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Course Summary (provisional)

Jan 18 Lect 1: Probability and Bayes theorem for discrete observables

Jan 20 Lect 2: Bayesian inference: conjugate analysis

Jan 25 Lect 3: Univariate conjugate analysis: predictions and priors

Jan 27 Prac 1: Exact Bayesian analysis using First Bayes

Feb 1 Lect 4: Graphical models and Monte Carlo methods - WinBUGS

Feb 3 Prac 2: Monte Carlo analysis using WinBUGS

Feb 8 Lect 5: MCMC methods: univariate

Feb 10 Prac 3: MCMC analysis using WinBUGS

Feb 15 Lect 6: Prior distributions: univariate

Feb 17 Lect 7: Multivariate distributions

Feb 22 Lect 8: Regression models

Feb 24 Prac 4: Modelling in WinBUGS

Mar 1 Lect 9: Prediction, ranking and relation to classical methods

Mar 4 Lect 10: Model criticism and comparison [NOTE DATE CHANGE]

Mar 8 Prac 5: More MCMC

Mar 10 Lect 11: Hierarchical models

+ 3 exercise sheets
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Learning Objectives

• Understanding of principles underlying basic Bayesian modelling

(although fairly informal mathematically)

• Understanding how to use Bayesian analysis for making

inference about real-world problems

• Insight into computational techniques used for Bayesian

analysis

• Appreciation of the need for sensitivity analysis, model

checking and comparison, and the potential dangers of

Bayesian methods
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Material mainly taken from forthcoming book

Bayesian Analysis using the BUGS language: a Practical Introduction
D Spiegelhalter, N Best, D Lunn, A Thomas
Chapman and Hall, 2010

Other good sources:

• Bayesian Data Analysis; 2nd Ed by Andrew Gelman, John Carlin, Hal Stern,
and Don Rubin. Chapman and Hall (2004)

• Bayesian Methods for Data Analysis by Brad Carlin and Tom Louis,
Chapman and Hall (2008)

• Bayesian Modelling using WinBUGS by Ioannis Ntzoufras, Wiley (2009)

Background reading in Introduction to Bayesian Methods in Healthcare
Evaluation: Spiegelhalter, Abrams, Myles. Wiley (2004)

Plus numerous websites.

Past papers for 2008 and 2009 available on -

http://www.maths.cam.ac.uk/teaching/pastpapers/2009/Part_3/index.html

5



Lecture 1.

Probability and Bayes theorem for discrete

observables
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Summary

1. Basic probability for discrete random variables

2. But what do we mean by ’probability’?

3. Bayes theorem for discrete variables

4. Diagnostic testing

5. The three coins

6. Use of likelihood ratios

7. Applications in forensic science and legal reasoning

Reference:

Probability and Proof - downloadable from Prof Dawid’s website

www.statslab.cam.ac.uk/~apd/
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Probability (informal)

1. Bounds:

0 ≤ p(a|H) ≤ 1,

where a is an event, p(a|H) = 0 if a is impossible and
p(a|H) = 1 if a is certain in the context H.

2. Addition rule: If a and b are mutually exclusive (i.e. one at
most can occur)

p(a
⋃

b|H) = p(a|H) + p(b|H).

3. Multiplication rule: For any events a and b,

p(a
⋂

b|H) = p(a|b, H)p(b|H).

We say that a and b are independent if
p(a and b|H) = p(a|H)p(b|H) or equivalently p(a|b, H) = p(a|H)
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But what do we mean by ’probability’? (Dawid)

1. Statistical Probability : proportions of a sampled population

2. Classical Probability : symmetry of mechanism (eg dice)

3. Empirical Probability : long-run proportion of occurrence -

frequentist

4. Metaphysical Probability : proportion of possible future worlds

5. Subjective Probability : willingness-to-bet / degree-of-belief

6. Logical Probability : degree of implication

General agreement on mathematics, but not on interpretation.

In this course we shall take the subjective view.
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Subjectivity and context

• All probabilities are conditional on context H

• They are Your probabilities for an event, not a property of the
event

• Probabilities are therefore subjective and can be given for
unique events, e.g. the probability of aliens openly visiting earth
in the next 10 years

• They express Your relationship to the event - different
stakeholders will have different information and different
probabilities

• Vital that probabilities obey the Rules! i.e. they cohere

• Can derive ’axioms’ by principles of rational behaviour: such as
avoiding certain losses when betting

• Other frameworks exist for deriving probability ’axioms’ from
more basic principles
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Chance or ignorance?

We can think of two broad types (at least) of uncertainty

1. Aleatory : essentially unpredictable, chance

2. Epistemic: due to lack of knowledge
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So what type of uncertainty is involved in deciding -

1. Which numbers to choose for the lottery?

2. Which lottery scratch-card to buy?

3. Is Bin Laden alive?

4. Which card will be on top when I shuffle?

5. What card will I get dealt next in poker?

6. Am I (DJS) going to survive another ten years?

From the subjectivist viewpoint, no need to worry about this

distinction, it’s all just uncertainty
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Bayes theorem

Since p(b
⋂

a) = p(a
⋂

b), Rule 3 implies that p(b|a)p(a) = p(a|b)p(b),
or equivalently

p(b|a) =
p(a|b)
p(a)

× p(b).

This is Bayes theorem

An initial probability p(b) is changed into a conditional probability

p(b|a) when taking into account the event a occurring

Provides a formal mechanism for learning from experience
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Odds form for Bayes theorem

Odds = P/(1 − P )

e.g. P=0.8, odds = 0.8/0.2 = 4

Let b = ’not b’, so that p(b) = 1 − p(b)

Since

p(b|a) = p(a|b) × p(b)/p(a)

we get

p(b|a)
p(b|a) =

p(a|b)
p(a|b) × p(b)

p(b)
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Bayes theorem for two hypotheses For a null hypothesis

H0, H1 = ‘not H0’

p(H0|y)
p(H1|y)

=
p(y|H0)

p(y|H1)
× p(H0)

p(H1)

posterior odds = likelihood ratio × prior odds.

By taking logarithms we also note that

log(posterior odds) = log(likelihood ratio) + log(prior odds).

where the likelihood ratio is also known as the ‘Bayes factor’, and

the log(likelihood ratio) has also been termed the ‘weight of

evidence’

(Used by Alan Turing when using these techniques for breaking the

Enigma codes at Bletchley Park)
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Diagnosis: Bayes theorem in diagnostic testing A

new home HIV test is claimed to have “95% sensitivity and 98%

specificity”,

To be used in a population with an HIV prevalence of 1/1000

Expected status of 100000 tested individuals in population:

HIV - HIV +

Test - 97902 5 97907

Test + 1998 95 2093

99900 100 100000

Thus of 2093 who test positive (i.e. have observation y), only 95

are truly HIV positive, giving a ‘predictive value positive’ of only

95/2093 = 4.5%.
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Using Bayes theorem Let H0 be the hypothesis that the

individual is truly HIV positive, and y be the observation that they
test positive.

“95% sensitivity” means p(y|H0) = 0.95. and “98% specificity”
means p(y|H1) = 0.02

Prior odds p(H0)/p(H1) is 1/999

Likelihood ratio p(y|H0)/p(y|H1) is 0.95/0.02 = 95/2 = 47.5

The posterior odds is (95/2) × 1/999 = 95/1998

Odds correspond to a posterior probability
p(H0|y) = 95/(95 + 1998) = 0.045, as found directly from the
table.

The crucial finding is that over 95% of those testing positive will,
in fact, not have HIV.
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Likelihood ratios and Bayes factors

Bayes factor range Strength of evidence in favour of H0 and against H1

> 100 Decisive

32 to 100 Very strong

10 to 32 Strong

3.2 to 10 Substantial

1 to 3.2 ‘Not worth more than a bare mention’

Strength of evidence against H0 and in favour of H1

1 to 1/3.2 ‘Not worth more than a bare mention’

1/3.2 to 1/10 Substantial

1/10 to 1/32 Strong

1/32 to 1/100 Very strong

< 1/100 Decisive

Calibration of Bayes factor (likelihood ratio) provided by Harold Jeffreys (1939,
1961)
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The three coins

I have 3 coins:

1. One with two heads

2. One with two tails

3. One with a head and a tail

I pick a coin at random and flip it.

It comes up heads. What is the chance that the other side is also a
head?

Homework: look at all the sites on the Monty Hall problem
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Bayes’ theorem for multiple hypotheses

If {ak} is a finite set of mutually exclusive and exhaustive events:

p(
⋃

k ak) =
∑

k p(ak) = 1

then

p(aj|b) =
p(b|aj)p(aj)∑
k p(b|ak)p(ak)

.
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Bayesian reasoning in computer-aided diagnosis

1. Probabilities of diseases change as symptoms taken into

account

2. Standard assumption is that symptoms are independent within

each disease class (’Naive’ or ’idiot’s Bayes’)

3. Makes sequential updating using Bayes theorem straightforward

4. Used in artificial intelligence / expert systems

5. Also basic model for Spam filters etc- see ’Naive Bayes

classifier’ and ’Bayesian spam filtering’ on Wikipedia for

background

6. Extends to general ’graphical models’ (see later)
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Conditional independence

If D be the unknown ’disease’, comprising a set of mutually

exclusive and exhaustive dk, k = 1, .., K, each with prior probability

p(dk)

S1, S2, .., SJ is a set of J questions that are going to be asked the

patient

If the responses are s = s1, s2, ..., sJ, then the posterior distribution

over the possible diseases is

p(di|s) =
p(s|di)p(di)∑
k p(s|dk)p(dk)

.
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If we assume the ’symptoms’ are conditionally independent given

each possible disease, then p(s|di) =
∏

j p(sj|di), and so

p(di|s) =

∏
j p(sj|di)p(di)

∑
k

∏
j p(sj|di)p(dk)

.

Only need specify conditional probabilities p(sj|di) and prior

probabilities p(di)

’Sequential updating’: posterior following s1 becomes prior for s2
etc

log-Bayes factor between two diseases d1 and d2 is

log
p(d1|s)
p(d2|s)

=
∑

j

log
p(sj|d1)

p(sj|d2)
+ log

p(d1)

p(d2)
.
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Bayesian evidential reasoning

• Increasing attention to using Bayesian analysis in forensic

science and general evidential reasoning

• Dawid is international expert

• Many fascinating case studies: OJ Simpson, Sally Clark, Turin

Shroud, Jesus’ tomb etc

• Controversial in a formal legal context

• Can be very difficult, easy to make mistakes!

• Important ideas: prosecutor’s fallacy and defence fallacy
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Regina vs Denis John Adams

• Rape in Hemel Hempstead in 1991, DNA from semen stored on

database

• Adams arrested in 1993 for another offence, his DNA matched

sample

• Adams tried in 1995, claimed misidentification, DNA only

direct evidence

• Analysis below is purely illustrative (Dawid, 2005)
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Suppose DNA were only evidence

• Let g be ’guilty’, g = ’not guilty’

• Let m be the evidence of the DNA match

• Prosecution’s forensic evidence said 1 in 200 million chance of

a chance DNA match, defence said lower;

• we shall take p(m|g) = 1/2,000,000, p(m|g) = 1

• Prosecutor’s Fallacy : therefore there is 1/2,000,000 chance he

is not guilty!

• Confuses p(m|g) with p(g|m)

• When would this be appropriate?
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Defence’s Fallacy

• there are 200,000 possible attackers, therefore the prior

probability p(g) = 1/200,000

• the posterior odds on guilt

p(g|m)

p(g|m)
=

p(m|g)
p(m|g) × p(g)

p(g)
= 2,000,000 × 1

200,000
= 10

• so only 91% probability he is guilty - not ’beyond reasonable

doubt’

• Can ’explain’ this by saying that we would expect 200,000 /

2,000,000 = 0.1 people to match by chance alone.

• When would this be appropriate?
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Other evidence

• Victim did not pick out Adams in identification parade, and

even said he did not look like her attacker!

• Adam’s girlfriend provided alibi (unchallenged)

• Let b1 = identification evidence, b2 = alibi evidence

• Assume these are conditionally independent

• Assume p(b1|g) = 10%, p(b1|g) = 90%, so likelihood ratio = 1/9

• Assume p(b2|g) = 25%, p(b2|g) = 50%, so likelihood ratio = 1/2

• Assume prior p(g) = 1/200,000

• Then based on b1, b2, odds on guilt are 1 in 3.6 million

• Now with DNA evidence, odds on guilt are 1 in 1.8 = 5/9, or a

probability of 36% of guilt
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What actually happened

• Jury were led through a Bayesian analysis asked to provide

their own probabilities

• Declared Adams guilty, but went to Appeal

• Appeal allowed and retrial ordered.

• Jury again presented with Bayesian arguements, again found

Adams guilty, and again went to Appeal

• Went to Appeal Court, who strongly objected to Bayesian

reasoning being used
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what the Appeal Court thought of Bayes theorem

• ”it trespasses on an area peculiarly and exclusively within the

province of the jury, namely the way in which they evaluate the

relationship between one piece of evidence and another”

• ”to introduce Bayes’s theorem, or any similar method, into a

criminal trial plunges the jury into inappropriate and

unnecessary realms of theory and complexity”

• The task of the jury was said to be to ”evaluate evidence and

reach a conclusion not by means of a formula, mathematical or

otherwise, but by the joint application of their individual

common sense and knowledge of the world to the evidence

before them”.

• Appeal dismissed, but it was revealed Adams had a brother

whose DNA had not been tested
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