4

Applied Bayesian Statistics	Course Summary (provisional)	
David Spiegelhalter Statistical Laboratory, Cambridge	Jan 18 Lect 1: Probability and Bayes theorem for discrete observables Jan 20 Lect 2: Bayesian inference: conjugate analysis Jan 25 Lect 3: Univariate conjugate analysis: predictions and priors Jan 27 Prac 1: Exact Bayesian analysis using First Bayes Feb 1 Lect 4: Graphical models and Monte Carlo methods - WinBUGS Feb 3 Prac 2: Monte Carlo analysis using WinBUGS Feb 8 Lect 5: MCMC methods: univariate Feb 10 Prac 3: MCMC analysis using WinBUGS Feb 15 Lect 6: Prior distributions: univariate Feb 17 Lect 7: Multivariate distributions Feb 22 Lect 8: Regression models Feb 24 Prac 4: Modelling in WinBUGS Mar 1 Lect 9: Prediction, ranking and relation to classical methods Mar 4 Lect 10: Model criticism and comparison [NOTE DATE CHANGE] Mar 8 Prac 5: MORMC	
with thanks to: Nicky Best Dave Lunn Andrew Thomas		
Course. Left Term 2010	+ 3 exercise sheets	
©University of Cambridge 2010		
2	3	
Bayesian analysis	Bayesian analysis	
Bayesian analysis	Bayesian analysis Material mainly taken from forthcoming book Bayesian Analysis using the BUGS language: a Practical Introduction D Spiegelhalter, N Best, D Lunn, A Thomas Chapman and Hall, 2010	
Bayesian analysis Learning Objectives • Understanding of principles underlying basic Bayesian modelling (although fairly informal mathematically)	Bayesian analysis Material mainly taken from forthcoming book Bayesian Analysis using the BUGS language: a Practical Introduction D Spiegelhalter, N Best, D Lunn, A Thomas Chapman and Hall, 2010 Other good sources: • Bayesian Data Analysis; 2nd Ed by Andrew Gelman, John Carlin, Hal Stern, and Don Rubin. Chapman and Hall (2004)	
Bayesian analysis Learning Objectives • Understanding of principles underlying basic Bayesian modelling (although fairly informal mathematically) • Understanding how to use Bayesian analysis for making inference about real-world problems	 Bayesian analysis Material mainly taken from forthcoming book Bayesian Analysis using the BUGS language: a Practical Introduction D Spiegelhalter, N Best, D Lunn, A Thomas Chapman and Hall, 2010 Other good sources: Bayesian Data Analysis; 2nd Ed by Andrew Gelman, John Carlin, Hal Stern, and Don Rubin. Chapman and Hall (2004) Bayesian Methods for Data Analysis by Brad Carlin and Tom Louis, Chapman and Hall (2008) Bayesian Modelling using WinBUGS by Ioannis Ntzoufras, Wiley (2009) 	
Descention of Descriptions • Understanding of principles underlying basic Bayesian modelling (although fairly informal mathematically) • Understanding how to use Bayesian analysis for making inference about real-world problems • Insight into computational techniques used for Bayesian analysis	 Bayesian analysis Material mainly taken from forthcoming book Bayesian Analysis using the BUGS language: a Practical Introduction D Spiegelhalter, N Best, D Lunn, A Thomas Chapman and Hall, 2010 Other good sources: Bayesian Data Analysis; 2nd Ed by Andrew Gelman, John Carlin, Hal Stern, and Don Rubin. Chapman and Hall (2004) Bayesian Methods for Data Analysis by Brad Carlin and Tom Louis, Chapman and Hall (2008) Bayesian Modelling using WinBUGS by Ioannis Ntzoufras, Wiley (2009) Background reading in Introduction to Bayesian Methods in Healthcare Evaluation: Spiegelhalter, Abrams, Myles. Wiley (2004) Plus numerous websites. Past papers for 2008 and 2009 available on - 	

 Summary 1. Basic probability for discrete random variables 2. But what do we mean by 'probability'? 3. Bayes theorem for discrete variables 4. Diagnostic testing 5. The three coins 6. Use of likelihood ratios 7. Applications in forensic science and legal reasoning Reference: Probability and Proof - downloadable from Prof Dawid's website www.statslab.cam.ac.uk/~apd/
1-2
Bayesian analysis
But what do we mean by 'probability'? (Dawid)
 Statistical Probability: proportions of a sampled population Classical Probability: symmetry of mechanism (eg dice) Empirical Probability: long-run proportion of occurrence - frequentist Metaphysical Probability: proportion of possible future worlds Subjective Probability: willingness-to-bet / degree-of-belief Logical Probability: degree of implication General agreement on mathematics, but not on interpretation.

Bayesian analysis	Bayesian analysis	
Subjectivity and context	Chance or ignorance? We can think of two broad types (at least) of uncertainty 1. <i>Aleatory</i> : essentially unpredictable, chance 2. <i>Epistemic</i> : due to lack of knowledge	
 All probabilities are <i>conditional on context H</i> They are Your probabilities <i>for</i> an event, not a property <i>of</i> the event Probabilities are therefore <i>subjective</i> and can be given for unique events, <i>e.g.</i> the probability of <i>aliens openly visiting earth in the next 10 years</i> They express Your relationship to the event - different stakeholders will have different information and different probabilities Vital that probabilities obey the Rules! <i>i.e.</i> they <i>cohere</i> Can derive 'axioms' by principles of rational behaviour: such as avoiding certain losses when betting Other frameworks exist for deriving probability 'axioms' from more basic principles 		
1-5	1-6	
Bayesian analysis	Bayesian analysis	
So what type of uncertainty is involved in deciding -	Bayes theorem	
 Which numbers to choose for the lottery? Which lottery scratch-card to buy? Is Bin Laden alive? Which card will be on top when I shuffle? What card will I get dealt next in poker? Am I (DJS) going to survive another ten years? 	Since $p(b \cap a) = p(a \cap b)$, Rule 3 implies that $p(b a)p(a) = p(a b)p(b)$, or equivalently $p(b a) = \frac{p(a b)}{p(a)} \times p(b).$ This is Bayes theorem An initial probability $p(b)$ is changed into a conditional probability p(b a) when taking into account the event <i>a</i> occurring	

Provides a formal mechanism for learning from experience

- 2. Which lottery so
- 3. Is Bin Laden ali
- 4. Which card will
- 5. What card will
- 6. Am I (DJS) goi

From the subjectivist viewpoint, no need to worry about this distinction, it's all just uncertainty

Odds form for Bayes theorem				Bayes theorem for two hypotheses For a null hypothesis		
				$H_0, H_1 = \text{'not } H_0$ '		
Odds = $P/(1 - P)$ e.g. $P=0.8$, odds = $0.8/0.2 = 4$ Let \overline{b} = 'not b', so that $p(\overline{b}) = 1 - p(b)$ Since $p(\overline{b} a) = p(a \overline{b}) \times p(\overline{b})/p(a)$				$\frac{p(H_0 y)}{p(H_1 y)} = \frac{p(y H_0)}{p(y H_1)} \times \frac{p(H_0)}{p(H_1)}$		
				$posterior \ odds = likelihood \ ratio \ \times \ prior \ odds.$		
				By taking logarithms we also note that		
				$log(posterior \ odds) = log(likelihood \ ratio) + log(prior \ odds).$ where the likelihood ratio is also known as the 'Bayes factor', and		
$\frac{p(b a)}{p(\overline{b} a)} = \frac{p(a b)}{p(a \overline{b})} \times \frac{p(b)}{p(\overline{b})}$				the log(likelihood ratio) has also been termed the 'weight of evidence'		
				(Used by Alan Turing when using these techniques for breaking the Enigma codes at Bletchley Park)		
			1-9	1-10		
		Bayesiar	n analysis	Bayesian analysis		
Diagnosis: Bayes the new home HIV test is clair specificity",	eorem in di med to have "§	agnostic testing 95% sensitivity and 9	j A 98%	Using Bayes theorem Let H_0 be the hypothesis that the individual is truly HIV positive, and y be the observation that they test positive.		
To be used in a population with an HIV prevalence of $1/1000$			0	"95% sensitivity" means $p(y H_0) = 0.95$. and "98% specificity" means $p(y H_1) = 0.02$		
Expected status of 100000) tested individ	uals in population:		Prior odds $p(H_0)/p(H_1)$ is 1/999		
	HIV - HIV +			Likelihood ratio $p(y H_0)/p(y H_1)$ is 0.95/0.02 = 95/2 = 47.5		
Test -	97902 5	97907		The posterior odds is $(95/2) \times 1/999 = 95/1998$		
Test +	1998 95	2093				
Thus of 2002 who test no	99900 100	100000		Odds correspond to a posterior probability $p(H_0 y) = 95/(95 + 1998) = 0.045$, as found directly from the table.		
are truly HIV positive, giving a 'predictive value positive' of only $95/2093 = 4.5\%$.			y 95 only	The crucial finding is that over 95% of those testing positive will, in fact, not have HIV.		

	Bayesian analysis	Bayesian analysis	
Likelihood ratios	and Bayes factors	The three coins	
Bayes factor range Strength of evidence in favour of H_0 and against H_1			
> 100	Decisive	I have 3 coins:	
32 to 100	Very strong		
10 to 32	Strong	1. One with two heads	
3.2 to 10	Substantial		
1 to 3.2	'Not worth more than a bare mention'	2. One with two tails	
St	rrength of evidence against H_0 and in favour of H_1	3. One with a head and a tail	
1 to 1/3.2	'Not worth more than a bare mention'		
1/3.2 to 1/10	Substantial	I nick a coin at random and flin it	
1/10 to 1/32	Strong		
1/32 to 1/100	Very strong	It comes up heads. What is the chance that the other side is also a	
< 1/100	Decisive	head?	
Calibration of Bayes factor (likelihood ratio) provided by Harold Jeffreys (1939, 1961)		Homework: look at all the sites on the Monty Hall problem	
	1-13	1-14	
	Bayesian analysis	Bayesian analysis	
Bayes' theorem for multiple hypotheses		Bayesian reasoning in computer-aided diagnosis	
If $\{a_k\}$ is a finite set of mutually exclusive and exhaustive events:		1. Probabilities of diseases change as symptoms taken into	
$p(\bigcup_k a_k) = \sum_k p(a_k) =$	1	account 2. Standard assumption is that symptoms are independent within	
then		each disease class ('Naive' or 'idiot's Bayes')	
		3. Makes sequential updating using Bayes theorem straightforward	
		4. Used in artificial intelligence / expert systems	
Ĩ	$p(a_j b) = \frac{p(b a_j)p(a_j)}{\sum_k p(b a_k)p(a_k)}.$	5. Also basic model for Spam filters etc- see 'Naive Bayes classifier' and 'Bayesian spam filtering' on Wikipedia for background	
		6. Extends to general 'graphical models' (see later)	

Conditional independence

If D be the unknown 'disease', comprising a set of mutually exclusive and exhaustive $d_k, k=1,..,K$, each with prior probability $p(d_k)$

 S_1,S_2,\ldots,S_J is a set of J questions that are going to be asked the patient

If the responses are $\underline{s}=s_1,s_2,...,s_J,$ then the posterior distribution over the possible diseases is

$$p(d_i|\underline{s}) = \frac{p(\underline{s}|d_i)p(d_i)}{\sum_k p(\underline{s}|d_k)p(d_k)}.$$

Bayesian analysis

1-17

Bayesian evidential reasoning

- Increasing attention to using Bayesian analysis in forensic science and general evidential reasoning
- Dawid is international expert
- Many fascinating case studies: OJ Simpson, Sally Clark, Turin Shroud, Jesus' tomb etc
- Controversial in a formal legal context
- Can be very difficult, easy to make mistakes!
- Important ideas: prosecutor's fallacy and defence fallacy

If we assume the 'symptoms' are conditionally independent given each possible disease, then $p(\underline{s}|d_i) = \prod_j p(s_j|d_i)$, and so

$$p(d_i|\underline{s}) = \frac{\prod_j p(s_j|d_i)p(d_i)}{\sum_k \prod_j p(s_j|d_i)p(d_k)}.$$

Only need specify conditional probabilities $p(s_j|d_i)$ and prior probabilities $p(d_i)$

'Sequential updating': posterior following \boldsymbol{s}_1 becomes prior for \boldsymbol{s}_2 etc

log-Bayes factor between two diseases d_1 and d_2 is

$$\log \frac{p(d_1|\underline{s})}{p(d_2|\underline{s})} = \sum_j \log \frac{p(s_j|d_1)}{p(s_j|d_2)} + \log \frac{p(d_1)}{p(d_2)}.$$

1-18

Bayesian analysis

Regina vs Denis John Adams

- Rape in Hemel Hempstead in 1991, DNA from semen stored on database
- Adams arrested in 1993 for another offence, his DNA matched sample
- Adams tried in 1995, claimed misidentification, DNA only direct evidence
- Analysis below is purely illustrative (Dawid, 2005)

Suppose DNA were only evidence

- Let g be 'guilty', $\overline{g} =$ 'not guilty'
- \bullet Let m be the evidence of the DNA match
- Prosecution's forensic evidence said 1 in 200 million chance of a chance DNA match, defence said lower;
- we shall take $p(m|\overline{g}) = 1/2,000,000, p(m|g) = 1$
- *Prosecutor's Fallacy*: therefore there is 1/2,000,000 chance he is not guilty!
- Confuses $p(m|\overline{g})$ with $p(\overline{g}|m)$
- When would this be appropriate?

Defence's Fallacy

- there are 200,000 possible attackers, therefore the prior probability p(g) = 1/200,000
- the posterior odds on guilt

$$\frac{p(g|m)}{p(\overline{g}|m)} = \frac{p(m|g)}{p(m|\overline{g})} \times \frac{p(g)}{p(\overline{g})} = 2,000,000 \times \frac{1}{200,000} = 10$$

- so only 91% probability he is guilty not 'beyond reasonable doubt'
- Can 'explain' this by saying that we would expect 200,000 / 2,000,000 = 0.1 people to match by chance alone.
- When would this be appropriate?

what the Appeal Court thought of Bayes theorem

- " it trespasses on an area peculiarly and exclusively within the province of the jury, namely the way in which they evaluate the relationship between one piece of evidence and another"
- "to introduce Bayes's theorem, or any similar method, into a criminal trial plunges the jury into inappropriate and unnecessary realms of theory and complexity"
- The task of the jury was said to be to "evaluate evidence and reach a conclusion not by means of a formula, mathematical or otherwise, but by the joint application of their individual common sense and knowledge of the world to the evidence before them".
- Appeal dismissed, but it was revealed Adams had a brother whose DNA had not been tested

1-25