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Lecture 3. Sufficiency

Lecture 3. Sufficiency 1 (1–1)

3. Sufficiency 3.1. Sufficient statistics

Sufficient statistics

The concept of sufficiency addresses the question

“Is there a statistic T (X) that in some sense contains all the information about θ
that is in the sample?”

Example 3.1

X1, . . . ,Xn iid Bernoulli(θ), so that P(Xi =1) = 1− P(Xi =0) = θ for some
0 < θ < 1.

So fX(x | θ) =
∏n

i=1 θ
xi (1− θ)1−xi = θ

∑
xi (1− θ)n−

∑
xi .

This depends on the data only through T (x) =
∑

xi , the total number of ones.

Note that T (X) ∼ Bin(n, θ).

If T (x) = t, then

fX|T=t(x | T = t) =
Pθ(X=x,T = t)

Pθ(T = t)
=

Pθ(X=x)

Pθ(T = t)
=
θ
∑

xi (1− θ)n−
∑

xi
(
n
t

)
θt(1− θ)n−t

=

(
n

t

)−1

,

ie the conditional distribution of X given T = t does not depend on θ.

Thus if we know T , then additional knowledge of x (knowing the exact sequence
of 0’s and 1’s) does not give extra information about θ. �
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3. Sufficiency 3.1. Sufficient statistics

Definition 3.1

A statistic T is sufficient for θ if the conditional distribution of X given T does
not depend on θ.

Note that T and/or θ may be vectors. In practice, the following theorem is used
to find sufficient statistics.
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3. Sufficiency 3.1. Sufficient statistics

Theorem 3.2

(The Factorisation criterion) T is sufficient for θ iff fX(x | θ) = g(T (x), θ)h(x) for
suitable functions g and h.

Proof (Discrete case only)

Suppose fX(x | θ) = g(T (x), θ)h(x).

If T (x)= t then

fX|T=t(x | T = t) =
Pθ(X=x,T (X)= t)

Pθ(T = t)
=

g(T (x), θ)h(x)∑
{x′:T (x′)=t} g(t, θ)h(x′)

=
g(t, θ)h(x)

g(t, θ)
∑
{x′:T (x′)=t} h(x′)

=
h(x)∑

{x′:T (x′)=t} h(x′)
,

which does not depend on θ, so T is sufficient.

Now suppose that T is sufficient so that the conditional distribution of X | T = t
does not depend on θ. Then

Pθ(X = x) = Pθ(X = x,T (X) = t(x)) = Pθ(X = x | T = t)Pθ(T = t).

The first factor does not depend on θ by assumption; call it h(x). Let the second
factor be g(t, θ), and so we have the required factorisation. �
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Example 3.1 continued

For Bernoulli trials, fX(x | θ) = θ
∑

xi (1− θ)n−
∑

xi .

Take g(t, θ) = θt(1− θ)n−t and h(x) = 1 to see that T (X) =
∑

Xi is sufficient
for θ. �

Example 3.2

Let X1, . . . ,Xn be iid U[0, θ].

Write 1[A] for the indicator function of A.

We have

fX(x | θ) =
n∏

i=1

1

θ
1[0≤xi≤θ] =

1

θn
1[maxi xi≤θ]1[mini xi≥0].

Then T (X) = maxi Xi is sufficient for θ. �
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Minimal sufficient statistics

Sufficient statistics are not unique. If T is sufficient for θ, then so is any (1-1)
function of T .

X itself is always sufficient for θ; take T(X) = X, g(t, θ) = fX(t | θ) and h(x) = 1.
But this is not much use.

The sample space X n is partitioned by T into sets {x ∈ X n : T (x) = t}.
If T is sufficient, then this data reduction does not lose any information on θ.

We seek a sufficient statistic that achieves the maximum-possible reduction.

Definition 3.3

A sufficient statistic T (X) is minimal sufficient if it is a function of every other
sufficient statistic:
i.e. if T ′(X) is also sufficient, then T ′(X) = T ′(Y)→ T (X) = T (Y)
i.e. the partition for T is coarser than that for T ′.
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Minimal sufficient statistics can be found using the following theorem.

Theorem 3.4

Suppose T = T (X) is a statistic such that fX(x; θ)/fX(y; θ) is constant as a
function of θ if and only if T (x) = T (y). Then T is minimal sufficient for θ.

Sketch of proof : Non-examinable

First, we aim to use the Factorisation Criterion to show sufficiency. Define an
equivalence relation ∼ on X n by setting x ∼ y when T (x) = T (y). (Check that this is
indeed an equivalence relation.) Let U = {T (x) : x ∈ X n}, and for each u in U , choose a
representative xu from the equivalence class {x : T (x) = u}. Let x be in X n and suppose
that T (x) = t. Then x is in the equivalence class {x′ : T (x′) = t}, which has
representative xt , and this representative may also be written xT (x). We have x ∼ xt , so

that T (x) = T (xt), ie T (x) = T (xT (x)). Hence, by hypothesis, the ratio fX(x;θ)
fX(xT (x);θ)

does

not depend on θ, so let this be h(x). Let g(t, θ) = fX(xt , θ). Then

fX(x; θ) = fX(xT (x); θ)
fX(x; θ)

fX(xT (x); θ)
= g(T (x), θ)h(x),

and so T = T (X) is sufficient for θ by the Factorisation Criterion.
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Next we aim to show that T (X) is a function of every other sufficient statistic.

Suppose that S(X) is also sufficient for θ, so that, by the Factorisation Criterion, there
exist functions gS and hS (we call them gS and hS to show that they belong to S and to
distinguish them from g and h above) such that

fX(x; θ) = gS(S(x), θ)hS(x).

Suppose that S(x) = S(y). Then

fX(x; θ)

fX(y; θ)
=

gS(S(x), θ)hS(x)

gS(S(y), θ)hS(y)
=

hS(x)

hS(y)
,

because S(x) = S(y). This means that the ratio fX(x;θ)
fX(y;θ)

does not depend on θ, and this

implies that T (x) = T (y) by hypothesis. So we have shown that S(x) = S(y) implies

that T (x) = T (y), i.e T is a function of S . Hence T is minimal sufficient. �
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Example 3.3

Suppose X1, . . . ,Xn are iid N(µ, σ2).

Then

fX(x | µ, σ2)

fX(y | µ, σ2)
=

(2πσ2)−n/2 exp
{
− 1

2σ2

∑
i (xi − µ)2

}

(2πσ2)−n/2 exp
{
− 1

2σ2

∑
i (yi − µ)2

}

= exp

{
− 1

2σ2

(∑

i

x2
i −

∑

i

y 2
i

)
+

µ

σ2

(∑

i

xi −
∑

i

yi

)}
.

This is constant as a function of (µ, σ2) iff
∑

i x2
i =

∑
i y 2

i and
∑

i xi =
∑

i yi .

So T (X) =
(∑

i X 2
i ,
∑

i Xi

)
is minimal sufficient for (µ, σ2). �

1-1 functions of minimal sufficient statistics are also minimal sufficient.

So T′(X) == (X̄ ,
∑

(Xi − X̄ )2) is also sufficient for (µ, σ2), where X̄ =
∑

i Xi/n.

We write SXX for
∑

(Xi − X̄ )2.
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Notes

Example 3.3 has a vector T sufficient for a vector θ. Dimensions do not have
to the same: e.g. for N(µ, µ2), T (X) =

(∑
i X 2

i ,
∑

i Xi

)
is minimal sufficient

for µ [check]

If the range of X depends on θ, then ”fX(x; θ)/fX(y; θ) is constant in θ”
means ”fX(x; θ) = c(x, y) fX(y; θ)”
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The Rao–Blackwell Theorem

The Rao–Blackwell theorem gives a way to improve estimators in the mse sense.

Theorem 3.5

(The Rao–Blackwell theorem)
Let T be a sufficient statistic for θ and let θ̃ be an estimator for θ with
E(θ̃2) <∞ for all θ. Let θ̂ = E

[
θ̃ |T

]
. Then for all θ,

E
[
(θ̂ − θ)2

]
≤ E

[
(θ̃ − θ)2

]
.

The inequality is strict unless θ̃ is a function of T .

Proof By the conditional expectation formula we have Eθ̂ = E
[
E(θ̃ |T )

]
= Eθ̃, so

θ̂ and θ̃ have the same bias. By the conditional variance formula,

var(θ̃) = E
[
var(θ̃ |T )

]
+ var

[
E(θ̃ |T )

]
= E

[
var(θ̃ |T )

]
+ var(θ̂).

Hence var(θ̃) ≥ var(θ̂), and so mse(θ̃) ≥ mse(θ̂), with equality only if
var(θ̃ |T ) = 0. �
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Notes

(i) Since T is sufficient for θ, the conditional distribution of X given T = t does
not depend on θ. Hence θ̂ = E

[
θ̃(X) |T

]
does not depend on θ, and so is a

bona fide estimator.

(ii) The theorem says that given any estimator, we can find one that is a function
of a sufficient statistic that is at least as good in terms of mean squared error
of estimation.

(iii) If θ̃ is unbiased, then so is θ̂.

(iv) If θ̃ is already a function of T , then θ̂ = θ̃.
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Example 3.4

Suppose X1, . . . ,Xn are iid Poisson(λ), and let θ = e−λ ( = P(X1 =0)).

Then pX(x |λ) =
(
e−nλλ

∑
xi
)
/
∏

xi !, so that pX(x |θ) =
(
θn(− log θ)

∑
xi
)
/
∏

xi !.

We see that T =
∑

Xi is sufficient for θ, and
∑

Xi ∼ Poisson(nλ).

An easy estimator of θ is θ̃ = 1[X1=0] (unbiased) [i.e. if do not observe any events
in first observation period, assume the event is impossible!]

Then

E
[
θ̃ |T = t

]
= P

(
X1 =0 |

n∑

1

Xi = t
)

=
P(X1 =0)P

(∑n
2 Xi = t

)

P
(∑n

1 Xi = t
)

(
n − 1

n

)t

(check).

So θ̂ = (1− 1
n )

∑
Xi . �

[Common sense check: θ̂ = (1− 1
n )nX ≈ e−X = e−λ̂]
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Example 3.5

Let X1, . . . ,Xn be iid U[0, θ], and suppose that we want to estimate θ. From
Example 3.2, T = max Xi is sufficient for θ. Let θ̃ = 2X1, an unbiased estimator
for θ [check].

Then

E
[
θ̃ |T = t

]
= 2E

[
X1 | max Xi = t

]

= 2
(
E
[
X1 | max Xi = t,X1 =max Xi

]
P(X1 =max Xi )

+E
[
X1 | max Xi = t,X1 6=max Xi

]
P(X1 6=max Xi )

)

= 2
(
t × 1

n
+

t

2

n − 1

n

)
=

n + 1

n
t,

so that θ̂ = n+1
n max Xi . �

In Lecture 4 we show directly that this is unbiased.

N.B. Why is E
[
X1 | max Xi = t,X1 6=max Xi

]
= t/2?

Because
fX1 (x1 | X1 < t) =

fX1
(x1,X1<t)

P(X1<t) =
fX1

(x1)1[0≤X1<t]

t/θ =
1/θ×1[0≤X1<t]

t/θ = 1
t 1[0≤X1<t], and so

X1 | X1 < t ∼ U[0, t].
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