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Abstract. A neat question involving coin flips surfaced on X, and generated an intensive
outbreak of ‘social mathematics’. In a sequence of flips of a fair coin, Alice wins a point
at each appearance of two consecutive heads, and Bob wins a point whenever a head is
followed immediately by a tail. Who is more likely to win the game? The subsequent
discussion illustrated conflicting intuitions, and concluded with the correct answer (it is a
close thing). It is explained here why the context of the question is interesting and how it
may be answered in a quantitative manner using the probabilistic techniques of reversal,
coupling, and renewal.

1. The problem

Question 1.1. A fair coin is tossed n times. Alice scores one point at each appearance of
two consecutive heads, and Bob scores one point each time a head is followed immediately
by a tail. The winner is the player who accumulates more points. Who is the more likely
to win?

Here are some intuitive arguments in order of decreasing naiveté.

(a) In any pair of consecutive coin tosses, Alice wins a point with probability 1
4
, and

Bob wins a point with the same probability. Therefore, each has a mean total score
of 1

4
(n − 1). Since these means are equal, each player has the same probability of

winning.
(b) Alice’s points tend to arrive in clusters, whereas Bob’s are isolated. That favours

Alice, so she is more likely to win.
(c) When Alice wins a point, she has an increased chance of winning again. Therefore,

she tends to win the game by a wider margin than Bob. However, her mean total
is the same as Bob’s. It follows that Bob has a greater chance of winning.

This question (with n = 100) was posed by Daniel Litt on his X feed [8] on 16 March
2024. At the current time of writing, his post has attracted 1.2M views. First responders
tended to favour Alice above Bob on the grounds of argument (b), and a vote was reported
as placing Alice (26.3%) over Bob (10.2%), with 42.8% of the 51,588 voters supporting
equality. Later simulations appeared to show that Bob has a slight advantage.

ChatGPT has changed its position on the question over the intervening months. Initially
it favoured Alice on the grounds given in (b) above. At the time of writing it has veered
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towards (a), with the conclusion that “The game is fair to both players in terms of expected
outcomes.” Fair enough, but not very helpful. There remains hope for mathematicians.

More complete answers began to surface on Litt’s X feed fairly soon after the original
post, and suggestions were made for rigorous proof (see Remark 1.4 below). It is not easy
to convey the details and to check the correctness of a mathematical argument within the
format confines of X, and hence this note. We present three conclusions.

Theorem 1.2. Consider n flips of a fair coin.

(a) Bob is (strictly) more likely than Alice to win when n ≥ 3.
(b) P(Bob wins)− P(Alice wins) ∼ c/

√
n as n→ ∞, where

c =
1

2
√
π
≈ 0.282.

(c) The probability of a tie is asymptotically 2c/
√
n, with c as in part (b).

Explicit representations for the probabilities in (b) and (c) are given in equations (3.6)–
(3.7). Parts (b) and (c) imply that

(1.1)
1

2
− P(B wins) ∼ c

2
√
n
,

1

2
− P(A wins) ∼ 3c

2
√
n
.

It is immediate that Alice and Bob are equally likely to win when n = 1, 2; by considering
the eight possible outcomes when n = 3, we have P(Bob wins)− P(Alice wins) = 1

8
.

The methods of proof may be summarised as reversal, coupling, and renewal, and the
proof of Theorem 1.2 illustrates these standard techniques. Reversing a random sequence is
a long-established activity which has contributed enormously to probability and especially
to the theory of random walks (see, for example, [7, Sect. 3.10]). The coupling approach
enables us to study the ‘pathwise’ relationship between winning sequences for Alice and
for Bob, rather than by simply calculating probabilities (see, for example, [7, Sect. 4.12]).
Renewal theory is the study of random processes that renew themselves at random times
(see for example, [7, Chap. 10]).

Remark 1.3. The above problem may be phrased as ‘HT vs HH’. The methods described
here yield the same conclusions for TH vs HH, for the following reason. Take a sequence
ω of heads/tails and reverse it in time to obtain ρ(ω). Then ω and ρ(ω) have the same
probability distribution, and the same count of consecutive head pairs HH. However, every
HT in ω becomes TH in ρ(ω).

As mathematicians we insist on unambiguous definitions of the objects of our study.
One may capture pretty well all of probability theory by defining it as the theory of a
countably infinite sequence of tosses of a fair coin. Perhaps not everything worth knowing
is yet known about this primeval experiment.

Remark 1.4. The target of this note is to obtain Theorem 1.2 using probabilistic methods.
Since writing it, we have learned of related contributions available online. The idea of
reversal has arisen in certain contributions on X to Litt’s post. Mention is made also of
[5] (using symbolic computation) and [11] (using analysis); each of these works includes a
version of Theorem 1.2.
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2. Notation and basic observations

Here is some notation. Abbreviate Alice to A, and Bob to B; write H for a head and
T for a tail. Let N denote the natural numbers, and let Ω∞ = {H,T}N be the set of all
sequences ω = (ω1, ω2, . . . ) each element of which is either H or T. We shall normally
express such sequences as ω = ω1ω2 · · · . Similarly, Ωn := {H,T}n, the set of all sequences
of n coin tosses.

Let ω ∈ Ω∞. Player A scores −1 at each appearance of HH; player B scores 1 at each
appearance of HT. The score Sk(ω) is the aggregate score after k steps of ω, that is,
Sk(ω) is the number of appearances of HT minus the number of appearances of HH in the
subsequence ω1ω2 · · ·ωk.

Here is an outline of the method to be followed here. First, one defines epochs of renewal,
at which the scoring process restarts. Neither player scores until the first appearance of H.

(i) If the following flip is T then Bob enters a winning period (of some length lB),
which lasts until the next time that the aggregate score is 0; this must happen at
an appearance of HH.

(ii) If the following flip is H then Alice enters a winning period (of some length lA),
which lasts until the next time that the aggregate score is 0; this must happen at
an appearance of HT.

The process then restarts (subject to certain details to be made specific). After n coin
flips, Alice is winning if she is then in a winning period, and similarly for Bob. Ties occur
between winning periods. We will see that the representative periods lA, lB are such that
lA is (stochastically) smaller than lB, and Theorem 1.2(a) will follow.

The stochastic domination is proved by displaying a concrete coupling of lA and lB. The
above explanation is given in more detail in Section 4.

The asymptotic part (b) of Theorem 1.2 is of course connected to the local central limit
theorem (see, for example, [7, p. 219]). It suffices to use the earliest such theorem ever
proved, namely the 1733 theorem of de Moivre [3, 10] (see also [4, p. 243–254] and [12,
Thm 1.1]), although one may equally use the (de Moivre–)Stirling formula alone (see the
historical note [9]).

We have assumed implicitly in the above that the lengths lA, lB are finite (almost surely),
and this requires proof. It follows from the next lemma.

Let P be the probability measure on Ω∞ under which the coin tosses are independent
random variables, each being H (respectively, T) with probability 1

2
. An event E is said

to occur almost surely if P(E) = 1.

Lemma 2.1. The number of times r at which the aggregate score satisfies Sr(ω) = 0 is
infinite almost surely.

Remark 2.2. Many of the arguments of this note are valid in the more general setting
where heads occurs with some probability p ∈ (0, 1). However, the conclusion of Lemma
2.1 is false when p ̸= 1

2
, and indeed P(A wins) approaches 1 if p > 1

2
, and approaches 0 if

p < 1
2
, in the limit as the number of coin flips grows to ∞.
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Proof of Lemma 2.1. Write 1[A] for the indicator function of an event A. The score S(r)
after r appearances of T forms a random walk with typical jump-size ∆ = (2−R)1[R ≥ 1]
where R is the length of a typical run of heads; we allow R = 0, so that P(R = r) = (1

2
)r+1

for r ≥ 0. Now,

E(∆) =
∞∑
r=1

(2− r)
(
1
2

)r+1
= 0.

By a classical theorem of Chung and Fuchs [1] (see, for example, [7, Thm 5.10.16]) this
random walk is recurrent, and therefore the set {r : S(r) = 0} is almost surely infinite. □

3. Proof of Theorem 1.2(a)

A finite sequence ω = ω1 · · ·ωk is called

a B-excursion if it starts HT and ends HH, and satisfies:

Sl(ω) > 0 for 1 < l < k, and Sk(ω) = 0,

an A-excursion if it starts HH and ends HT, and satisfies:

Sl(ω) < 0 for 1 < l < k, and Sk(ω) = 0,

an Â-excursion it comprises an A-excursion followed by a (possibly empty)

run of tails and then a single head.

We write B for the set of B-excursions, and Bk for those of length k, with similar notation
for A-excursions and Â-excursions (using the notation A and Â, respectively).

Â-excursions are introduced for the following reason. Players A and B can score only
following an appearance of H. We shall use an embedded renewal argument, and to that
end it is convenient that excursions finish with a head. Since an A-excursion ends with a
tail, we simply extend it to include any following run of tails, followed by the subsequent
head; this extension contains neither HH nor HT and hence the score of the excursion is
unchanged.

Remark 3.1. A headrun (respectively, tailrun) is a maximal consecutive sequence of heads
(respectively, tails). Any finite sequence ω comprises alternating headruns and tailruns.
Alice’s score equals the number of heads minus the number of headruns. Bob’s score equals
the number of tailruns having a preceding head. Let h be the total number of heads, and r
the total number of runs (each comprising either heads or tails). The aggregate score S(ω)
equals r − h if ω1 = H (respectively, r − 1− h if ω1 = T).

We define sequence-reversal next. Let Φ =
⋃∞

k=1Ωk be the set of all non-empty finite
sequences, and let ΦH be the subset of Φ containing all finite sequences that begin H. For
ω ∈ Φ, we write S(ω) for the aggregate score of ω. The score function is additive in the
sense that

(3.1) S(ω1 · · ·ωm+n) = S(ω1 · · ·ωm) + S(ωm · · ·ωm+n), m, n ≥ 1.

For a finite sequence ω = ω1ω2 . . . ωk ∈ Φ, define its reversal ρ(ω) by ρ(ω) = ωkωk−1 . . . ω1.

Lemma 3.2.

(a) If ω = ω1 · · ·ωk ∈ ΦH ends in H (so that ω1 = ωk = H), then S(ω) = S(ρ(ω)).
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(b) Let k ≥ 2. The mapping ρ is a measure-preserving bijection between the sets Bk

and Âk.

Proof. (a) Let ω ∈ ΦH end in H, so that ρ(ω) ∈ ΦH. By Remark 3.1, S(ω) equals the
number of runs minus the number of heads. These counts are invariant under ρ.

(b) A B-excursion b = b1b2 · · · bk ∈ Bk has the form b = HTrH · · ·HH for some r ≥ 1,
whence ρ(b) = bkbk−1 · · · b1 has the form HH · · ·HTrH. By part (a), S(ρ(b)) = S(b) = 0,
which implies

(3.2) S(bkbk−1 · · · br+2) = 0.

We claim that

(3.3) S(bkbk−1 · · · bj) < 0 for j ∈ [r + 3, k − 1].

Suppose, on the contrary, that j ∈ [r + 3, k − 1] is such that S(bkbk−1 · · · bj) = 0. Then
s = max{t ≤ j : ωt = H} is such that s ≥ r + 2 and S(bkbk−1 · · · bs) = 0. By part (a) and
the fact that b ∈ Bk, we have S(bsbs+1 · · · bk) = S(bkbk−1 · · · bs) = 0. By the additivity of
S, (3.1),

S(b1b2 · · · bs) = S(b1b2 · · · bk)− S(bsbs+1 · · · bk) = 0,

in contradiction of the assumption that b is a B-excursion, and (3.3) follows.

By (3.2)–(3.3), bkbk−1 · · · br+2 is an A-excursion, and hence ρ(b) is an Â-excursion. There-
fore, ρ is an injection. By the same argument applied to ρ−1, we have that ρ is a surjection.
The measure-preserving property follows from the fact that ω and ρ(ω) have the same num-
bers of heads and tails. □

We make three observations, in amplification of the remarks of the last section. Let
ω ∈ Ω∞, and observe the initial evolution of scores.

(a) There is no score until the first H appears. LetM be the position of the first H, and
note that P(M = m) = (1

2
)m for m ≥ 1. That is, there is an initial sequence of tails

of some random length M − 1 (≥ 0), followed by a head (so that ω = TM−1H · · · ).
Following this head, there is equal probability of H or T.

(b) If the next toss is T (which is to say that ωM+1 = T), then Bob scores one point. He
remains in the lead until the next epoch, M +N say, at which the aggregate score
equals 0. It must be the case that ωM+N−1ωM+N = HH, and thus the sequence
ωM · · ·ωM+N is a B-excursion. The process restarts from H at time M +N .

(c) Suppose the next toss is H (i.e., ωM+1 = H). The situation is slightly more compli-
cated in this case. At time M + 1, Alice leads by 1, and she continues in the lead
until the next epoch, M +Q say, when the aggregate score equals 0, and moreover
ωM+Q−1ωM+Q = HT. Thus the sequence ω1 · · ·ωM+Q is an A-excursion. Whereas
in (b) the process restarts from the state ωM+N = H, this time we have ωM+Q = T,
and we wait a random period of time for the next H. As in (a), there is a run
of tails before the next head, which is to say that the process restarts from the
head at epoch M +Q+M ′ where M ′ is an independent copy of M . The sequence
ωM · · ·ωM+N+M ′ is an Â-excursion.

We shall adjoin certain sequences by placing them in tandem, and we write either ψ1ψ2

or ψ1 · ψ2 for ψ1 followed by ψ2. When scoring ψ2, viewed as a subsequence of ψ1ψ2, one



6 GEOFFREY R. GRIMMETT

takes account of the final character of ψ1, which will typically be H in the cases studied
here. In order to do the necessary book-keeping we introduce the following notation: if ψ
is a sequence beginning H, we write H−1ψ for the sequence obtained from ψ by removing
its initial H.

Let (τi : i ≥ 1) be a sequence of independent random elements of A, and let Qi+1 be the
length of τi (so that H−1τi has length Qi). The τi are almost surely finite, by Lemma 2.1.
Let (Mi : i ≥ 0) be independent copies ofM , also independent of the Qi. Let Ni = Qi+Mi,
and let Li = TMi−1H.

We have that τiLi is a random element of Â of length Qi +Mi + 1. By Lemma 3.2,
ρ(τiLi) is a random element of B of length Qi +Mi + 1. We define

the Â-excursion αi := τiLi,

the B-excursion βi := ρ(τiLi).

Thus βi is a simple reversal of αi, and this fact will provide a coupling of Â-excursions and
B-excursions which is length-conserving in that αi and βi have the same length.

Both αi and βi start and end with H; when placing them in tandem we shall strip the
initial H. Another way of expressing (a)–(c) is as follows.

(i) A random sequence of coin tosses begins L0.
(ii) This is followed by

γ1 :=

{
H−1α1 with probability 1

2
,

H−1β1 with probability 1
2
.

(iii) Let k ≥ 2, and suppose αi, βi have been constructed for i = 1, 2, . . . , k. We then
let

(3.4) γk+1 :=

{
H−1αk+1 with probability 1

2
,

H−1βk+1 with probability 1
2
.

Note that the length of γi is Qi +Mi.

Lemma 3.3. The sequence X = L0γ1γ2 · · · is an independent sequence of fair coin tosses.

This does not require proof beyond the above remarks. The lemma provides a represen-
tation of a random sequence in terms of an initial tailrun, followed by independent copies
of γ1 in tandem. Each γi occupies a time-slot, and within this slot there appears a sequence
of coin-tosses; according to the flip of another fair coin, we either retain this sequence or
we reverse it (see (3.4)). (Some minor details concerning initial and final heads are omitted

from this overview). Lemma 3.3 provides the setting for a coupling of Â-excursions and
B-excursions.

Proof of Theorem 1.2(a). Let X be as in Lemma 3.3. For a finite subsequence δ =
XrXr · · ·Xs, write δ = {r, r+1, . . . , s} for the set of times spanned by δ, and δ◦ = δ \ {s}.
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Let n ≥ 3, and find the unique I such that n ∈ γI (write I = 0 if n ∈ L0). At epoch n,

(3.5)

Sn = 0 if I = 0,

Sn > 0 if I ≥ 1, HγI = βI ∈ B and n ∈ β◦
I ,

Sn < 0 if I ≥ 1, HγI = τILI ∈ Â and n ∈ τ ◦I ,

Sn = 0 if none of the above conditions hold.

Recalling (3.4), it follows that

P(Sn > 0)− P(Sn < 0) = 1
2

[
P(I ≥ 1, n ∈ β◦

I )− P(I ≥ 1, n ∈ τ ◦I )
]

(3.6)

= 1
2
P(I ≥ 1, n ∈ β◦

I \ τ ◦I ) ≥ 0.

The strict positivity of the last probability (with n ≥ 3) follows by consideration of se-
quences beginning H2TmH · · · with m ≥ n, for which M0 = 1, M1 = m, and γ1 = HTmH.
Thus, τ1 = HHT, and the interval β◦

1 \ τ ◦1 = {3,m+ 2} contains the value n. □

The probability of a tie is derived similarly to (3.6) as

(3.7) P(Sn = 0) = P(I = 0) + P(I ≥ 1, n ∈ βI \ β◦
I ) +

1
2
P(I ≥ 1, n ∈ β◦

I \ τ ◦I ).
From (3.6)–(3.7) (as in (1.1)) one obtains representations for P(Sn > 0) and P(Sn < 0).

4. Proof of Theorem 1.2(b, c)

Let R be a renewal process with inter-renewal times distributed as L0 · H−1τ1, and let
πm := P(m ∈ R). By the renewal property, conditional on the event {m ∈ R}, the
sequence ψm,n := Xm+1Xm+2 · · ·Xn is a sequence of independent coin flips. Since the
events {m ∈ R, ψm,n = Tn−m}, m = 1, 2, . . . , n, are disjoint, we have by (3.6) that

P(Sn > 0)− P(Sn < 0) =
1

2

n∑
m=3

P(m ∈ R, ψm,n = Tn−m)(4.1)

=
n−3∑
k=0

(1
2
)k+1πn−k.

Theorem 1.2(b) follows once the following has been proved.

Proposition 4.1. We have that πm ∼ c/
√
m as m→ ∞, where c = 1/(2

√
π) ≈ 0.282.

The proof uses the de Moivre local central limit theorem (as in [12]), though this amounts
only to sustained use of the (de Moivre–)Stirling formula, [9]. An outline of the proof of
Theorem 1.2(c) is included after that of the proposition.

Proof. We call r ≥ 1 a τ -endtime if, for some i ≥ 1, r is the final end-time of τi (otherwise
written, r ∈ τi \ τ ◦i ). Let RX be the set of τ -endtimes. It is immediate that R ⊆ RX .
Moreover, by (3.4), any r ∈ RX satisfies r ∈ R with probability 1

2
(these events being

independent for different r). Therefore,

(4.2) P(m ∈ R) = 2P(m ∈ RX), m ≥ 1.

By Lemma 3.3, the event {m ∈ RX} is the subset of all ω ∈ Ωm satisfying ωm−1ωm = HT
and S(ω) = 0. Let h be the number of heads, and r the number of runs (of either heads
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or tails). If r is even, (respectively, odd), then such sequences begin H (respectively, T),
and they invariably finish with a tailrun of exactly one tail. By Remark 3.1, since the
aggregate score is 0, we have h = r if r is even, and h = r − 1 if r is odd.

We use the fact that the number of p-partitions of the integer q is
(
q−1
p−1

)
. By partitioning

the heads and tails into r runs subject to the above, and interleaving headruns and tailruns,
we obtain that

|{m ∈ RX}| = Σ1 + Σ2

where

Σ1 =
∑
r odd

(
m− h− 2
1
2
(r + 1)− 2

)(
h− 1

1
2
(r − 1)− 1

)
=

∑
r odd

(
m− r − 1
1
2
(r − 3)

)(
r − 2

1
2
(r − 3)

)
,

Σ2 =
∑
r even

(
m− h− 2

1
2
r − 2

)(
h− 1
1
2
r − 1

)
=

∑
r even

(
m− r − 2

1
2
r − 2

)(
r − 1
1
2
r − 1

)
.

Set r = 2s+ 1 (respectively, r = 2s) in Σ1 (respectively, Σ2) and add to obtain

|{m ∈ RX}| =
∞∑
s=2

[(
m− 2s− 2

s− 1

)
+

(
m− 2s− 2

s− 2

)](
2s− 1

s− 1

)
(4.3)

=
∞∑
s=2

(
m− 2s− 1

s− 1

)(
2s− 1

s− 1

)
.

Therefore,

(4.4) P(m ∈ RX) = 2−m|{m ∈ RX}| =
1

4

∞∑
s=2

P(Tm−2s−1 = s− 1)P(T2s−1 = s− 1),

where Tk has the binom(k, 1
2
) distribution. By Stirling’s formula (or [12, Thm 1.1]),

(4.5) P (T2s−1 = s− 1) ∼ 1√
πs

as s→ ∞.

We may occasionally use real numbers in the following where integers are expected. The
term P(Tm−2s−1 = s− 1) in (4.4) is a maximum when m− 2s− 1 = 2(s− 1), which is to
say that s = 1

4
(m + 1). Let γ ∈ (1

2
, 2
3
). We may restrict the summation in (4.4) to values

of s satisfying |s− 1
4
m| < mγ. To see this, note that∑

s≥ 1
4
m+mγ

P(Tm−2s−1 = s− 1) ≤
∑

s≥ 1
4
m+mγ

P(Tm/2 ≥ s− 1),

which tends to 0 as m → ∞ by the moderate-deviation theorem of Cramér [2] (or, for a
more modern treatment, see Feller [6, p. 549]). We have used the fact that Tk is stochas-
tically increasing in k. A similar argument applies for s ≤ 1

4
m−mγ.

Suppose |s− 1
4
m| < mγ. By [12, Thm 1.2], there is an absolute constant C such that∣∣∣∣∣P(Tm−2s−1 = s− 1)−

√
2

π(m− 2s− 1)
exp

(
− (4s−m− 1)2

2(m− 2s− 1)

)∣∣∣∣∣ ≤ C

m2/3
.
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It follows that ∑
|s− 1

4
m|<mγ

P(Tm−2s−1 = s− 1)

deviates from

Ψm :=
∑

|s− 1
4
m|<mγ

√
2

π(m− 2s− 1)
exp

(
− (4s−m− 1)2

2(m− 2s− 1)

)
by at most C(2mγ + 1)/m2/3, which tends to 0. Express Ψm as an integral, make the
change of variable

β =
4s−m− 1√
m− 2s− 1

and let m→ ∞ to obtain, by the dominated convergence theorem, that

Ψm → 1

2

∫ ∞

−∞

1√
2π
e−

1
2
β2

dβ =
1

2
.

Therefore, the terms P(Tm−2s−1 = s− 1) in (4.4) are (asymptotically) concentrated in the
interval 1

4
m±mγ, with total weight 1

2
. Hence, by (4.2) and (4.4)–(4.5),

πm ∼ 2

8
√
πm/4

=
1

2
√
πm

,

as claimed. □

Outline proof of Theorem 1.2(c). One may deduce (c) from (3.7) by adapting the argument
leading to (4.1). Alternatively, one may perform a direct calculation as above, and there
follows a sketch of this. Let Zm be the set of vectors ω ∈ Ωm such that S(ω) = 0. Elements
ω ∈ Zm may be expressed as interleaved headruns and tailruns, with the counts of heads
and tailruns being balanced by the condition S(ω) = 0 (see Remark 3.1). Such ω may
start with either H or T, and each case leads to two terms as in the first line of (4.3).
Thus, |Zm| is the sum of four terms, each being the product of two binomial coefficients.
The analysis continues as in the above proof. □
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Industrielles 736 (1938), 2–23, transl. H. Touchette, https://arxiv.org/abs/1802.05988.

[3] A. de Moivre, Approximatio ad Summam Terminorum Binomii a+ b
n
in Seriem expansi, (1733).

[4] , The Doctrine of Chances, 3rd ed., 1756, https://archive.org/details/

doctrineofchance00moiv/page/n5/mode/2up,.
[5] S. B. Ekhad and D. Zeilberger, How to answer questions of the type: if you toss a coin n times, how

likely is HH to show up more than HT?, (2024), https://arxiv.org/abs/2405.13561.

https://arxiv.org/abs/1802.05988
https://archive.org/details/doctrineofchance00moiv/page/n5/mode/2up
https://archive.org/details/doctrineofchance00moiv/page/n5/mode/2up
https://arxiv.org/abs/2405.13561


10 GEOFFREY R. GRIMMETT

[6] W. Feller, An Introduction to Probability Theory and its Applications. Vol. II, 2nd ed., John Wiley
& Sons., New York, 1971.

[7] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 4th ed., Oxford University
Press, 2020.

[8] D. Litt, (2024), https://x.com/littmath/status/1769044719034647001.
[9] K. Pearson, Historical note on the origin of the normal curve of errors, Biometrika 16 (1924), 402–404.
[10] K. Pearson, A. de Moivre, and R. C. Archibald, A Rare Pamphlet of Moivre and some of his Discover-

ies, Isis 8 (1926), 671–683, https://www.journals.uchicago.edu/doi/epdfplus/10.1086/358439.
[11] S. Segert, A proof that HT is more likely to outnumber HH than vice versa in a sequence of n coin

flips, (2024), https://arxiv.org/abs/2405.16660.
[12] Z. Szewczak and M. Weber, Classical and almost sure local limit theorems, Dissertationes Math. 589

(2023), 97 pp.

Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cam-
bridge CB3 0WB, UK

Email address: grg@statslab.cam.ac.uk

https://x.com/littmath/status/1769044719034647001
https://www.journals.uchicago.edu/doi/epdfplus/10.1086/358439
https://arxiv.org/abs/2405.16660

	1. The problem
	2. Notation and basic observations
	3. Proof of Theorem 1.2(a)
	4. Proof of Theorem 1.2(b,c)
	Acknowledgements
	References

