Proportions

The appropriate prior distribution for the parameter θ of a Bernoulli

or Binomial distribution is one of the oldest problems in statistics

1. Bayes and Laplace suggesting a uniform prior, which is also a

Beta(1, 1) (logistic on φ = logitθ): Principle of Insufficient

Reason, is that it leads to a discrete uniform distribution for

the predicted number y of successes in n future trials, so that

p(y) = 1/n, y = 0,1, ..., n.

2. An (improper) uniform prior on φ = logitθ is formally equivalent

to the (improper) Beta(0,0) distribution, where

p(θ) ∝ θ−1(1− θ)−1

3. Jeffreys principle leads to a Beta(0.5,0.5) distribution, so that

pJ(θ) = π−1θ
1
2(1− θ)

1
2

4. φ ∼ Normal(0,2) gives a density for θ that is ‘flat’ at θ = 0.5

5. φ ∼ Normal(0,2.71) is close to a standard logistic distribution.
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Uniform 

   -0.5     0.0     0.5     1.0

    0.0
    0.5
    1.0
    1.5

logistic

  -10.0    -5.0     0.0     5.0

    0.0
    0.1
    0.2
    0.3

beta(0,0)

   -0.5     0.0     0.5     1.0

    0.0
    2.0
    4.0
    6.0

uniform

  -10.0    -5.0     0.0     5.0

    0.0
   0.05
    0.1
   0.15

beta(0.5,0.5)

   -0.5     0.0     0.5     1.0

    0.0
    1.0
    2.0
    3.0

Jeffreys

  -10.0    -5.0     0.0     5.0

    0.0
   0.05
    0.1
   0.15
    0.2

logit(normal)

   -0.5     0.0     0.5     1.0

    0.0
    0.5
    1.0
    1.5

Nomal, variance 2

  -10.0    -5.0     0.0     5.0

    0.0
    0.1
    0.2
    0.3

logit(normal)

   -0.5     0.0     0.5     1.0

    0.0
    0.5
    1.0
    1.5

Normal, variance 2.71

  -10.0    -5.0     0.0     5.0

    0.0
    0.1
    0.2
    0.3

6-13

Bayesian analysis

Suppose we observe 0/10 deaths. What is sensitivity to prior

distribution on mortality rate?

[1]

[2]

[3]

[4]

[5]

box plot: theta after 0/10 deaths

    0.0     0.1     0.2     0.3     0.4
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And if observe 10/100 deaths?

[1]

[2]

[3]

[4]

[5]

box plot: theta after 10/100 deaths

   0.05     0.1    0.15     0.2
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Counts and rates

• Fisher information for Poisson data is I(θ) = 1/θ

• Jeffreys prior : pJ(θ) ∝ θ−
1
2 (improper)

• Can be approximated in BUGS by a dgamma(0.5, 0.00001)

distribution

• The same prior is appropriate if θ is a rate parameter per unit

time, so that Y ∼ Poisson(θt).
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Scale parameters

• σ is a scale parameter if p(y|σ) = σ−1f(y/σ) for some function

f , so that the distribution of Y/σ does not depend on σ

• Jeffreys prior is pJ(σ) ∝ σ−1

• Implies that pJ(σ
k) ∝ σ−k, for any choice of power k

• Thus for the normal distribution, parameterised in BUGS in

terms of the precision ω = 1/σ2, would have pJ(ω) ∝ ω−1

• can be approximated in BUGS by, say, a dgamma(0.001,0.001),

which also can be considered an inverse-gamma distribution on

the variance σ2

• Alternatively, we note that the Jeffreys prior is equivalent to

pJ(logσk) ∝ const, i.e. an improper uniform prior

• Hence it may be preferable to give logσk a uniform prior on a

suitable range, for example omega ~ dunif(-10, 10) for a

Normal precision
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Multiparameter situations

• Multivariate Jeffreys can lead to unfortunate results

• Normal with unknown mean and variance: Jeffreys rule applied

directly gives pJ(μ, σ2) ∝ 1/σ3, and leads to result shown earlier

in which limiting dependent conjugate analysis does not lose

degree of freedom in t posterior.

• Jeffreys suggested imposing location/scale independence and

assessing univariate priors, so that

pJ(μ, σ2) = pJ(μ)pJ(σ2) ∝ 1/σ2.

• Then we can show that we match ’classical’ analysis using tn−1

degrees of freedom.
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Other situations

• Sampling distribution Uniform(0, θ), p(y|θ) = 1/θ, 0 < y < θ,

non-standard since range depends on parameter, think of θ as

scale parameter, Jeffreys prior pJ(θ) ∝ 1/θ.

• Jeffreys suggests (more informally) p(θ) ∝ 1/θ for other

parameters restricted to (0,∞)

• Care needed in handling variances for random-effects (see later)

• Berger and Bernardo have a theory of multivariate reference

priors which may require an ordering of importance of the

parameters

• Yang and Berger (1997) provide a ‘catalog of Noninformative’

priors

• Can be very complex and often no clear ‘standard’
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Representation of informative priors

Pure elicitation

• Elicitation of subjective probability distributions is not a

straightforward task

• Many well-known biases have been identified

• O’Hagan et al (2006) provide some ’Guidance for best practice’

• Emphasise that probability assessments are constructed by the

questioning technique, rather than being ’pre-formed

quantifications of pre-analysed belief ’ [p 217]
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• best to interview subjects face-to-face, with feedback and

continual checking for biases

• conduct sensitivity analysis to the consequence of the analysis,

• avoid verbal descriptions of uncertainty.

• elicit intervals with moderate rather than high probability

content, say by focussing on 33% and 67% quantiles

• use multiple experts with reporting a simple average,

• acknowledge imperfections in the process, and that even

genuine ‘expertise’ cannot guarantee a suitable subject

Or simply ask for an interval and afterwards elicit a ‘confidence’ in

that assessment eg in Elicitor (Kynn, 2006)
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• Advantage to use conjugate forms where the prior distribution

can then be interpreted as representing ‘implicit data’

• ie prior estimate of the parameter and an ‘effective prior

sample size’

• even possible to include the prior information as ‘data’ and use

standard software for statistical analysis

• For regression coefficients generally appropriate to assume a

Normal distribution:

• For log-odds-ratios in logistic regression, log-rate-ratios in

Poisson regression, log-hazard-ratios in Cox regression: prior

variance is approximately 4/n0, where n0 is the effective

number of events

6-22

Bayesian analysis

A simple moment-based method:

• ask either directly for the mean and standard deviation,

• or elicit an approximate 67% interval (i.e. the parameter is

assessed to be twice as likely to be inside the interval as

outside it)

• treat the interval as representing the mean ± 1 standard

deviation

• solve for the parameters of the prior distribution

Good practice to iterate between alternative representations of the

prior distribution, say as a drawn distribution, percentiles,

moments, and interpretation as ‘implicit data’, in order to check

the subject is happy with the implications of their assessments
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Power calculations

• randomised trial is planned with n patients in each of two arms

• response within each treatment arm is assumed to have

between-patient standard deviation σ

• treatment estimate Y assumed to have a Normal(θ,2σ2/n)

distribution

• trial designed to have two-sided Type I error α and Type II

error β in detecting a true difference of θ in mean response

between the groups will require a sample size per group of

n =
2σ2

θ2
(z1−β + z1−α/2)

2,

• Alternatively, for fixed n, the power of the study is

Power = Φ

⎛
⎝
√

nθ2

2σ2
− 1.96

⎞
⎠ .
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If we assume θ = 5, σ = 10, α = 0.05, β = 0.10, so that the power

of the trial is 90%, then we obtain z1−β = 1.28, z1−α/2 = 1.96,

n = 84.

Wish to acknowledge uncertainty about θ and σ.

1. assume past evidence suggests θ is likely to lie anywhere

between 3 and 7, which we interpret as a 67% interval and so

assume θ ∼ Normal(5,22)

2. Remember that

ω ∼ Gamma(n0/2, n0σ̂2
0/2)

3. assess our estimate of σ = 10 as being based on around 40

observations, from which we assume a Gamma(a, b) prior

distribution for ω = 1/σ2 with mean a/b = 1/102 and effective

sample size 2a = 40, from which we derive

ω ∼ Gamma(20,2000)
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omega ~ dgamma(20,2000) # prior variance estimate 100, based on 40 observations
sigma <- 1/sqrt(omega)
theta ~ dnorm(5,0.25) # prior mean estimate 5, with sd 2
n <- 2 * pow( (1.28 +1.96) * sigma / theta , 2)# sample size for 90% power
power <- phi( sqrt(84/2)* theta /sigma -1.96) # power for n = 84
prob70 <- step(power-.7) # probability that power is greater

n sample: 10000

    0.0 1.00E+6 2.00E+6 3.00E+6

    0.0
5.00E-5
1.00E-4
1.50E-4

power sample: 10000

    0.0     0.5     1.0

    0.0
    2.0
    4.0
    6.0
    8.0

sigma sample: 10000

    5.0     7.5    10.0    12.5    15.0

    0.0
    0.1
    0.2
    0.3
    0.4

theta sample: 10000

   -5.0     0.0     5.0    10.0

    0.0

    0.1

    0.2
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node mean sd MC error 2.5% median 97.5% start sample
n 1841.0 58530.0 601.5 24.56 86.26 1463.0 1 10000
power 0.7788 0.2574 0.00218 0.1186 0.8921 1.0 1 10000

Median power for = 84 is 90%, with 30% probability that power is

less than 70%

Median n for 90% power is 86, but with huge uncertainty
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Mixture of prior distributions

• Suppose we doubt which of two or more prior distributions is

appropriate to the data in hand

• eg might suspect that either a drug will produce similar effect

to other related compounds, or if it doesn’t behave like these

compounds we are unsure about its likely effect

• For two possible prior distributions p1(θ) and p2(θ) the overall

prior distribution is then a mixture

p(θ) = qp1(θ) + (1− q)p2(θ),

where q is the assessed probability that p1 is ‘correct’.
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• If we now observe data y, it turns out that the posterior for θ is

p(θ|y) = q′p1(θ|y) + (1− q′)p2(θ|y)
where

pi(θ|y) ∝ p(y|θ)pi(θ)

q′ =
qp1(y)

qp1(y) + (1− q)p2(y)
,

where pi(y) =
∫

p(y|θ)pi(θ)dθ is the predictive probability of the

data y assuming pi(θ)

• The posterior is a mixture of the respective posterior

distributions under each prior assumption, with the mixture

weights adapted to support the prior that provides the best

prediction for the observed data.
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Generic graph when data comes from one of two alternative models

for(i IN 1 : N)

a[2]a[1]q

theta[2]theta[1]pick

mu

y[i]
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A biased coin?

Suppose a coin is either unbiased or biased, in which case the
chance of a ‘head’ is unknown. We assess a probability of 0.1 that
it is biased, and then observe 15 heads out of 20 tosses — what is
chance that coin is biased?

q[1] <- 0.9; q[2] <- 0.1 # prior assumptions
y <- 15; n <- 20 # data
y ~ dbin(p, n) # likelihood
p <- theta[pick] # could have included theta[pick] directly in dbin
pick ~ dcat(q[]) # pick = 1 or 2

theta[1] <- 0.5 # if unbiased (assumption 1)
theta[2] ~ dunif(0, 1) # if biased, then uniform prior on prob of head

biased <- pick-1 # 1 if biased, 0 otherwise
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node mean sd MC error 2.5% median 97.5% start sample
biased 0.2619 0.4397 0.002027 0.0 0.0 1.0 1 100000
theta[2] 0.5594 0.272 9.727E-4 0.03284 0.6247 0.9664 1 100000

So the probability that the coin is biased has increased from 0.1 to

0.26 on the basis of the evidence provided.

biased sample: 100000

-1 0 1 2

    0.0
    0.2
    0.4
    0.6
    0.8

theta[2] sample: 100000

   -0.5     0.0     0.5     1.0

    0.0
    0.5
    1.0
    1.5
    2.0

The rather strange shape of the posterior distribution of theta[2]

is explained below.
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• ’Pick’ is a variable taking on value 1 when first component is

true, 2 if second

• But when pick=1, theta[2] is sampled from its prior distribution

(Carlin and Chib, 1995)

• So posterior distribution of theta[2] is mixture of true posterior

and its prior

• Could do separate run assuming each component true

• Or only use those values simulated when pick=2 (need to sort

outside WinBUGS)
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• Essentially dealing with alternative model formulations

• q′’s correspond to posterior probabilities of models

• Well-known difficulties with these quantities both in theory

when calculating within MCMC

• In principle we can use the structure above to handle a list of

arbitrary alternative models, but in practice considerable care is

needed if the sampler is not to be go ‘off course’ when

sampling from the prior distribution at each iteration when that

model is not being ‘picked’

• It is possible to use ‘pseudo-priors’ to be used in these

circumstances, where pick also dictates the prior to be

assumed for theta[j] when pick �= j (Carlin and Chib, 1995)
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