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Preface

Within the menagerie of objects studied in contemporary probability theory,
a number of related animals have attracted great interest amongst proba-
bilists and physicists in recent years. The inspiration for many of these
objects comes from physics, but the mathematical subject has taken on a
life of its own and many beautiful constructions have emerged. The overall
target of these notesisto identify some of these topics, and to devel op their
basic theory at alevel suitable for mathematics graduates.

If the two principal characters in these notes are random walk and per-
colation, they are only part of the rich theory of uniform spanning trees,
self-avoiding walks, random networks, models for ferromagnetism and the
spread of disease, and motion in random environments. Thisis an areathat
has attracted many fine scientists, by virtue, perhaps, of its special mixture
of modelling and problem-solving. There remain many open problems. It
is the experience of the author that these may be explained successfully to
agraduate audience open to inspiration and provocation.

The material described here may be used for personal study and also as
the bases of lecture courses of between 16 and 48 hours duration. Littleis
assumed about the mathematical background of the audience beyond some
basic probability theory, but students should be willing to get their hands
dirty if they areto profit. Careshould betakeninthe setting of examinations,
since problems can be unexpectedly difficult. Successful examinationsmay
be designed, and some help is offered through the inclusion of exercises
at the ends of chapters. As an alternative to a conventional examination,
students could be asked to deliver presentations on aspects and extensions
of the topics studied.

Chapter 1isdevoted totherel ationship between randomwalks(ongraphs)
and electrical networks. Thisleadsto the Thomson and Rayleigh principles,
and thenceto aproof of Polya stheorem. In Chapter 2, wedescribe Wilson's
algorithm for constructing a uniform spanning tree (UST), and we discuss
boundary conditions and weak limits for UST on a lattice. This chapter
includes a brief introduction to Schramm-L dwner evolutions (SLES).
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Percolation theory appearsfirst in Chapter 3, together with a short intro-
duction to self-avoiding walks. Correlation inequalities and other general
techniques are described in Chapter 4. A specia feature of this part of the
book isafairly full treatment of influence and sharp-threshold theoremsfor
product measures, and more generally for monotone measures.

We return to the basic theory of percolationin Chapter 5, including afull
account of Smirnov’s proof of Cardy’sformula. Thisisfollowed in Chapter
6 by a study of the contact model on lattices and trees.

Chapter 7 begins with a proof of the equivalence of Gibbs states and
Markov fields, and continues with an introduction to the Ising and Potts
models. Chapter 8 contains an account of the random-cluster model. The
guantum Ising model featuresin the next chapter, particularly throughitsre-
|ationship to acontinuum random-cluster model and the consequent analysis
using stochastic geometry.

Interacting particle systems form the basis of Chapter 10. Thisisalarge
field in its own right, and little is done here beyond introductions to the
contact, voter, and exclusion models, and to the stochastic Ising model.
Chapter 11 is devoted to random graphs of Erdés—Reényi type. There are
accountsof the giant cluster, and of the chromatic number viaan application
of Hoeffding'sinequality for the tail of amartingale.

The final Chapter 12 contains one of the most notorious open problems
in stochastic geometry, namely the Lorentz model (or Ehrenfest wind-tree
model) on the square lattice.

Thistext is based in part on courses given by the author within Part 3 of
the Mathematical Tripos at Cambridge University over a period of several
years. They have been prepared in the present form as background mate-
rial for lecture courses presented to outstanding audiences of students and
professors at the 2008 PIMS-UBC Summer School in Probability and dur-
ing the programme on Statistical Mechanics at the Institut Henri Poincaré,
Paris, during the last quarter of 2008. The book was written in part during
avisit to the Mathematics Department at UCLA (with partial support from
NSF grant DM S-0301795), to which the author expresses his gratitude for
the warm welcome received there, and in part during programmes at the
Isaac Newton Institute and the Institut Henri Poincaré-Centre Emile Borel.

Throughout this work, pointers are included to more extensive accounts
of the topics covered. The selection of references is intended to be useful
rather than comprehensive.

The author thanks four artists for permission to include their work: Tom
Kennedy (Figure2.1), Oded Schramm (Figures 2.2—2.4), Raphaél Cerf (Fig-
ure5.2), and Julien Dubédat (Figure5.17). The section oninfluencehasben-
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efited from conversationswith Rob van den Berg and Tom Liggett. Stanislav
Smirnov and Wendelin Werner have consented to the inclusion of some of
their neat arguments, hitherto unpublished. Severa readers have proposed
suggestions and corrections. Thank you, everyone!

G.R.G.
Cambridge
April 2010

Preface to the Second Edition

The major additionsin this new edition include: a proof of the connective
constant of the hexagonal lattice (Theorem 3.14), an improved influence
theorem for general product spaces (Theorem 4.38), a streamlined proof of
exponential decay for subcritical percolation (Theorem 5.1), and a proof of
thecritical point of therandom-cluster model onthe squarelattice (Theorem
8.25).

The author is grateful to students and colleaguesfor their suggestionsfor
improvements. Special thanksare dueto Naser Talebizadeh Sardari, Claude
Bélisle, Svante Janson, and Russell Lyons. Some of the writing was done
during avisit to the Statistics Department of the University of Californiaat
Berkeley, with partial support from UC Berkeley and from the Engineering
and Physical Science Research Council under grant EP/103372X/1.

July 2017
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Random Walks on Graphs

The theory of electrical networks is a fundamental tool for studying
the recurrence of reversible Markov chains. The Kirchhoff laws and
Thomson principle permit aneat proof of Polya stheorem for random
walk on ad-dimensional grid.

1.1 Random Walks and Reversible Markov Chains

A basic knowledgeof probability theory isassumedin thisvolume. Readers
keento acquirethisarereferred to [150] for an elementary introduction, and
to[148] for asomewhat more advanced account. We shall generally usethe
letter P to denote ageneric probability measure, with more specific notation
when helpful. The expectation of a random variable f will be written as
either P(f) or E(f).

Only alittle knowledge is assumed about graphs, and many readers will
have sufficient acquaintance already. Others are advised to consult Section
1.6. Of the many books on graph theory, we mention [50].

LetG = (V, E) bealfiniteor countably infinitegraph, whichwegenerally
assume, for simplicity, to have neither loops nor multiple edges. If G is
infinite, we shall usually assume in addition that every vertex-degree is
finite. A particle moves around the vertex-set V. Having arrived at the
vertex S, at time n, its next position S,41 is chosen uniformly at random
from the set of neighbours of S,. The trgjectory of the particleis called a
symmetric randomwalk (SRW) on G.

Two of the basic questions concerning symmetric random walk are:

1. Under what conditionsisthe walk recurrent, in that it returns (almost

surely) to its starting point?

2. How does the distance between § and S, behaveasn — o00?

The above SRW is symmetric in that the jumps are chosen uniformly
from the set of available neighbours. In a more general process, we take a
function w : E — (0, 00), and we jump aong the edge e with probability
proportional to we.
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Any reversible Markov chain' on the set V givesrise to such awalk as
follows. Let Z = (Z, : n > 0) be a Markov chain on V with transition
matrix P, and assume that Z is reversible with respect to some positive
function : V — (0, o0), which isto say that

(11) TTuPu,v = Ty Po,us u,veV.
With each distinct pair u, v € V, we associate the weight

(1.2 Wy,v = Ttu Pu,v,
noting by (1.1) that wy,, = wy u. Then

w
(1-3) Puv = WL:)’ uvev,
where

Wu = Z Wu,v, ueV.

Thatis, giventhat Z, = u, thechainjumpsto anew vertex v with probability
proportional to wy ,. This may be set in the context of a random walk on
the graph with vertex-set V and edge-set E containing al e = (u, v) such
that py, > 0. With edge e € E we associate the weight we = wy,y.

In this chapter, we devel op the relationship between random walks on G
and electrical networks on G. There are some excellent accounts of this
subject area, and the reader is referred to the books of Doyle and Snell
[83], Lyonsand Peres[221], and Aldousand Fill [19], amongst others. The
connection between these two topics is made via the so-called ‘harmonic
functions' of the random walk.

1.4 Definition LetU < V, andlet Z beaMarkov chain onV with transi-
tion matrix P, that isreversible with respect to the positivefunctionz. The
function f : V — R isharmonicon U (with respect to P) if

fuy=> puf), uel,
veV
or, equivaently, if f(u) =E(f(Z1)| Zo=u) forue U.

From the pair (P, ), we can construct the graph G as above, and the
weight function w asin (1.2). We refer to the pair (G, w) as the weighted
graph associated with (P, 7). We shall speak of f as being harmonic (for
(G, w)) if it is harmonic with respect to P.

LAccounts of Markov chain theory are found in [148, Chap. 6] and [150, Chap. 12].
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The so-called hitting probabilities are basic examples of harmonic func-
tionsforthechan zZ. LetU CV, W=V \U,andse U. Forue V, let
g(u) bethe probability that the chain, started at u, hits s before W. That is,

g(u) = Py(Zn = sfor somen < Tw),

where
Tw=inf{n>0:2Z, e W}

is the first-passage time to W, and Py(-) = P(- | Zg = u) denotes the
conditional probability measure given that the chain starts at u.

1.5 Theorem The function g isharmonicon U \ {s}.

Evidently, g(s) = 1, and g(v) = O for v € W. We speak of these values
of g as being the ‘boundary conditions' of the harmonic function g. See
Exercise 1.13for the uniquenessof harmonic functionswith given boundary
conditions.

Proof. This is an elementary exercise using the Markov property. For
ugWuisl,

g(u) = Y puvPu(Zn = sfor somen < Tw | Z1 = v)
veV

= Z Pu,v9(v),

veV

asrequired. d

1.2 Electrical Networks

Throughout this section, G = (V, E) is afinite graph with neither loops
nor multiple edges, and w : E — (0, co) isaweight function on the edges.
We shall assume further that G is connected.

We may build an electrical network with diagram G, in which the edge
e has conductance we (or, equivalently, resistance 1/we). Let s,t € V
be distinct vertices termed sources, and write S = {s, t} for the source-set.
Supposewe connect abattery acrossthepair s, t. Itisaphysical observation
that electrons flow along the wiresin the network. The flow is described by
the so-called Kirchhoff laws, asfollows.

To each edge e = (u, v), there are associated (directed) quantities ¢y,
and iy ,, called the potential difference from u to v, and the current from u
to v, respectively. These are antisymmetric,

¢u,v = _¢v,us iu,v = _iv,u~



4 Random Walks on Graphs

1.6 Kirchhoff’spotential law Thecumulative potential differencearound
any cyclevs, vo, ..., vp, vnt1 = vy Of Giszero, thatis,

n
1.7) > by =0.
j=1

1.8 Kirchhoff’s current law The total current flowing out of any vertex
u € V other than the source-set is zero, that is,

(1.9) Y iuw=0,  u#st.

veV

The relationship between resistance/conductance, potential difference,
and current is given by Ohm'’s law.

1.10 Ohm’slaw For any edgee = (u, v),
iu,v = w€¢u,v-

Kirchhoff’s potential law is equivalent to the statement that there exists
afunction ¢ : V — R, called a potential function, such that

Gup =@ (v) —P(U), (u,v) € E.

Since ¢ is determined up to an additive constant, we are free to pick the
potential of any singlevertex. Note our conventionthat current flows uphill:
iu,y hasthe samesignas ¢y, = ¢ (v) — p(U).

1.11 Theorem A potential function is harmonic on the set of all vertices
other than the source-set.

Proof. Let U = V \ {s, t}. By Kirchhoff’s current law and Ohm’s law,
> wuulp) = pW)] =0, ueu,

veV

which isto say that

bW =Y Frow).  ue.
veV

W, = Z Wy,p-

Thatis, ¢ isharmonicon U. O

where
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We can use Ohm’s law to express potential differencesin terms of cur-
rents, and thusthetwo Kirchhoff lawsmay beviewed asconcerning currents
only. Equation (1.7) becomes

n

[
(1.12) Z Ui,
=1 W(vj,vj41)
valid for any cyclevs, vo, ..., vn, vne1 = v1. With (1.7) written thus, each

law islinear in the currents, and the superposition principle follows.

1.13 Theorem (Superposition principle) Ifil andi? are solutions of the
two Kirchhoff laws with the same source-set then so isthe sumi® + 2.

Next we introduce the concept of a‘flow’ on a graph.

1.14 Definition Let s,t € V, s # t. Ans/t-flow j isavector | =
(juv 1 U, v €V, U= v), suchthat:
(a) ju,v = _jv,u,
(b) ju,v = Owhenever u < v,
(c) forany u # s, t,wehavethat Y, ., juv = 0.
Theverticessandt are called the * source’ and ‘sink’ of an s/t flow, and
we usually abbreviate‘s/t flow’ to ‘flow’. For any flow j, wewrite

JUZZju,vv UGV,
veV

noting by (c) abovethat J, = Ofor u # s, t. Thus,

S+dk=) =) juw=3 Y Guv+ v =0

ueV u,veV u,veV

Therefore, Js = — Ji, and we call | Js| the size of theflow j, denoted | j|. If
|Js] = 1, wecal j aunit flow. We shall normally take Js > 0, in which
casesisthesourceandt isthe sink of the flow, and we say that j isaflow
fromstot.

Note that any solutioni to the Kirchhoff laws with source-set {s, t} isan
s/t flow.

1.15 Theorem Let il and i? be two solutions of the Kirchhoff laws with
the same source and sink and equal size. Thenil =2,

Proof. By the superposition principle, j = i1 — i satisfies the two Kirch-
hoff laws. Furthermore, under the flow j, no current enters or leaves
the system. Therefore, J, = O for all v € V. Suppose jy,.u, > O for
some edge (u1, uz2). By the Kirchhoff current law, there exists uz such that
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Jup,uz > 0. Since [V| < oo, there exists by iteration acycle ur, Ujyq, ...,
Um, Umt1 = U suchthat jy, g, > Ofork =1,1+1,...,m. By Ohm's
law, the corresponding potential function satisfies

) < P(U+1) < -+ < P(Umt1) = (W),
acontradiction. Therefore, j,, = Ofor al u, v. O

For agiven size of input current, and given source s and sink t, there can
be no morethan onesolution to thetwo Kirchhoff laws, but isthereasolution
at al? The answer is of course affirmative, and the unique solution can be
expressed explicitly in termsof counts of spanning trees.? Consider first the
specia casewhen we = 1 foral e € E. Let N be the number of spanning
treesof G. For any edge (a, b), let TI(s, a, b, t) bethe property of spanning
treesthat: the unique s/t path in the tree passes along the edge (a, b) in the
direction fromato b. Let N (s, a, b, t) be the set of spanning trees of G
with the property TI(s, a, b, t),and let N(s, a, b, t) = [N (S, a, b, 1)].

1.16 Theorem The function

1
(117)  iap= N[N(s, a,b,t)—N(s,b,a,t)], (ab)eE,
defines a unit flow from s to t satisfying the Kirchhoff laws.

Let T be aspanning tree of G chosen uniformly at random from the set
7 of all such spanning trees. By Theorem 1.16 and the previousdiscussion,
the unique solution to the Kirchhoff laws with source s, sink t, and size Lis
given by
iab="P(T hasTI(s,a, b, t)) — P(T hasTI(s, b, a, 1)).

We shall return to uniform spanning trees in Chapter 2.
We prove Theorem 1.16 next. Exactly the same proof isvalid in the case
of general conductanceswe. |nthat case, we definetheweight of aspanning

treeT as
w(T) =[] we,
eeT
and we set
(118)  N*=> " w(T), N*(s, a, b, t) = > w(T).

TeT T with T1(s,a,b,t)
The conclusion of Theorem 1.16 holdsin this setting with

1
iab = W[N*(s, a,b,t) — N*(s,b,a, )], (a,b) € E.

2Thiswas discovered in an equivalent form by Kirchhoff in 1847, [188].
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Proof of Theorem 1.16. We first check the Kirchhoff current law. In every
spanning tree T, there exists a unique vertex b such that the s/t path of
T contains the edge (s, b), and the path traverses this edge from s to b.
Therefore,

> N(s.s.b,t) =N, N(s, b,s,t) = 0forbe V.
beV

By (1.17),

Z is,b =1,

beV

and, by asimilar argument, > .y it = 1.

Let T be a spanning tree of G. The contribution towards the quantity
iab, made by T, dependson the s/t path = of T and equals

N~! if = passesalong (a, b) fromato b,
(1.19) —N~1 if 7 passesalong (a, b) frombto a,
0 if & doesnot contain the edge (a, b).

LetveV,v#st,andwritel, =) .y iyw. If v e, thecontribution
of T towards |, isN~! — N~ = O since  arrivesat v along some edge of
the form (a, v) and departs from v along some edge of the form (v, b). If
v ¢ m,then T contributesOto |,,. Summing over T, weobtainthat I, =0
foral v # s, t, asrequired for the Kirchhoff current law.

We next check the Kirchhoff potential law. Letvy, vo, ..., vp, Unr1 = v1
beacycle C of G. We shall show that

n
(1.20) D iy =0,
j=1

and this will confirm (1.12), on recalling that we = 1foral e € E. Itis
more convenient in this context to work with ‘bushes’ than spanning trees.
A bush (or, more precisely, an s/t bush) is defined to be a forest on V
containing exactly two trees, one denoted Ts and containing s, and the other
denoted T; and containingt. Wewrite (Ts, T) for thisbush. Lete = (a, by,
and let B(s, a, b, t) be the set of busheswitha € Tsand b € T;. The
sets B(s, a, b, t) and N (s, a, b, t) are in one-one correspondence, since
the addition of eto B € B(s, a, b, t) createsa uniqgue member T = T(B)
of N (s, a, b, ), and vice versa
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By (1.19) and the above, a bush B = (T, Tt) makes a contribution to
ia’b Of
N~1 if Be B(s a,b,t),
—N"! ifBeB(s b at),
0 otherwise.

Therefore, B makes a contribution towards the sumin (1.20) that isequal to
N~1(F; —F_), where F; (respectively, F_) isthe number of pairsvj, vj+1
of C,1 < j <n,withvj € Ts, vj+1 € T; (respectively, vj11 € Ts, vj € Ty).
Since C isacycle, we have FL = F_, whence each bush contributes 0 to
the sum and (1.20) is proved. d

1.3 Flowsand Energy

Let G = (V, E) be a connected graph as before. Let s, t € V be distinct
vertices, and let j be an s/t flow. With we the conductance of the edge e,
the (dissipated) energy of j isdefined as

E)y= Y i,/ we=3 Z 130/ Wu)-

e=(u,v)eE u,veV
u~v

Thefollowing piece of linear algebrawill be useful.

1.21 Proposition Lety : V — R, andlet j bean s/t flow. Then

[V —v©1ds=3 Y [¥®) —¥Wju

u,veV

Proof. By the properties of aflow,

Y [ — Wl = Y v — > YW

u,veV veV ueV
= =2[Y(s)Is + ¥ (1) I]
=2[y ) — ¥ (9],
asrequired. O

Let ¢ andi satisfy the two Kirchhoff laws. We apply Proposition 1.21
withyr = ¢ and j =i to find by Ohm’slaw that

(122 E@) =[o®) — ()]s
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That is, the energy of the true current-flow i from s to t equals the energy
dissipated in a (notional) single (s, t) edge carrying the same potential dif-
ference and total current. The conductance W of such an edge would
satisfy Ohm’'s law, that is,

(1.23) Is = Wett[¢ (1) — ¢ (S)],

and we define the effective conductance Wgis by thisequation. The effective
resistanceis

(1.24) Rt =

= W_eff7
which, by (1.22) and (1.23), equals E(i)/12. We state this as alemma.

1.25 Lemma The effective resistance Rg+ of the network between vertices
s and t equalsthe dissipated energy when a unit flow passesfromsto t.

Itisuseful to beableto do calculations. Electrical engineershavedevised
avariety of formulaic methods for calculating the effective resistance of a
network, of which the simplest are the series and parallel laws, illustrated
inFigure 1.1.

e

f

Figurel.1 Twoedgeseand f in paralel and in series.

1.26 Serieslaw Two resistors of sizer; and ry in series may be replaced
by asingleresistor of sizery + ro.

1.27 Parallel law Tworesistorsof sizer; andrin parallel may bereplaced
by asingle resistor of size R, where R™* =r; 1 +r; L.

A third such rule, the so-called ‘ star—triangle transformation’, may be
found at Exercise 1.5. Thefollowing ‘variational principle’ has many uses.

1.28 Theorem (Thomson principle) Let G = (V, E) be a connected
graph and (we : € € E) strictly positive conductances. Let s,t € V,
s # t. Amongst all unit flows through G from s to t, the flow that satisfies
the Kirchhoff laws is the unique s/t flow i that minimizes the dissipated
energy. That is,

E@i) =inf{E(j) : j aunitflow fromstot}.
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Proof. Let j beaunit flow fromsourcestosinkt,andsetk = j —i, where
i isthe (unique) unit-flow solution to the Kirchhoff laws. Thus, k isaflow
with zero size. Now, withe = (u, v) andre = 1/we,

2E(j) = Z jivre: Z (ku,v+iu,v)2re

u,veV u,veV
2 i 2 :
= Z kUvUre+ Z Iu,vr9+22 |u,vku,vre-
u,veV u,veV u,veV

Let ¢ be the potential function corresponding to i. By Ohm's law and
Proposition 1.21,

Z iu,vku,vre = Z [¢(v) - ¢(u)]ku,v
u,veV u,veV
= 2[¢p(t) — #(9)]Ks,
which equals zero. Therefore, E(j) > E(i), with equality if and only if
j=i. O
The Thomson ‘variational principle’ leadsto aproof of the‘obvious' fact

that the effective resistance of anetwork is anon-decreasing function of the
resistances of individual edges.

1.29 Theorem (Rayleigh principle) The effective resistance Ry of the
network is a non-decreasing function of the edge-resistances (re : € € E).

Itisleft asan exerciseto show that R isaconcavefunction of the vector
(re). See Exercise 1.6.

Proof. Consider two vectors (re : € € E) and (r; : e € E) of edge-
resistanceswithre < r/forall e. Leti andi’ denote the corresponding unit
flows satisfying the Kirchhoff laws. By Lemma 1.25, withre = 1y, ),

1 i 2
Rdf = E Z Iuyvre
u,veV
u~v

IA
Nl

> (i{,)%re by the Thomson principle

u,veV
u~v

IA
Nl

> G,)re sincere <t}

u,veV
u~v

= Rar,
asrequired. d
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1.4 Recurrence and Resistance

Let G = (V, E) be an infinite connected graph with finite vertex-degrees,
and let (we : € € E) be (strictly positive) conductances. We shall consider
areversible Markov chain Z = (Z, : n > 0) on the state space V with
transition probabilitiesgiven by (1.3). Our purposeisto establishacondition
onthe pair (G, w) that is equivalent to the recurrence of Z.

Let O be a distinguished vertex of G, called the ‘origin’, and suppose
that Zo = 0. The graph-theoretic distance between two vertices u, v isthe
number of edgesin a shortest path between u and v, denoted §(u, v). Let

Apn={ueV:4§0,v) <n}
0An = An\ Ap—1 ={ueV :§0,v) =n}

We think of d A, asthe ‘boundary’ of An. Let G, be the subgraph of G
induced by the vertex-set A,,. We let G, be the graph obtained from G, by
identifyingthe verticesin d A asasingle composite vertex denoted I,,. The
resulting finite graph G,, may be considered as an electrical network with
sourcesOand I,. Let R (n) bethe effectiveresistance of thisnetwork. The
graph G, may be obtained from G,,,.1 by identifying all vertices lying in
0 AnU{lh+1}, andthus, by the Rayleigh principle, R (n) isnon-decreasing
inn. Therefore, the limit

Reft = |lim Rest(N)
n—oo
exists.
1.30 Theorem The probability of ultimate return by Z to the origin 0 is

given by
1

Po(Zn =0forsomen>1)=1-— ,
" Wb Rest

where Wp = Zv: v~0 W(0,v)-

The return probability is non-decreasing as WpRest increases. By the
Rayleigh principle, this can be achieved, for example, by removing an edge
of E that isnot incident to 0. Theremoval of an edgeincident to O can have
the opposite effect, since Wp decreaseswhile Rt increases (seeFigure 1.2).

A 0/ocoflowisavector j = (ju,y : U, v € V, U # v) satisfying (1.14)(a),
(b) and also (c) for al u £ 0. That is, it has source 0 but no sink.

1.31 Corollary
(@) Thechain Z isrecurrentif and only if R = oo.
(b) Thechain Z istransient if and only if there exists a non-zero 0/ oo flow
j on G whoseenergy E(j) = 3 j2/we satisfies E(j) < oo.
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I\

I\

I\

I\

Figurel.2 Thisisaninfinitebinary treewithtwo parallel edgesjoining
the origin to the root. When each edge has unit resistance, it is an easy

calculation that Rgs = % so the probability of returnto O is % If the

edge e is removed, this probability becomes %

It is left as an exercise to extend this to countable graphs G without the
assumption of finite vertex-degrees.
Proof of Theorem 1.30. Let
On(v) = P,(Z hits 9 A, before 0), v € An.

By Theorem 1.5 and Exercise 1.13, g,, is the unique harmonic function on
Gy, with boundary conditions

on(0) =0, On(v) = 1forv € dAn.

Therefore, gy, isapotential function on G, viewed as an electrical network
with source 0 and sink I,.
By conditioning on the first step of the walk, and using Ohm'’s law,

Po(Z returnsto O before reaching d Ap)
=1— ) PosGn(v)

v:v~0
1 wo,v _
=1 2;0 e [0 () = Gn(O)]
_1_ i (n)l,

Wo

wherei (n) istheflow of currentsin Gy, and |i ()| isitssize. By (1.23) and
(1.24), |i (n)| = 1/ Rei(n). Thetheoremis proved on noting that

Po(Z returnsto O before reaching 0 A) — Po(Z, = 0 for somen > 1)
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asn — oo, by the continuity of probability measures. d

Proof of Corollary 1.31. Part (a) isan immediate consequence of Theorem
1.30, and we turn to part (b). By Lemma 1.25, there exists a unit flow i (n)
in G, with source 0 and sink I, and with energy E(i (n)) = Ref(n). Let i
be anon-zero 0/occ flow; by dividing by its size, we may takei to be a unit
flow. When restricted to the edge-set E,, of Gp,, i forms a unit flow from 0
to I,. By the Thomson principle, Theorem 1.28,

EG(n) < ) id/we < E(),

ecEnp
whence
Ed) > nli[go E(i(n)) = Rest.

Therefore, by part (a), E(i) = oo if the chain is recurrent.

Suppose, conversely, that the chain is transient. By diagonal selection,?
there exists a subsequence (ng) aong which i (ng) convergesto some limit
j (thatis, i(nK)e — je for every e € E). Since each i (nk) is a unit flow
from the origin, j isaunit 0/oco flow. Now,

EG(no) =Y i (n3/we

ecE

> Y i3/ we

ecEn

= Y j@%we ask— oo
ecEn
— E(])) asm— oo.

Therefore,
E(j) < lim Rgi(nk) = Reff < 00,
k— oo

and | isaflow with the required properties. d

3Diagonal selection: Let (xm(n) : m, n > 1) be abounded collection of reals. There
exists an increasing sequence ny, Ny, ... of positive integers such that, for every m, the
limit limg_, oo Xm(nk) exists.
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1.5 PoOlya's Theorem

Thed-dimensional cubiclattice LY hasvertex-set Z9 and edgesbetween any
two verticesthat are Euclidean distance one apart. Thefollowing celebrated
theorem can be proved by estimating effective resistances.*

1.32 Polya’stheorem [242] Symmetric randomwalk on the lattice L9 in
d dimensionsisrecurrentifd = 1, 2 and transient if d > 3.

The advantage of the following proof of Polya'stheorem over more stan-
dard argumentsis its robustness with respect to the underlying graph. Sim-
ilar arguments are valid for graphs that are, in broad terms, comparable to
L9 when viewed as electrical networks.

Proof. For simplicity, and with only little loss of generality (see Exercise
1.10), we shall concentrateonthecasesd = 2, 3. Letd = 2, for which case
weaim to show that Resf = oo. Thisisachieved by finding an infinite lower
bound for Re, and lower bounds can be obtained by decreasing individual
edge-resistances. The identification of two vertices of a network amounts
to the addition of aresistor with O resistance, and, by the Rayleigh principle,
the effective resistance of the network can only decrease.

Figure 1.3 The vertex labelled i is a composite vertex obtained by
identifying all verticeswith distancei from 0. Thereare 8i — 4 edges of
L2 joining verticesi — 1 andi.

From L2, we construct a new graph in which, foreachk = 1,2, ...,
theset Ak = {v € Z? : §(0, v) = k} isidentified as a singleton. This
transforms IL2 into the graph shown in Figure 1.3. By the series/parallel
laws and the Rayleigh principle,

n-1
Reff (N) > 2.5 _a
i=1
whence Rgi(n) > clogh — co asn — oc.

Suppose now that d = 3. There are at least two ways of proceeding.
We shall present one such route, taken from [222], and we shall then sketch

4An amusing story is told in [243] about Polya’s inspiration for this theorem.
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Figure 1.4 The flow along the edge (u, v) is equal to the area of the
projection I1(Fy,,) ontheunit spherecentred at theorigin, with asuitable
convention for itssign.

the second, which hasitsinspiration in [83]. By Corollary 1.31, it suffices
to construct a non-zero 0/oc flow with finite energy. Let S be the surface
of the unit sphere of R3 with centre at the origin 0. Takeu € Z3, u # 0,
and position aunit cube C, in R with centre at u and edges parallel to the
axes (see Figure 1.4). For each neighbour v of u, the directed edge [u, v)
intersects a unique face, denoted F ,,, of Cy.

For x € R3, x # 0, let TI(x) be the point of intersection with S of the
straight line segment from O to x. Let jy ., beequal in absolute value to the
surface measure of TT1(Fy ,). Thesignof j, , istaken to be positive if and
only if the scalar product of %(u +v) and v — u, viewed as vectorsin R3, is
positive. Let j, y = —ju.». Weclaimthat j isa0/occ flow on L3, Parts (@)
and (b) of Definition 1.14 follow by construction, and it remains to check

(©).

The surface of C, hasprojectionTT(Cy) on S. Thesum Jy = >, ., Juv
is the integral over x € TI(Cy), with respect to surface measure, of the
number of neighbours v of u (counted with sign) for which x € TI(Fy ).
Almost every x € TT(Cy) is counted twice, with signs + and —. Thusthe
integral equals 0, whence J, = Ofor all u # 0.

It iseasily seenthat Jp # 0, so j isanon-zero flow. Next, we estimate
its energy. By an elementary geometric consideration, there exist ¢; < oo
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such that:
(i) lju.v| < c1/|ul? for u # 0, where lu] = §(0, u) is the length of a
shortest path from 0 to u,
(i) the number of u e Z3 with |u| = nissmaller than c,n?.
It follows that

[e.¢]
E(j) < Z Z JUZU < ZGCznz (%)2 < 00,

u#£0 v~u n=1
asrequired. O

Another way of showing Re; < oo whend = 3 isto find afinite upper
boundfor Re. Upper boundscan beaobtained either by increasing individual
edge-resistances or by removing edges. The idea is to embed a tree with
finite resistancein 1L3. Consider a binary tree T, in which each connection
between generation n— 1 and generation n hasresistance ", wherep > 0. It
isan easy exercise using the series/parallel lawsthat the effective resistance
between the root and infinity is

Rr(T) =3 (2)".

n=1

which we make finite by choosing p < 2. We proceed to embed T, in Z3
in such a way that a connection between generation n — 1 and generation
n is a lattice-path with length of order p". There are 2" verticesof T, in
generation n, and their lattice-distance from 0 is of order Yg_; p¥, that
is, order p". The surface of the k-ball in R3 is of order k?, and thusit is
necessary that
c(pM? = 2",

whichisto say that p > /2.

Let v/2 < p < 2. Itisnow fairly smpleto check that Ret < ¢/ Rest (T,).
This method was used in [138] to prove the transience of the infinite open

cluster of percolation on 1.3, It is related to, but different from, the tree
embeddings of [83].

1.6 Graph Theory

A graph G = (V, E) comprises afinite or countably infinite vertex-set V
and an associated edge-set E. Each element of E isan unordered pair u, v
of vertices, written (u, v). Two edges with the same vertex-pairs are said
to bein parallel, and edges of the form (u, u) are called loops. The graphs
discussed in thistext will generally contain neither parallel edges nor loops,
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and this is assumed henceforth. Two vertices u, v are said to be joined (or
connected) by an edgeif (u, v) € E. Inthiscase, u and v arethe endvertices
of e, and we write u ~ v and say that u isadjacent to v. Anedgeeissad
to beincident to its endvertices. The number of edges incident to vertex u
is called the degree of u, denoted deg(u). The negation of therelation ~ is
written .

Since the edges are unordered pairs, we call such a graph undirected (or
unoriented). If someor al of its edgesare ordered pairs, written [u, v), the
graphis called directed (or oriented).

A path of G isdefined asan aternating sequencevyg, €, v1, €1, - . ., €n—1,
vp Of distinct vertices v; and edgese = (vj, vi+1). Such a path has length
n; itissaid to connect vg to vy, andiscalled avg/vn path. A cycleor circuit
of G is an alternating sequence vo, €g, v1, - .., €1—1, Un, €n, vo Of vertices
and edges such that vg, ep, . . ., en—1, vp iIsapath and e, = (vp, vo). Such
acycle haslength n + 1. The (graph-theoretic) distance § (u, v) from u to
v is defined to be the number of edgesin a shortest path of G from u to v.

Wewriteu «~ v if thereexistsapath connectingu andv. Therelation «
isan equivalencerelation, andits equivalence classes are called components
(or clusters) of G. The componentsof G may be considered either as sets of
verticesor asgraphs. Thegraph G isconnectedif it hasaunique component.
Itisaforest if it contains no cycle, and atreeif in addition it is connected.

A subgraph of the graph G = (V, E) isagraph H = (W, F) with
W C V and F € E. The subgraph H isaspanningtreeof Gif V = W
and H isatree. A subset U C V of the vertex-set of G has boundary
dU={ueU:u~vforsomeveV\U}

L attice-graphs are the most important type of graph for applications in
areas such as statistical mechanics. Lattices are sometimes termed ‘ crys-
talline' since they are periodic structures of crystal-like units. A general
definition of alattice may confusereaders morethan help them, and instead
we describe some principa examples.

Let d be a positive integer. WewriteZ = {...,—-1,0,1,...} for the
set of all integers, and 79 for the set of all d-vectorsv = (v1, va, . .., vd)
with integral coordinates. For v € Z4, we generally write v; for theith
coordinate of v, and we define

d
(U, v) = > |ui — vil.
i=1

The origin of Z9 is denoted by 0. We turn Z9 into a graph, called the d-
dimensional (hyper)cubic lattice, by adding edges between al pairs u, v of
pointsof Z4 with §(u, v) = 1. Thisgraphisdenoted asLL9, and its edge-set
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Figure 1.5 The square, triangular, and hexagonal (or ‘honeycomb’)
lattices. The solid and dashed lines illustrate the concept of ‘planar
duality’ discussed after (3.7).

asEY: thus, L9 = (z9, E9). We often think of L9 as a graph embedded
in RY, the edges being straight line-segments between their endvertices.
The edge-set Ey of V C 79 is the set of all edges of L9 both of whose
endverticesliein V.

The two-dimensional cubic lattice 1.2 is called the square lattice and is
illustrated in Figure 1.5. Two other lattices in two dimensions that feature
in this text are drawn there al so.

1.7 Exercises

1.1 Let G = (V, E) bealfinite connected graph with unit edge-weights. Show
that the effective resistance between two distinct vertices s, t of the associated
electrical network may be expressed as B/ N, where B isthe number of s/t bushes
of G, and N isthe number of its spanning trees. (See the proof of Theorem 1.16
for an explanation of the term ‘bush’.)

Extend this result to general edge-weights we > 0.

1.2 Let G = (V, E) be afinite connected graph with strictly positive edge-

weights (we : € € E), and let N* be given by (1.18). Show that

iab = %[N*(s, a,b,t) — N*(s,b,a,t)]
constitutes a unit flow through G from s to t satisfying Kirchhoff’s laws.

1.3 (continuation) Let G = (V, E) befinite and connected with given conduc-
tances (we : € € E), andlet (X, : v € V) bereds satisfying >, Xy = 0. ToG
we append anotional vertex labelled oo, and wejoin co toeach v € V. Show that
thereexistsasolutioni to Kirchhoff’slaws on the expanded graph, viewed astwo
laws concerning current flow, such that the current along the edge (v, oo) iS Xy .
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Figure 1.6 Edge-resistances in the star—triangle transformation. The
triangle T on the left is replaced by the star S on the right, and the
corresponding resistances are denoted as marked.

1.4 Provethe seriesand parallel laws for electrical networks.

1.5 Sar-triangle transformation. Thetriangle T isreplaced by astar Sin an
electrical network, as illustrated in Figure 1.6. Explain the sense in which the
two networks are the same when the resistances are chosen such that rjr J/ = cfor
j =1,2, 3andsomec = c(rq, ro, r3) to be determined.

Note. The star—triangle transformation and itsderivativesfind many important
applications in probability theory and mathematical physics. The transformation
was discovered first in 1899, in the above form, by Kennelly [185].

1.6 Let R(r) be the effective resistance between two given vertices of afinite
network with edge-resistancesr = (r(e) : e € E). Show that R is concave, in
that

$[R(r1) + R(r2)] < R(3(r1 +r2)).

1.7 Maximum principle. Let G = (V, E) be afinite or infinite network with
finite vertex-degrees and associated conductances (we : € € E). Let H = (W, F)
be a connected subgraph of G, and write

AW ={veV\W:v~wforsomew e W}

for the ‘external boundary’ of W. Let¢ : V — [0, oo) be harmonic on the set W,
and suppose the supremum of ¢ on W is achieved and satisfies

sup ¢(w) = [[¢lloc = SUP ¢ (v).
weW veV

Show that ¢ is constant on W U AW, where it takes the value ||¢ | co-

1.8 Let G be an infinite connected graph, and let d Ap be the set of vertices at
distance n from the vertex labelled 0. With E, the number of edgesjoining d An
t0 3 Any1, show that arandom walk on G isrecurrentif 3", Eq L = oo.

1.9 (continuation) Assumethat G is*spherically symmetric’ in that: for all n,
for al x, y € 8 An, there exists a graph automorphism that fixes 0 and maps x to
y. Show that arandom walk on G istransient if 3", E5* < o0.

1.10 Let G be a countably infinite connected graph with finite vertex-degrees
and with anominated vertex 0. Let H be a connected subgraph of G containing
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0. Show that asimple random walk, starting at O, isrecurrent on H whenever it is
recurrent on G, but that the converse need not hold.

1.11 Let G be afinite connected network with strictly positive conductances
(we : € € E), and let &, b be distinct vertices. Let ix,y denote the current along
an edge from x to y when aunit current flows from the source vertex a to the sink
vertex b. Run the associated Markov chain, starting at a, until it reachesb for the
first time, and let uy,y be the mean of the total number of transitions of the chain
between x and y. Transitions from x to y count as positive, and from y to x as
negative, so that uy y is the mean number of transitions from x to y, minus the
mean number fromy to x. Show that ix y = ux,y.

1.12 [83] Let G be an infinite connected graph with bounded vertex-degrees.
Letk > 1, and let Gk be obtained from G by adding an edge between any pair of
verticesthat are non-adjacent (in G) but separated by a graph-theoretic distance k
or less. (The graph G is sometimes called the k-fuzz of G.) Show that asimple
random walk is recurrent on Gy if and only if it isrecurrent on G.

1.13 Uniqueness theorem. Let G = (V, E) be afinite or infinite connected
network with finite vertex-degrees, and let W be a proper subset of V. Let f, g :
V — R beharmonic on W and equal on V \ W. Show, by the maximum principle
or otherwise, that f = g.
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Uniform Spanning Tree

The uniform spanning tree (UST) measure has a property of nega-
tive association. A similar property is conjectured for uniform for-
est and uniform connected subgraph. Wilson's algorithm uses loop-
erased random walk (LERW) to construct a UST. The UST on the
d-dimensional cubic lattice may be defined as the weak limit of the
finite-volume measures. When d = 2, the corresponding LERW
(respectively, UST) converges in a certain manner to the Schramm-—
L owner evolution process SLE; (respectively, SLEg) asthe grid size
approaches zero.

2.1 Definition

Let G = (V, E) be afinite connected graph, and write 7~ for the set of all
spanning trees of G. Let T be picked uniformly at random from 7. We
cal T auniform spanning tree, abbreviated to UST. It is governed by the
uniform measure

=

P(T =t) = te7.

R

|71

We may think of T either as a random graph or as a random subset of E.
In the latter case, T may be thought of as a random element of the set
Q = {0, 1}F of 0/1 vectorsindexed by E.

It is fundamental that UST has a property of negative association. Inits
simplest form, this property may be expressed as follows.
2.1 Theorem For f,ge E, f #¢,
(2.2 P(feT|geT)<P(feT).

The proof makes striking use of the Thomson principle via the mono-
tonicity of effectiveresistance. We obtain thefollowing by amild extension
of theproof. For BC Eandg € E \ B,

(2.3) PBCT|geT)<P(BCT).
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Proof. Consider G as an electrical network in which each edge has resis-
tance 1. Denoteby i = (i, : v, w € V) thecurrent flow in G when aunit
current entersat X and leaves at y, and let ¢ be the corresponding potential
function. Let e = (X, y). By Theorem 1.16,

oo Nexxyy
Y N ?
where N (X, X, Yy, ¥) isthe number of spanning trees of G with the property
that the unique x/y path passesaong the edgeein thedirectionfromx to y,
and N = |T|. Therefore,ixy = P(e € T). Since (X, y) hasunit resistance,
ix,y equalsthe potential difference ¢ (y) — ¢ (x). By (1.22),

(2.4) Pee T) = R&(x, y),

the effective resistance of G between x and y.

Let f, g be distinct edges, and write G.g for the graph obtained from
G by contracting g to a single vertex. Contraction provides a one-one
correspondence between spanning trees of G containing g, and spanning
trees of G.g. Therefore, P(f € T | g € T) is simply the proportion of
spanning trees of G.g containing f. By (2.4),

P(feT|geT) =R y).
By the Rayleigh principle, Theorem 1.29,

RG(x, y) < R& (X, y),

and the theorem is proved. d

Theorem 2.1 was extended by Feder and Mihail [104] to more general
‘increasing’ events. Let = {0, 1}, the set of 0/1 vectorsindexed by E,
and denoteby w = (w(€) : e € E) atypical member of Q2. The partial order
< on Q isthe usual pointwise ordering: w < o' if w(e) < ’'(e) for all
ec E. Asubset A C Qiscaledincreasingif: foral w, " € Q satisfying
o < o', wehavethat o’ € Awhenever w € A.

For AC QandF C E,wesaythat Aisdefinedon F if A= Cx{0, 1}F\F
for some C C {0, 1}F. Werefer to F asthe ‘base’ of theevent A. If Ais
defined on F, we need only know the w(e), e € F, in order to determine
whether A occurs.

2.5 Theorem [104] Let F C E, and let A and B be increasing subsets of
Q suchthat Aisdefinedon F, and B isdefined on E \ F. Then

P(TeA|TeB) <PTeA).
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Theorem 2.1 is refrieved by setting A = {w € Q : o(f) = 1} and
B={weQ:w(@ = 1}. Theorigina proof of Theorem 2.5 is set in the
context of matroid theory, and afurther proof may be found in [37].

Wheresas ‘positive association’ is well developed and understood as a
techniquefor studying interacting systems, ‘ negative association’ possesses
some inherent difficulties. See [240] for further discussion.

2.2 Wilson's Algorithm

There are various ways to generate a uniform spanning tree (UST) of the
graph G. Thefollowing method, called Wilson’ salgorithm[286], highlights
the close relationship between UST and random walk.

Take G = (V, E) to be a finite connected graph. We shall perform
random walks on G subject to a process of so-called loop-erasure that we
describe next.l Let W = (wq, w1, ..., wx) beawak on G, which is to
say that wi ~ wj4+1 for 0 < i < k (hote that the walk may have self-
intersections). From ‘W, we construct a non-self-intersecting sub-walk,
denoted LE('W), by the removal of loops as they occur. More precisely, let

J=min{j > 1:w; = wj forsomei < j}.

If such a J exists, let | be the unique value of i satisfyingi < J and
wj = wy. Let W = (wo, w1, ..., w;, wyi1, ..., wk) bethe sub-walk of
W obtained through the removal of the cycle (w), w41, ..., wy3). This
operation of single-loop removal isiterated until no loops remain, and we
denote by LE('W) the surviving path from wg to wy.

Wilson's algorithm is presented next. First, let V = (v1, v, ..., vn) be

an arbitrary but fixed ordering of the vertex-set.

1. Perform a random walk on G beginning at v, withi; = 1, and
stopped at the first time it visits vy. The outcome is a walk W; =
(Up = vy, U2, ..., U = vp).

2. From W1, we obtain theloop-erased path LE(W4), joining v1 to v, and
containing no loops.? Set Ty = LE(Wy).

3. Find theearliest vertex, vi, say, of V not belonging to Ty, and perform
arandom walk beginning at vj,, and stopped at the first moment it hits
some vertex of T1. Call the resulting walk W», and loop-erase W, to
obtain some non-self-intersecting path LE(W>) from vj, to Tq. Set
To = T1 U LE(W>), the union of two edge-disjoint paths.

1Graph theorists might prefer to call this cycle-erasure.
2|f we run arandom walk and then erase its |oops, the outcomeis called aloop-erased
randomwalk, often abbreviated to LERW.
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4. Iterate the above process, by running and loop-erasing a random walk
from a new vertex vi;,, ¢ Tj until it strikes the set Tj previously
constructed.

5. Stop when al vertices have been visited, and set T = Ty, the final
valueof the T;.

Each stage of the above algorithm results in a sub-tree of G. The final

such sub-tree T is spanning since, by assumption, it contains every vertex
of V.

2.6 Theorem [286] Thegraph T isa uniform spanning tree of G.

Note that theinitial ordering of V playsnoroleinthelaw of T.

Thereareof course other waysof generatingaUST on G, and we mention
thewell known Aldous—Broder algorithm,[18, 60], that proceedsasfollows.
Choose a vertex r of G and perform a random walk on G, starting at r,
until every vertex has been visited. For w € V, w # r, let [v, w) be the
directed edge that was traversed by the walk on its first visit to w. The
edges thus obtained, when undirected, constitute a uniform spanning tree.
The Aldous—Broder algorithm is closely related to Wilson's algorithm via
acertain reversal of time; see [245] and Exercise 2.1.

We present the proof of Theorem 2.6 in amore general setting than that of
UST. Heavy use will be made of [221] and the concept of ‘ cycle popping’
introduced in the original paper [286] of David Wilson. Of considerable
interest is an analysis of the run-time of Wilson’'s algorithm; see [245]. A
different approach to Wilson's algorithmis explained in [192, 199].

Consider anirreducible Markov chain with transition matrix P on afinite
state space S. With thischain we may associateadirectedgraph H = (S, F)
much as in Section 1.1. The graph H has vertex-set S and edge-set F =
{[x,y): px,y > 0}. Werefer tox (respectively, y) asthehead (respectively,
tail) of the (directed) edgee = [X, y), written X = e_, y = e;. Sincethe
chainisirreducible, H isconnected in the sensethat, for al x, y € S, there
exists adirected path from x to y.

Letr € Sbeadistinguished vertex called theroot. A spanning arbores-
cence of H withroot r isasubgraph A with the following properties:

(a) eachvertex of Sapart fromr isthe head of a unique edge of A,

(b) therootr isthe head of no edge of A,

(c) A possesses no (directed) cycles.
Let X, be the set of al spanning arborescences with root r, and ¥ =
Ures Zr - A spanning arborescence is specified by its edge-set.

Itis easily seen that there exists a unique (directed) path in the spanning
arborescence A joining any given vertex x to the root. To the spanning
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arborescence A we assign the weight
(27) a(A) =[] pe_e,-

ecA

and we shall describe arandomized algorithm that selects a given spanning
arborescence A with probability proportional to «(A). Sincea (A) contains
no diagonal element p;; of P, and each x (£ r) is the head of a unique
edge of A, wemay assumethat p,; =0foralze S

Letr € S. Wilson’s algorithm is easily adapted in order to sample from
. Letvi, vg, ..., vn—1 beanordering of S\ {r}.

1. Letog={r}.

2. SampleaMarkov chain with transition matrix P beginning at v, with

i1 = 1, and stopped at the first time it hits og. The outcome is a

(directed) walk Wy = (u1 = v, Ug, ..., Uk, I'). From W1, we obtain
the loop-erased path o1 = LE(W}), joining vy tor and containing no
loops.

3. Find the earliest vertex, vj, say, of Snot belonging to o1, and sample
a Markov chain beginning at vi,, and stopped at the first moment it
hits some vertex of o1. Call the resulting walk W>, and loop-erase it
to obtain some non-self-intersecting path LE(W-) from vj, to oq. Set
o2 = o1 U LE(W,), the union of o1 and the directed path LE(W5).

4. Iterate the above process by loop-erasing the trajectory of a Markov
chain starting at a new vertex vj;,, ¢ oj until it strikes the graph o;
previously constructed.

5. Stop when al vertices have been visited, and set o = oy, the find
value of the .

2.8 Theorem [286] The graph ¢ is a spanning arborescencewith root r,
and
P(o = A) x a(A), Ac 3.

Since Sisfiniteand the chainisassumedirreducible, thereexistsaunique
stationary distributionr = (s : s € S). Supposethat thechainisreversible
with respect to r in that

TTx Px,y = Ty Py, x> X,y €S
As in Section 1.1, to each edge e = [X, y) we may alocate the weight
w(€) = mx Px,y, Noting that the edges [x, y) and [y, x) have equal weight.
Let A beaspanning arborescencewith root r. Since each vertex of H other
than the root is the head of a unique edge of the spanning arborescence A,
we have by (2.7) that

a(A)ZMZCW(A)’ Ac 3,
erS,x;ér TTx
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whereC = C; and

(2.9) W(A) = [ w(e.
ecA
Therefore, for a given root r, the weight functions « and W generate the
same probability measure on ;.
We shall see that the UST measure on G = (V, E) arises through a
consideration of therandomwalk on G. This hastransition matrix given by

if X ~vy,
Pxy = 1 degx) Y
0 otherwise,
and stationary distribution
deg()
=——" V.
Y 2E X €

Let H = (V, F) be the graph obtained from G by replacing each edge
by a pair of edges with opposite orientations. Now, w(€) = me_Pe_.e, IS
independent of e € F, sothat W(A) isaconstant function. By Theorem 2.8
and the observation following (2.9), Wilson'salgorithm generatesauniform
random spanning arborescence o of H, with given root. When we neglect
the orientations of the edges of o, and aso the identity of the root, o is
transformed into a uniform spanning tree of G.

The remainder of this section isdevoted to a proof of Theorem 2.8, and it
usesthe beautiful construction presented in [286]. We preparefor the proof
asfollows.

For each x € S\ {r}, we provideourselvesin advancewith an infinite set
of ‘moves from x. Let Mx(i),i > 1, x € S\ {r}, beindependent random
variableswith laws

P(Mx(i) =Y) = pxy. yes.

For each x, we organize the M (i) into an ordered ‘stack’. We think of
an element My (i) as having ‘colour’ i, where the coloursindexed by i are
distinct. The root r is given an empty stack. At stages of the following
construction, we shall discard elements of stacks in order of increasing
colour, and we shall call the set of uppermost elements of the stacks the
‘visible moves'.

The visible moves generate a directed subgraph of H termed the ‘visible
graph’. There will generaly be directed cycles in the visible graph, and
we shall remove such cycles one by one. Whenever we decide to remove
acycle, the corresponding visible moves are removed from the stacks, and
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a new set of moves beneath is revealed. The visible graph thus changes,
and a second cycle may be removed. This process may be iterated until the
earliest time, N say, at which the visible graph contains no cycle, which
is to say that the visible graph is a spanning arborescence o with root r.
If N < oo, we terminate the procedure and ‘output’ o. The removal of a
cycleiscaled ‘cycle popping’. It would seem that the value of N and the
output o will depend on the order in which we decide to pop cycles, but the
converse turns out to be the case.

Thefollowing lemmaholds‘ pointwise’: it contains no statement involv-
ing probabilities.

2.10 Lemma The order of cycle popping is irrelevant to the outcome, in
that:
either N = oo for all orderings of cycle popping,
or the total number N of popped cycles and the output o are inde-
pendent of the order of popping.

Proof. A coloured cycleisaset My; (j),j =1,2,..., J,0of moves, indexed
by verticesx; and coloursij, with the property that the movesform acycle
of the graph H. A coloured cycle C is caled poppable if there exists a
sequence Cy, Co, ..., C, = C of coloured cycles that may be popped in
sequence. We claim the following for any cycle-popping algorithm: if the
algorithmterminatesin finite time, then all poppable cyclesare popped, and
no others. The lemmafollows from this claim.

Let C be a poppable coloured cycle, and let C1, Co, ..., Ch, = C beas
above. It suffices to show the following. Let C' # C1 be apoppable cycle
every move of which has colour 1, and suppose that, at the first stage, we
pop C’ rather than C;. Then C is till poppable after the removal of C’.

Let V(D) denote the vertex-set of a coloured cycle D. The aboveitali-
cized clamisevidentif V(C)NV(Cx) = afork=1,2,...,n. Suppose
on the contrary that V(C’) N V(Cx) # @ for somek, and let K be the
earliest such k. Letx € V(C') NV (Ck). Sincex ¢ V(C) fork < K, the
visiblemoveat x hascolour 1 even after the popping of C1, C», ..., Ck—1.
Therefore, the edge of Ck with head x has the same tail, y say, as that of
C’ with head x. This argument may be applied to y also, and then to all
vertices of Ck inorder. In conclusion, Ck has colour 1, and C’' = Ck.

Were we to decide to pop C’ first, then we may choose to pop in the
sequence Ck [= C'],C1,C2,C3, ..., Ck_1,Ck+1, ..., Ch = C, and the
claim has been shown. O

Proof of Theorem 2.8. It is clear by construction that Wilson's algorithm
terminates after a finite time, with probability 1. It proceeds by popping
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cycles, and so, by Lemma2.10, N < oo almost surely, and the output o is
independent of the choices available in its implementation.

We show next that o has the required law. We may think of the stacks
as generating a pair (C, o), where C = (Cq, Co, ..., Cy) is the ordered
set of coloured cycles that are popped by Wilson's algorithm, and o is the
spanning arborescence thus revealed. Note that the colours of the moves of
o are determined by knowledge of C. Let € be the set of all sequencesC
that may occur, and let IT be the set of all possible pairs (C, o). Certainly
IT = C x %, since knowledge of C imparts no information about o .

The spanning arborescenceo containsexactly one coloured movein each
stack (other than the empty stack at the root). Stacked above this move are
anumber of coloured moves, each of which belongsto exactly one of the
popped cycles C;. Therefore, the law of (C, o) is given by the probability
that the coloured movesin and above o are given appropriately. That is,

P((C,0) = (c, A) = (]‘[]‘[ pe,&>a(A), ceC, Aex.

CeC ecC

Since this factorizes in the form f (c)g(A), the random variables C and o
are independent, and P(c = A) is proportional to «(A) as required. d

2.3 Weak Limitson Lattices

This section is devoted to the uniform-spanning-tree measure on the d-
dimensional cubic lattice L9 = (29, EY) withd > 2. A UST isnot usualy
defined directly on this graph, sinceit isinfinite. It is defined instead on a
finite subgraph A, and the limit is taken as A 1 Z9. Thus, we are led to
study limitsof probability measures, and to appeal to theimportant technique
known as ‘weak convergence'. This technique plays a major role in much
of the work described in this volume. Readersin need of a good book on
thetopic arereferred to the classic texts [45, 84]. They may in addition find
the notes at the end of this section to be useful.

Let u, bethe UST measure on the box A(n) = [—n, n]d of the lattice
LY. Here and later, we shall consider the 14, as probability measures on the
measurablepair (2, ) comprising the sample space 2 = {0, l}]Ed and the
o-algebraf of Q generated by the cylinder sets. Elementsof Q arewritten
w=(w(e . .ec Ed).

2.11 Theorem [237] The weak limit u = limp_ o un exists and is a
trandation-invariant and ergodic probability measure. It is supported on
the set of forests of L9 with no bounded component.



2.3 Weak Limits on Lattices 29

Here is some further explanation of the language of this theorem. So-
called ‘ergodic theory’ is concerned with certain actions on the sample
space. Let x € 79. The function 7k acts on Z9 by mx(y) = x + y; itis
the translation by x, and it is a graph automorphism in that (u, v) € EY
if and only if (my(u), 7x(v)) € EY. The trandation yx acts on E9 by
mx({U, V) = (x(U), 7x(v)), and on Q by 7y (w) = (o (71_x(e)) : € € EY).

Anevent A € F iscaled shift-invariant if A = {nx(w) : @ € A} for
every x € 74. A probability measure ¢ on (2, ) isergodicif every shift-
invariant event A issuch that ¢ (A) iseither 0 or 1. The measureis said to
be supported on theevent F if ¢ (F) = 1.

Since we are working with the o-field of @ generated by the cylinder
events, it suffices for weak convergencethat un(B € T) — w(B € T)
for any finite set B of edges (see the notes at the end of this section, and
Exercise 2.4). Note that the limit measure u may place a strictly positive
praobability on the set of forests with two or more components. By a mild
extension of the proof of Theorem 2.11, we obtain that the limit measure
isinvariant under the action of any automorphism of the lattice 9.

Proof. Let F be a finite set of edges of E9. By the Rayleigh principle,
Theorem 1.29 (asin the proof of Theorem 2.1; see Exercise 2.5), we have

(212) pn(F S T) = pnpa(F € T),
for al large n. Therefore, the limit
u(FCST)=lim un(F S T)
n—o0
exists. The domain of u may be extended to al cylinder events, by the
inclusion—exclusion principle or otherwise (see Exercises 2.3 and 2.4), and
this in turn specifies a unique probability measure . on (22, ). Since no
tree contains a cycle, and since each cycleis finite and there are countably
many cyclesinLd, ;. hassupportin theset of forests. By asimilar argument,
these forests may be taken as having no bounded component.
Let = beatransation of Z9, and let F be finite as above. Then

p(rF CT)= lim pun(rF S T) = lim prn(F S T),
n—oo n—o0
where 1, n isthe law of aUST on 7 1A(N). Thereexistsr = r () such

that A(n —r) € 7=1A(n) € A(n +r) for all large n. By the Rayleigh
principle again,

ner(FCT) < Mn,n(F CT)<unr(FCT)
for al large n. Therefore,
lim u n(FCT)=u(FCT),
n—o0
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whence the tranglation-invariance of 1. The proof of ergodicity is omitted,
and may be found in [237]. |

Thisleadsimmediately to the question of whether the support of v isthe
set of spanning trees of 1.9, The proof of the following is omitted.

2.13 Theorem [237] The limit measure w is supported on the set of
spanning trees of LY if and only if d < 4.

Thereasonthat d = 4isthe’critical’ dimensionisthat thisisthelargest d
such that a LERW and an independent simple random walk on Z9 intersect
one another almost surely. A more detailed study of the way in which
dependson d may befound in [172].

Themeasure .« may betermed ‘ free UST measure’, wheretheword ‘ free/
refers to the fact that no further assumption is made about the boundary
dA(n). Thereis another boundary condition, giving rise to the so-called
‘wired UST measure’: we identify as a single composite vertex all vertices
notin A(n — 1), and choose a spanning tree uniformly at random from the
resulting (finite) graph. We can pass to the limit asn — oo in very much
the same way as before, but with inequality (2.12) reversed. It turnsout that
the free and wired measures are identical on L9 for all d. The key reason
isthat L9 is a so-called amenable graph, which amounts in this context to
saying that the boundary/volume ratio approaches zero in the limit of large
boxes,

pAM| _ no-t
|A(N)] nd

See Exercise 2.9 and [37, 221, 237, 238] for further details and discussion.

This section closes with a brief note about weak convergence, for more
details of which the reader is referred to the books [45, 84]. Let E =
(& 11 <i < oo}beacountably infiniteset. Theproduct space2 = {0, 1}F
may be viewed as the product of copies of the discrete topological space
{0, 1} and, as such, 2 is compact, and is metrisable by

— 0 asn — oo.

S(w. o) =) 2 w(e) — o (&), w, o €.
=1

A subset C of Q iscalled a(finite-dimensional) cylinder event (or, simply,
acylinder) if there exists a finite subset F € E such that: € C if and
only if o' € C for al o’ equal to w on F. The product o-algebra F of Q
is the o -algebra generated by the cylinders. The Borel o-algebra 8 of
is defined as the minimal o -algebra containing the open sets. It is standard
that B is generated by the cylinders, and therefore # = B in the current
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setting. We note that every cylinder is both open and closed in the product
topology.

Let (un : n > 1) and u be probability measureson (2, ). We say that
un convergesweakly to ., written up = u, if

pn(f) = u(f)  asn— oo,

for all bounded continuous functions f : @ — R. (Here and later, P(f)
denotes the expectation of the function f under the measure P.) Several
other definitions of weak convergence are possible, and the so-called * port-
manteau theorem’ asserts that certain of these are equivalent. In particular,
the weak convergence of ., to u isequivalent to each of the two following
statements:

(@ limsup,_, o, #n(C) < u(C) for &l closed events C,
(b) liminfp_ o0 un(C) > u(C) for all open events C.
The matter is simpler in the current setting: since the cylinder events are

both open and closed, and they generate ¥, it is necessary and sufficient for
weak convergence that
(©) limp_ oo un(C) = u(C) for dl cylinders C.

Thefollowing is useful for the construction of infinite-volume measures
in the theory of interacting systems. Since  is compact, every family
of probability measures on (2, ¥) is relatively compact. That is to say,
for any such family IT = (uj : i € |), every sequence (un, : k > 1)
in TT possesses a weakly convergent subsequence. Suppose now that
(un : n > 1) is asequence of probability measures on (2, ). If the
limit limn_ o0 un(C) exists for every cylinder C, then it is necessarily the
casethat i := limp_ o n existsand isaprobability measure. We shall see
in Exercises 2.3 and 2.4 that this holdsif and only if limn_ o un(C) exists
for al increasing cylinders C. This justifies the argument of the proof of
Theorem 2.11.

2.4 Uniform Forest

We saw in Theorems 2.1 and 2.5 that the UST measure has a property of
negative association. Thereis evidence that certain related measures have
such a property aso, but such claims have resisted proof.

Let G = (V, E) be afinite graph, which we may as well assume to be
connected. Write & for the set of forests of G (that is, the subsets H C E
containing no cycle), and € for the set of connected subgraphsof G (that is,
the subsets H € E such that (V, H) is connected). Let F be auniformly
chosen member of #, and let C be a uniformly chosen member of ¢. We
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refer to F and C asauniformforest (UF) and auniform connected subgraph
(USC), respectively.

2.14 Conjecture For f,g e E, f # g, the UF and USC satisfy:

(2.15) P(feF|geF)<P(fekF),
(2.16) P(feC|geC)<P(f €C).

This is a special case of a more general conjecture for random-cluster
measuresindexed by the parameters p € (0, 1) andq € (0, 1). See Section
8.4.

We may further ask whether UF and USC might satisfy the stronger
conclusion of Theorem 2.5. As positive evidence for Conjecture 2.14, we
cite the computer-aided proof of [151] that the UF on any graph with eight
or fewer vertices (or nine vertices and 18 or fewer edges) satisfies (2.15).

Negative association presents difficulties that are absent from the better
established theory of positive association (see Sections 4.1 and 4.2). There
is an analogy with the concept of social (dis)agreement. Within a family
or population, there may be a limited number of outcomes with consen-
sus, there are generally many more outcomes with failure of consensus.
Nevertheless, probabilists have made progressin devel oping systematic ap-
proaches to negative association; see for example [180, 240].

2.5 Schramm-L owner Evolutions

Thereisabeautiful result of Lawler, Schramm, and Werner [203] concerning
the limiting LERW (loop-erased random walk) and UST measures on 1.2
This cannot be described without a detour into the theory of Schramm-
Ldwner evolutions (SLES).2

Thetheory of SLE isamajor piece of contemporary mathematics which
promises to explain phase transitions in an important class of two-dimen-
sional disordered systems, and to help bridge the gap between probability
theory and conformal field theory. It plays a key role in the study of criti-
cal percolation (see Chapter 5), and aso of the critical random-cluster and
Ising models, [268, 269]. In addition, it has provided complete explana
tions of conjectures made by mathematicians and physicists concerning the
intersection exponents and fractionality of the frontier of two-dimensional
Brownian motion, [197, 200, 201]. The purposes of the current section are
to giveabrief non-technical introductionto SLE andto indicateitsrelevance
to the scaling limits of LERW and UST.

3SLE was originally an abbreviation for stochastic Lowner evolution, but is now re-
garded as being named after Oded Schramm in recognition of hiswork reported in [258].
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SLEg 0

Figure2.1 Simulationsof thetracesof chordal SLE, forx = 2, 4, 6, 8.
The four pictures are generated from the same Brownian driving path.

Let H = (—o0, 00) x (0, 00) be the upper half-plane of R2, with closure
H, viewed as subsets of the complex plane. Consider the (Lowner) ordinary
differential equation

d —
@ = ze H\ {0},

0t(2) — b(t)’
subject to the boundary condition go(z) = z, wheret e [0, co), and
b : R — R istermed the ‘driving function’. Randomness is injected
into this formulathrough setting b(t) = B¢, wherex > Oand (B; : t > 0)
isastandard Brownian motion.* The solution existswhen g () is bounded
away from B;. More specifically, for z € H, let 7, be the infimum of all
times t such that O isalimit point of gs(z) — Bsinthelimits 4 . Welet

Hi={zeH: 1, >t} Ki={zeH: 1 <t},
so that H; is open and K; is compact. It may now be seen that g; is a
conformal homeomorphism from H; to H. There exists a random curve

4An interesting and topical account of the history and practice of Brownian motion
may be found in [94].
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y : [0, 00) — Hi, called the trace of the process, such that H \ Kj is the
unbounded component of H \ y[0, t]. Thetrace y satisfiesy(0) = 0 and
y(t) - coast — oo. (Seetheillustrationsin Figure 2.1.)

Wecal (g; : t > 0) aSchramm-Lowner evolution (SLE) with parameter
Kk, written SLE,., and the K; are caled the hulls of the process. Thereis
good reasonto believethat thefamily K = (K; : t > 0) providesthecorrect
scaling limits for avariety of random spatial processes, with the value of «
depending on the processin question. General properties of SLE, , viewed
asafunction of «, have been studied in [198, 249, 281, 282], and abeautiful
theory hasemerged. For example, the hulls K form (almost surely) asimple
path if and only if ¥ < 4. If ¥k > 8, the trace of SLE, is (almost surely) a
space-filling curve.

The above SLE process is termed ‘chordal’. In another version, called
‘radial’ SLE, the upper half-plane H is replaced by the unit disc U, and a
different differential equationissatisfied. Let 9U denote the boundary of U.
The corresponding curve y satisfiesy (t) — 0ast — oo, and y (0) € 9U;
we may suppose y (0) is uniformly distributed on dU. Both chordal and
radial SLE may be defined on an arbitrary simply connected domain D with
a smooth boundary by applying a suitable conformal map ¢ from either H
orUtoD.

It isbelieved that many discrete modelsin two dimensions, when at their
critical points, converge in the limit of small mesh-size to an SLE, with
x chosen appropriately. Oded Schramm [258, 259] identified the correct
valuesof « for several different processesand indicated that percolation has
scaling limit SLEg. Full rigorous proofs are not yet known even for general
percolation models. For the special but presumably representative case of
sSite percolation on the triangular lattice T, Smirnov [266, 267] proved the
very remarkable result that the crossing probabilities of re-scaled regions
of R? satisfy Cardy’s formula (see Section 5.6), and he indicated the route
to the full SLEg limit. See [63, 64, 65, 282] for more recent work on
percolation and [91, 268, 269] for progress on the SLE limits of the critical
random-cluster and |sing models in two dimensions.

Thischapter closeswith abrief summary of theresultsin[203] concerning
SLE limitsfor loop-erased randomwalk (L ERW) and uniform spanningtree
(UST) on the square lattice IL2. We saw earlier in this chapter that thereis
a very close relationship between LERW and UST on a finite connected
graph G. For example, the unique path joining verticesu and v in aUST
of G hasthe law of aLERW from u to v (see [237] and the description of
Wilson's algorithm). See Figure 2.2.

Let D beabounded simply connected subset of C with asmooth boundary
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a

Figure 2.2 A uniform spanning tree (UST) on a large square of the
square lattice. It contains a unique path between any two vertices a, b,
and this has the law of aloop-erased random walk (LERW) between a
and b.

aD and such that O liesinitsinterior. Asremarked above, we may define a
radial SLE2 on D, and we write v for itslaw. Let § > 0, and let s be the
law of LERW on the re-scaled lattice §72, starting at 0 and stopped when it
first hits aD.

For two parametrizable curves 8, y in C, we define the distance between
them by

p(B,y) = inf { sup |B(t) — ?(t)l} :
te[0,1]

where the infimum is over all parametrizations 8 and 7 of the curves
(see [8]). The distance function p generates a topology on the space of
parametrizable curves, and hence a notion of weak convergence, denoted

3 3

="
2.17 Theorem [203] Wehavethat us = v asdé — 0.

Weturnto the convergenceof UST to SL Eg, and begin with adiscussion of
mixed boundary conditions. Let D be abounded simply connected domain
of C with asmooth (C*) boundary curve 8D. For distinct pointsa, b € 9D,
we write o (respectively, g) for the arc of dD going clockwise from a to
b (respectively, bto a). Let § > 0 and let Gs be a connected graph that
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Peano UST curve

Figure2.3 Anillustration of the Peano UST path lying between atree
anditsdual. Thethinner continuousline depictsthe UST and the dashed
lineits dual tree. The thicker line is the Peano UST path.

approximates to that part of 5§72 lying inside D. We shall construct a UST
of G; with mixed boundary conditions, namely afree boundary near o and
awired boundary near 8. Toeachtree T of G4 there correspondsadual tree
T on the dual® graph G, namely the tree comprising edges of G¢ that do
not intersect those of T. Since G; has mixed boundary conditions, so also
doesiits dual GY. With Gs and G§ drawn together, there is a smple path
7(T, T9) that windsbetween T and TY. Let IT be the path thus constructed
between the UST on G5 and its dual tree. The construction of this ‘ Peano
UST path’ isillustrated in Figures 2.3 and 2.4.

2.18 Theorem [203] Thelaw of IT convergesas$ — 0to that of theimage
of chordal SLEg under any conformal map fromH to D mapping 0 to a and
oo tob.

2.6 Exercises

2.1 [18, 60] Aldous—Broder algorithm. Let G = (V, E) be afinite connected
graph, and pick aroot r € V. Perform arandom walk on G starting fromr. For
eachv € V, v #r, let e, be the edge traversed by the random walk just before it
hitsv for thefirst time, and let T bethetreel J, e, rooted at r. Show that T, when
viewed as an unrooted tree, is a uniform spanning tree. It may be helpful to argue
asfollows.

(@) Consider a stationary simple random walk (Xp : —oo < nh < o0) on G,
with distribution 7, o« deg(v), the degree of v. Let T; be the rooted tree
obtained by the above procedure applied to the sub-walk X;, Xjt1, ... Show

5Thisis the planar duality of graph theory; see Section 3.1.
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Figure 24 An initial segment of the Peano path constructed from a
UST on alarge rectangle with mixed boundary conditions.

thaa T = (Tj : —o0 < i < o0) isastationary Markov chain with state space
the set R of rooted spanning trees.
(b) Let Q(t,t")y =P(Tog =t'| Ty =t), and let d(t) be the degree of the root of
t € R. Show that:
(i) for givent € R, there are exactly d(t) treest’ € R with Q(t,t’) =
1/d(t) and Q(t, t') = Ofor all other t/,
(i) for givent’ € R, there are exactly d(t’) treest € R with Q(t,t") =
1/d(t) and Q(t,t") = Ofor all other t.
(c) Show that
> dnQt.th)=dt), t'eR,
teR
and deduce that the stationary measure of T is proportional to d(t).
(d) Letr € V,andlett beatreewithrootr. Show that P(To =t | Xg =) is
independent of the choice of t.
2.2 Inclusion—exclusion principle. Let F be afinite set, and let f, g be real-
valued functions on the power-set of F. Show that

f(A)=> 9B, AcCF,
BCA

if and only if
gA = > (-nMBlrB),  AcF
BCA

Show the corresponding fact with the two summations replaced by > " g- A
and the exponent |A\ B| by |[B\ A|. -
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2.3 LetQ = {0, 1}F where F isfinite, let P be aprobability measure on £2, and
let A C Q. Show that P(A) may be expressed as alinear combination of certain
P(Aj), wherethe A; areincreasing events.

2.4 (continuation) Let G = (V, E) be an infinite graph with finite vertex-
degrees, and let @ = {0, 1}E, endowed with the product o-field. An event Ain
the product o -field of Q iscalled acylinder event if it hasthe form Ag x {0, 1}F
for some Ag € {0, 1}F and some finite F < E. Show that a sequence (un) of
probability measures converges weakly if and only if un(A) convergesfor every
increasing cylinder event A.

25 Let G = (V, E) beaconnected subgraph of the finite connected graph G'.
Let T and T’ be uniform spanning treeson G and G’ respectively. Show that, for
anyedgeeof G,P(ec T) > P(eec T').

Moregenerally, let B beasubset of E, andshowthatP(B € T) > P(B C T').

2.6 Review the proof of Theorem 2.11, as follows. Let T be a UST of the
|attice box [—n, n]9 of Z9. Show that the limit A(€) = limn— o0 P(e € Tp) exists.

More generally, show that the weak limit of T, existsasn — oo.

2.7 Adapt the conclusions of the last two exercisesto the‘wired’ UST measure
wW on Ld.

2.8 Let F be the set of forests of LY with no bounded component, and let 1
be an automorphism-invariant probability measure with support . Show that the
mean degree of every vertex is 2.

2.9 [237] Let A be an increasing cylinder event in {0, LJE", where B9 de-
notes the edge-set of the hypercubic lattice LY. Using the Feder—Mihail Theorem
2.5 or otherwise, show that the free and wired UST measures on LY satisfy
/,Lf(A) > pW(A). Deduce by the last exercise and Strassen’'s theorem, or oth-
erwise, that uf = W,

2.10 Consider the square lattice .2 as an infinite electrical network with unit
edge-resistances. Show that the effective resistance between two neighbouring
verticesis 2.

211 Let G = (V, E) befinite and connected, and let W C V. Let Fy bethe
set of forests of G comprising exactly |W| treeswith respective roots the members
of W. Explain how Wilson's algorithm may be adapted to sample uniformly from
Fw-
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Percolation and Self-Avoiding Walks

The central feature of the percolation model is the phase transition.
The existence of the point of transition is proved by path-counting
and planar duality. Basic facts about self-avoiding walks, oriented
percolation, and the coupling of models are reviewed. A specia
feature is the proof that the connective constant of the hexagonal

latticeis V2 + /2.

3.1 Percolation and Phase Transition

Percolation is the fundamental stochastic model for spatia disorder. In its
simplest form, introduced in [59], it inhabits a (crystalline) lattice and pos-
sesses the maximum (statistical) independence. We shall consider mostly
percolation on the (hyper)cubic lattice LY = (z9, %) ind > 2 dimensions,
but much of the following may be adapted to an arbitrary lattice.

Percolation comes in two forms, ‘bond’ and ‘site’, and we concentrate
here on the bond model. Let p € [0, 1]. Each edge e € EY is designated
either openwith probability p, or closed otherwise, different edgesreceiving
independent states. We think of an open edge as being open to the passage
of some material such as disease, liquid, or infection. Suppose we remove
all closed edges, and then consider the remaining open subgraph of the
lattice. Percolation theory is concerned with the geometry of this open
graph. Of particular interest are such quantities as the size of the open
cluster Cyx containing a given vertex x and, particularly, the probability that
Cy isinfinite.

The sample space is the set @ = {0, 1}IEd of 0/1 vectors w indexed
by the edge-set; here, 1 represents ‘open’, and O ‘closed’. As o-field we
take that generated by the finite-dimensional cylinder sets, and the relevant
probability measure is the product measure Pp with density p.

For x, y € Z9, wewrite x <> y if there exists an open path joining x and

1see also [287].
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y. The open cluster Cy at x isthe set of all vertices reachable along open
paths from the vertex X,

CX={yeZd:x<—>y}.
The origin of Z9 is denoted 0, and we write C = Cq. The principal object
of study is the percolation probability 6 (p) given by
6(p) = Pp(IC| = 00).
The critical probability is defined as

(3.) pc = pe(LY) = sup{p : 6(p) = O}.

It is fairly clear (and will be spelled out in Section 3.3) that 6 is non-
decreasing in p, and thus

=0 if p< pc,
0
(p){>0 if p> pe.

Itisfundamental that O < pc < 1, and we state this as atheorem. It is easy
to seethat pc = 1 for the corresponding one-dimensional process.

3.2 Theorem For d > 2, wehavethat 0 < pc < 1.

Theinequalitiesmay be strengthened using countsof self-avoidingwalks,
asin Theorem 3.12. It isan important open problem to prove thefollowing
conjecture. The conclusion is currently knownonly ford = 2andd > 11
(see the computer-assisted proof in [107]).

3.3 Conjecture For d > 2, we havethat (p;) = 0.

It isthe edges (or ‘bonds’) of the lattice that are declared open or closed
above. If, instead, we designate the vertices (or * sites’) to be open or closed,
the ensuing model is termed site percolation. Subject to (generally) minor
changes, thetheory of site percolation may be developed just asthat of bond
percolation. See[127] for ageneral account of percolation theory.

Proof of Theorem3.2. This proof introducestwo basic methods, namely the
counting of paths and the use of planar duality. We show first by counting
pathsthat p; > 0.

A self-avoiding walk (SAW) is a lattice path that visits no vertex more
than once. Let oy, be the number of SAWSs with length n beginning at the
origin, and let N, be the number of such SAWSs all of whose edges are open.
Then

6(p) =Pp(Np > 1foralnz=>1)
n—o0
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Now,

(34) Pp(Nn > 1) < Ep(Np) = p"on.
As a crude upper bound for oy, we have that

(3.5) on < 2d(2d — )" 1, n=>1,

since the first step of a SAW from the origin can be to any of its 2d neigh-
bours, and there are no more than 2d — 1 choices for each subsequent step.
Thus
6(p) < lim 2d(2d — H"~1p",
n—o0

which equals 0 whenever p(2d — 1) < 1. Therefore,

- 1
Po=2a—1
We turn now to the proof that p; < 1. Thefirst step isto observe that
(36) P = peth,  d=2

Thisfollowsfrom the observation that L% may be embeddedin L9+ insuch
away that the origin liesin an infinite open cluster of 1.9+1 whenever it lies
in an infinite open cluster of the smaller lattice LY. By (3.6), it suffices to
show that

(3.7) pe(L?) < 1,

and to this end we shall use a technique known as planar duality, which
arises asfollows.

Let G beaplanar graph, drawn in the plane. The planar dual of G isthe
graph constructed in the following way. We place avertex in every face of
G (including the infinite face if it exists) and we join two such vertices by
an edgeif and only if the corresponding faces of G share a boundary edge.
Itiseasy to seethat the dual of the squarelattice L2 is a copy of L2, and we
refer therefore to the square lattice as being self-dual. See Figure 1.5.

There is a natural one—one correspondence between the edge-set of the
dual lattice I and that of the primal 1.2, and this givesrise to a percolation
model on L3 asfollows: for an edgee € E? and itsdual edge ey, we declare
eq to be open if and only if e is open. Asillustrated in Figure 3.1, each
finite open cluster of L? liesin theinterior of aclosed cycleof L lying ‘just
outside’ the cluster.

We use a so-called Peierls argument? to obtain (3.7). Let M, be the
number of closed cycles of the dual lattice having length n and containing

2Thismethod wasused by Peierls[236] to prove phasetransitionin thetwo-dimensional
Ising model.
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Figure3.1 A finite open cluster of the primal lattice lies‘just inside’ a
closed cycle of the dual lattice.

Ointheir interior. Note that |C| < oo if and only if M, > 1 for somen.
Therefore,

(3.8) 1—6(p) =Pp(IC| < 00) = Pp(z Mp > 1)
=< ]Ep(z Mn)
n

= Ep(Mn) < > (nd)(1-p",
n=4 n=4

where we have used the facts that the shortest dual cycle containing O has
length 4, and that the total number of dua cycles, having length n and
surrounding the origin, is no greater than n4" (see Exercise 3.12). Thefina
sum may be made strictly smaller than 1 by choosing p sufficiently close
tol,say p > 1— e wheree > 0. Thisimpliesthat pc(L?) < 1 — € as
required for (3.7). d

3.2 Sdf-Avoiding Walks

How many self-avoiding walks of length n exist, starting from the origin?
What isthe*shape’ of a SAW chosen at random from thisset? In particular,
what can be sai d about the distance betweenitsendpoints? Theseand related
guestionshaveattracted agreat deal of attention sincethepublicationin 1954
of the pioneering paper [158] of Hammersley and M orton, and never more so
than in recent years. It isbelieved but not proved that atypical SAW on L2,
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starting at the origin, convergesin asuitable manner asn — oo toaSLEg/3
curve, and the proof of this statement is an open problem of outstanding
interest. See Section 2.5, in particular Figure 2.1, for an illustration of the
geometry, and [223, 259, 268] for discussion and results.

The use of subadditivity wasone of the several stimulating ideasof [158],
and it has proved extremely fruitful in many contexts since. Consider the
lattice .9, and let 8, bethe set of SAWs with length n starting at the origin,
with o, = | 4| as before.

3.9 Lemma We havethat ojn < omon, for m,n > 0.

Proof. Let = and =’ be finite SAWSs starting at the origin, and denote by
7 * 7’ the walk obtained by following = from 0 to its other endpoint x, and
then following the translated walk 77/ + x. Every v € $myn may bewritten
inauniqgueway asv = 7 x 7w’ for somen € 8y and ' € 8,. Theclaim of

the lemmafollows. O
3.10 Theorem [158] The limit k¥ = limp_ o (on)Y/" exists and satisfies
d<k<2d-1

Thisisin essence a consequence of the ‘ sub-multiplicative’ inequality of
Lemma3.9. The constant « is called the connective constant of the lattice.
The exact value of ¥ = « (IL9) is unknown for every d > 2; see[171, Sect.
7.2, pp. 481-483]. On the other hand, the ‘hexagona’ (or ‘honeycomb’)
lattice (see Figure 1.5) has a special structure which has permitted a proof
by Duminil-Copin and Smirnov [90] that its connective constant equals

V2 + /2. See Theorem 3.14.

Hammersley [156] showed that the connective constant 1« (G) may be
defined for any infinite, simple, quasi-transitive graph G. Results for con-
nective constants are reviewed in [140].

Proof. By Lemma3.9, Xm = log o, satisfies the ‘ subadditive inequality’
(3.11) Xm+n < Xm + Xn.
The existence of the limit

A= lim {x,/n}

n—oo
followsimmediately (see Exercise 3.1), and
A= iqu {Xm/m} € [—o0, o0).

By (3.5), k = € < 2d — 1. Finally, oy, is at least the number of * stiff’

walks every step of which is in the direction of an increasing coordinate.
The number of suchwalksisd", and thereforex > d. O

The bounds of Theorem 3.2 may be improved as follows.
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3.12 Theorem The critical probability of bond percolation on L9, with
d > 2, satisfies

- < <1l1- —
- =TTy
where « (d) denotes the connective constant of 9.

Proof. Asin (3.4),
0(p) < lim plon.

Now, ony = & (d) 30N 'spthat 6(p) = 0if pr(d) < 1.

For the upper bound, we elaborate on the proof of the corresponding part
of Theorem 3.2. Let Fr, be the event that there exists a closed cycle of the
dual lattice LS containing the primal box A(m) = [—-m, m]? initsinterior,
and let G, be the event that all edges of A (m) are open. These two events
are independent, since they are defined in terms of disjoint sets of edges.
Asin (3.8),

(3.13) Pp(Fm) < Pp( > My = 1)
n=4m
< Z nl— p)on.
n=4m

Recall that o = «(2) 1MW) and choose p such that (1 — p)«x(2) < 1.
By (3.13), we may find m such that Pp(Fm) < 3. Then,

0(p) = Pp(Fn N Gm) = Pp(Fn)Pp(Gm) = 3Pp(Gm) > 0.
The upper bound on pc follows. d

There are some extraordinary conjectures concerning SAWSs in two di-
mensions. We mention the conjecture that

on ~ Antl/32,n whend = 2.

Thisisexpected to holdfor any latticein two dimensions, with an appropriate
choice of constant A depending on the choice of lattice. It is known in
contrast that no polynomial correction is necessary whend > 5,

on ~ Ax" whend > 5,

for the cubic lattice at least. Related to the above conjecture is the belief
that arandom SAW of 72, starting at the origin and of length n, converges
weakly asn — oo to SLEg/3. See[26, 223, 259, 268] for further details of
these and other conjectures and results.
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Figure3.2 The Archimedean lattice (3, 122) is obtained by replacing
each vertex of the hexagonal lattice H by atriangle.

3.3 Connective Constant of the Hexagonal L attice

Arguably the most interesting exact calculation of a connective constant is
of that of the hexagonal lattice H of Figure 1.5. This striking and important
result of Duminil-Copin and Smirnov [90] providesarigorousand provoca-
tive verification of a prediction of Nienhuis[234] based on conformal field
theory.

3.14 Theorem The connective constant of the hexagonal | attice H satisfies
K(H) =v2+ V2.

The proof falls short of aproof of conformal invariance for self-avoiding
walksonH. Theorem 3.14 may be applied to obtain the connective constant
of the Archimidean lattice (3, 12%) of Figure 3.2; see [139] and Exercise
3.13.

The reader may wonder about the special nature of the hexagonal lattice.
It is something of a mystery why certain results for this lattice (for exam-
ple, the above exact calculation, and the conformal scaling limit of ‘face’
percolation of H; see Section 5.13) have not yet been extended to other
lattices.

Proof. This exploits the relationship between R? and the Argand diagram
of the complex numbers C. We embed H = (V, E) in R? in anatural way
asillustrated in Figure 3.3: edges have length 1 and are inclined at angles
/2, T /6, —m /6 to the x-axis, the origins of H and R? coincide, and the
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(0,1)

Figure3.3 The hexagonal lattice H embedded in the plane.

line-segment from (0, 0) to (0, 1) is an edge of H. Any point in H may
thus be represented by a complex number. Let M be the set of midpoints
of edges of H. Rather than counting paths between vertices of H, we count
paths between midpoints.

Fixa € M, and let

Z(X) = Zx'yl, X € (0, 00),
14
where the sum is over al SAWSs y starting at a, and |y| is the number of

vertices visited by y. Theorem 3.14 is equivalent to the assertion that the
radius of convergence of the power series Z is

_ 1
V2442
We shall verify this by proving that
(3.15) Z(x) = oo,
(3.16) Z(X) < oo forx < yx.

Towardsthisend weintroduce afunction that recordsthe turning angle of
aSAW. A SAW y departsfromitsinitial midpoint a in one of two possible
directions, and its direction changes by 47 /3 each timeit reaches a vertex.
On arriving at its other endpoint b, it has turned through some total turning
angle T (y), measured anticlockwisein radians.

We work within some bounded region M of H. Let S C V be afinite
set of vertices that induces a connected subgraph of H, and let M be the
set of midpoints of edges of H touching pointsin S. Let AM be the set of
midpoints for which the corresponding edge of H has exactly one endpoint
in S. Wetake M to bethe region of H comprising vertices S, midpoints M,
and half-edges between such vertices and midpoints. Later in the proof we
shall restrict M to aregion of the typeillustrated in Figure 3.4.
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Figure3.4 Theregion Mm n has2m+ 1 midpoints on the bottom side,
and n at the left and right sides. In thisillustration, we have m = 2 and
n=>5.

Letae AM and o, X € (0, 00), and define the so-called ‘ parafermionic
observable’ of [90] by

(3.17) FoX(2) = ) eoTWxl, Ze M,

y:a—z
where the summation is over all SAWs from a to z lying entirely in M.
We shall suppress some of the notation in F?* when no ambiguity ensues.
The key ingredient of the proof is the following lemma, which is strongly
suggestive of discrete analyticity.

3.18 Lemma Leto = 2andx = x. Forv e S,

(3.19) (P—v)F(P)+ (@ —-v)F(@) + T —v)FT) =0,

where p, q,r € M are the midpoints of the three edges incident to v, and
the quantitiesin (3.19) are to be interpreted as complex numbers.

Proof. Let v € S. We assume for definiteness that the star at v is as drawn
on the left of Figure 3.5. The other configurations are handled similarly.
Let #« be the set of SAWs in M starting at a whose intersection with
the set {p, q, r} has cardinality k, for k = 1, 2, 3. We shall show that the
aggregate contribution to (3.19) of 1 U £, iszero, and similarly that of $s.
Consider first £3. Let y € P3, and write by, by, bs for the ordering of
{p, g, r} encountered along y starting at a. Thusy comprises:
— aSAW p fromato by,
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-
- L .

v v )

p p p
0 0
a a

Figure 3.5 The star centred at the vertex v is on the left. Two SAWs
lying in $73, visiting the midpoints of edgesin the respective orders pgr
and prg. They follow the same SAWSs p and t (in one or the other
direction), and differ only within the star.

— aSAW of length 1 from b; to by,
— aSAW t from by to bz that is digoint from p,

asillustrated in Figure 3.5. We partition $3 according to the pair p, t. For
given p, t, the aggregate contribution of these two paths to the |eft side of
(319 is

(320) c <§e—i0’4ﬂ/3 + eei(74rr/3>

wherec = (by — v)e~ioT@xlel+TI+1 gng

p— 47V _ dorss
p—v '

The contents of the parenthesisin (3.20) equal 2cos(47 (20 + 1)), which

5
equasOwheno = 3.

Consider now £1 U $». This set may be partitioned according to the
pointbin {p, q, r} visited first, and by the route p of the SAW from a to b.
For given b, p, there are exactly three such SAWS, asin Figure 3.6. Their
aggregate contribution to the left side of (3.19) is

c (1 + Xeeiorr/f% + Xge—iarr/3>
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a /O a /D e /D
. o “ . - A
r~o .. r >~ r e
o q o q o7 q
|
|
p p p
o 0 2
a a a

Figure 3.6 The left SAW, denoted p, intersects the set {p, q,r} only
once. The other two paths are extensions of the first.

wherec = (b — v)e 7 T@WxIl. Witho = 2, we set thisto 0 and solve for

X, to find
1

X = Scosn/8)

Thelemmais proved. g

X-

We return to the proof of Theorem 3.14, and we set 0 = g henceforth.
Let M = Mpy,n beasin Figure 3.4, and let Ly, T3, Umn be the sets of
midpointsindicated in the figure (note that a is excluded from Ly,). Let

)‘)r%,n e Z lel’
y:a—>Lm
where the sum is over all SAWsin My, , from a to some pointin Ly,. We
shall suppress explicit reference to x and write Amn = Ay, . All such y

have T(y) = £x. The sums rnﬂ{’r’f and vém are defined similarly in terms
of SAWs endingin T, and Um n,

+£.x _ [yl X [yl
Tmn = Z X< Vmn = X7
y:a—>T%,n y:a—Umn

and all such y have T (y) = 2 /3 and T (y) = 0 respectively.

In summing (3.19) over al verticesv of My n with x = x, all midpoint
contributions cancel except those from the boundary midpoints. Using the
symmetry of My n, We deduce after a short calculation that, when x = x,

—iF(a) — iRe(€ ™ Amn +10e7 723 tivnn +i0€7% 3 f = 0.
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Divide by i and usethe fact that F(a) = 1, to obtain
(3.21) armn+ Btmn+vmn=1 when x = y,
where tmn = 7, + T, and
o = cos(3r/8), B = cos(rr/4).
Let x € (0, 00). Since Am n and vy @reincreasing in m, the limits

An= lim Amn, va= lim vyn, where x € (0, 00),
m— 00 m— oo

exist. Hence, by (3.21), when x = yx the decreasing limit

(3.22) Tm.n 4 Tn asm — oo,

exists also. Furthermore, by (3.21),

(3.23) ain+ Bt + vy =1, when x = y.

We shall use (3.22) and (3.23) to prove (3.15) and (3.16), as follows.
Proof of (3.15). There are two cases depending on whether

(3.24) whenx = x, t, > 0forsomen > 1.

Assume first that (3.24) holds,® and pick n > 1 accordingly. By (3.22),
Tm,n > Tn for al m, so that, when x = ,

00
Z(x) = Z Tm,n = OO,

m=1
and (3.15) follows.
Assume now that (3.24) is false. Let x = x until further notice. By
(3.23),
(325) Ol}\,n +vh = 1, n= 1.

We proposeto bound Z () below interms of the vy. Thedifferenceini1—
An isthe sum of x!”! over dl y from a to L., whose highest vertex lies
betweenU oo nandUs nt1. SeeFigure3.7. Wesplitsuchay intotwo pieces
at itsfirst highest vertex, and add two half-edgesto obtain two self-avoiding
paths from a given midpoint, b say, of Us n+1 10 Lo U {a}. Therefore,

Antl— An < x i) n>1

By (3.25), C
ax ~(vnt1)® + vng1 = vn, n>1,

3In fact, (3.24) does not hold; see [28].
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Figure3.7 A SAW contributing to A%, ; but not A% isbroken at itsfirst
highest vertex into two SAWSs, as marked. By adding two half-edges,
we obtain two SAWsfromb € Ugo nt1 10 Loo.

whence, by induction on n,

Vn > whereC:min{vl,ﬁ}.
(07

n
Therefore,
o
Z(x) =Y vn=o0.
n=1
Proof of (3.16). We use aconstruction devel oped by Hammersley and Welsh
[159] to study SAWsonL9. A SAW y between midpointsc, d of Hiscalled
abridgeif:
(@) candd lieon vertical edges (in the sense of Figure 3.8), and
(b) cisthelowest midpoint ony, and d isthe highest.
Theheight of y isdefinedto be N + 1 where N isthe number of its complete
vertical edges, counting +1 for edges traversed upwards and —1 for those
traversed downwards. For example, the common height of the two bridges
from Lo tobin Figure 3.7 isn + 1 (= 6). Notethat v} isthe generating
function of bridges starting at a with height n. We shall see that a SAW on
H may be expressed in terms of bridges.

Consider first a SAW y in the upper half-plane M o Of Figure 3.8,
starting at the midpoint a, ending at b, and assume y isnot abridge. From
amongst its highest vertices choose the last, denoted v, and add a vertical
half-edgewith amidpoint, c say. Let y1 bethebridgefromatoc, andlet y»
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Figure3.8 A half-planewalk y may be decomposed into three bridges
by the addition of half-edges and midpoints at chosen locations.

bethe sub-SAW from ¢’ to b, where ¢’ isthe midpoint of the earliest vertical
edge following v. The vertical displacement of y» is strictly less than that
of y1. This process is iterated until the final midpoint b is reached. If b
isnot on avertical edge, we add two half-edges and a further midpoint, as
illustrated. By iteration, y is decomposable into an ordered set of bridges
with vertical displacements, written To > Ty > --- > Tj. SeeFigure 3.8.

Now, let y beaSAW that startsat a and movesimmediately upwards (not
necessarily ahalf-planewalk), and assumey isnot abridge. Findtheearliest
vertex of y that ishighest, and add ahalf-edge and amidpoint, c say. Let y;
bethe sub-SAW fromato ¢, and | et y» bethe subsequent sub-SAW from c to
thefinal midpoint of . Thus, y givesrisetoaSAW y; from ato c, together
with the remaining SAW y». Now, y1 and y» (viewed backwards) are half-
plane walks. On applying the above procedure, we obtain a decomposition
of y1 into bridges with vertical displacements written T_j < --- < T_g,
Similarly, y, hasadecompositionwith Tg > - -- > Tj. Theorigina walk y
may be reconstructed from knowledge of the constituent bridges. A similar
argument isvalid if the first move of y isinstead downwards.

Onemay deduceaboundfor Z (x) intermsof thev,. Any SAW fromahas
two choicesforitsinitial direction, and thereafter hasabridge decomposition
as above. Therefore,

(3.26)

j 00
z<2 Yo [V =2]]a+wA for x € (0, 00).
T j<-<T_1 k=—i n=1
To>-->T;
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It remains to bound the right side.
Since all SAWsfrom a to U, n havelength at least n,

n n
X X
v,’{g(—) vég(—) , whenx < y,
X X

since v} < 1by (3.23). Therefore,

o0
H(1+v,)1<)<oo, whenx < yx,
n=1

and (3.16) follows by (3.26). d

3.4 Coupled Percolation

The use of coupling in probability theory goes back at least as far as the
beautiful proof by Doeblin of the ergodic theorem for Markov chains, [82,
150]. In percolation, we couple together the bond models with different
valuesof p asfollows. Let (Ue: e e EY) be independent random variables
with the uniform distribution on [0, 1]. For p € [0, 1], let

1 ifUe < p,
p(€) = : 0 otherwise.
Thus, the configuration np (e €2) haslaw Pp, and in addition
mp<nr if p<r.
3.27 Theorem For any increasing integrable random variable f : Q —
R, the function g(p) = Pp(f) is non-decreasing.

Proof. For p < r, wehavethat np < n;, whence f (np) < f(nr). There-
fore,
a(p) = P(f(np)) < P(f@r)) = g(r),

asrequired. O

3.5 Oriented Percolation

The*north-east’ lattice 9 is obtained by orienting each edge of 1.9 in the di-
rection of increasing coordinate-value (see Figure 3.9 for atwo-dimensional
illustration). There are many parallels between resultsfor oriented percola-
tion and thosefor ordinary percolation; on the other hand, the corresponding
proofsoften differ, largely because the existence of one-way streetsrestricts
the degree of spatial freedom of the traffic.
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el

Figure 3.9 Part of the two-dimensional ‘north-east’ lattice in which
each edge has been deleted with probability 1 — p, independently of all
other edges.

Let p € [0, 1]. Wedeclarean edge of Ldto beopenwith probability pand
otherwise closed. The states of different edges are taken to be independent.
We supply fluid at the origin, and alow it to travel along open edges in
the directions of their orientations only. Let C be the set of vertices that
may be reached from the origin along open directed paths. The percolation
probability is

(3.28) 6(p) = Pp(IC| = 00),
and the critical probability pe(d) is
(3.29) Pe(d) = sup(p : 6(p) = 0}.

3.30 Theorem For d > 2, we havethat 0 < pc(d) < 1.

Proof. Since an oriented path is also a path, it is immediate that §(p) <
6(p), whence pc(d) > pc > 0. Asin the proof of Theorem 3.2, for the
upper bound it sufficesto show that pe(2) < 1.

Letd = 2. Thecluster C comprises the endvertices of open edges that
are oriented northwards or eastwards. Assume |é| < 00. We may draw
adual cycle A surrounding C in the manner illustrated in Figure 3.10. As
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Figure 3.10 Aswe trace the dua cycle A, we traverse edges exactly
one half of which cross closed boundary edges of the cluster C at the
origin.

we traverse A in the clockwise direction, we move along dual edges each
of which is oriented in one of the four compass directions. Any edge of A
that is oriented either eastwards or southwards crosses aprimal edgethat is
closed. Exactly one half of the edges of A are oriented thus, so that, asin
(3.8),

Pp(IC| < 00) < 3 4-3"2(1 - )T,

n>4
Inparticular, 6(p) > 0if 1 — pis sufficiently small and positive. d

Theprocessisunderstood quitewell whend = 2; see[96]. By looking at
the set A, of wet verticesonthediagonal {x € Z2 : x1 + x» = n} of L2, we
may reformul atetwo-dimensional oriented percol ation asaone-dimensional
contact processin discrete time (see [206, Chap. 6]). It turns out that pc(2)
may be characterized in terms of the velocity of the rightwards edge of a
contact processon Z whoseinitial distribution placesinfectivesto theleft of
the origin and susceptiblesto the right. With the support of argumentsfrom
branching processes and ordinary percolation, we may prove such results
as the exponential decay of the cluster-size distribution when p < pc(2),
and its sub-exponential decay when p > pc(2): thereexist a(p), B(p) > 0
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such that
(3.31)
e e (VI - Pp(n < |C| < o0) < e FPIVD if pe(2 < p<1

Thereisacloserelationship between oriented percolation and the contact
model (see Chapter 6), and methodsdevel oped for thelatter model may often
be applied to the former. It has been shown in particular that 6( Bc) = Ofor
general d > 2; see[135].

We close this section with an open problem of a different sort. Suppose
that each edge of 1.2 is oriented in a random direction, horizontal edges
being oriented eastwards with probability p and westwards otherwise, and
vertical edges being oriented northwardswith probability p and southwards
otherwise. Let n(p) be the probability that there exists an infinite oriented
path starting at the origin. It isnot hard to show that '7(%) = 0 (seeExercise
3.9). We ask whether n(p) > 0if p # % Partia resultsin this direction
may be foundin [129]; see dso [213, 214].

3.6 Exercises

3.1 Subadditive ineguality. Let (Xn : n > 1) be a real sequence satisfying
Xm+n < Xm + Xn for m,n > 1. Show that the limit A = limp_ co{Xn/N} exists
and satisfies . = inf{xx/k} € [—00, 00).

3.2 (continuation) Find reasonable conditions on the sequence («n) such that:
the generalized inequality

Xm+n =< Xm + Xn + am, mn>1

implies the existence of the limit A = limn— 0o {Xn/N}.

3.3 [147] Bond and site critical probabilities. Let G be an infinite connected
graph with maximal vertex degree A. Show that the critical probabilities for bond
and site percolation on G satisfy

p(k:Jond < pgite <1-(1- pgond)A.

The second inequality isin fact valid with A replaced by A — 1.

3.4 Show that bond percolation on agraph G may be reformulated in terms of
site percolation on a graph derived suitably from G.

3.5 Show that the connective constant of L lies strictly between 2 and 3.

3.6 Show the strict inequality pc(d) < pe(d) for the critical probabilities of
unoriented and oriented percolation on L9 with d > 2.

3.7 One-dimensional percolation. Each edge of the one-dimensional lattice L
is declared open with probability p. Fork € Z, letr (k) = max{u : k < k + u}
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and Ln = max{r(k) : 1 < k < n}. Show that Pp(Ln > u) < np", and deduce
that, for e > 0,

1+ ¢€)logn
Pp(n (1+¢)log

) -0 asn — oo.
log(1/p)

Thisis the famous problem of the longest run of headsin n tosses of a coin.
3.8 (continuation) Show that, for € > 0,

(1—e)logn

By suitable refinements of the error estimates above, show that, for ¢ > 0,

Pp (w Z Ly < EHO0gN ol but finitely many n) —1
log(1/p) log(1/ p)

3.9 [129] Each edge of the square lattice 1.2 is oriented in a random direc-
tion, horizontal edges being oriented eastwards with probability p and westwards
otherwise, and vertical edges being oriented northwards with probability p and
southwards otherwise. Let n(p) be the probability that there exists an infinite
oriented path starting at the origin. By coupling with undirected bond percolation
(for which we have that 9(%) = 0 by Theorem 5.25), or otherwise, show that

n(3) =0.
It is an open problem to decide whether n(p) > O for p # %

3.10 Thevertex (i, j) of L2 iscalled evenif i + j iseven, and odd otherwise.
Vertical edgesare oriented from the even endpoint to the odd, and horizontal edges
vice versa. Each edge is declared open with probability p and closed otherwise
(independently between edges). Show that, for p sufficiently closeto 1, thereis
a strictly positive probability that the origin is the endpoint of an infinite open
oriented path.

3.11 [132, 210, 211] A word isan element of the set {0, 1} of singly infinite0/1
sequences. Let p € (0, 1) and M > 1. Consider oriented site percolation on 72,
in which the state w (x) of avertex x equals 1 with probability p, and O otherwise.
A word w = (w1, wo, ...) issaid to be M-seen if there exists an infinite oriented
path xg = 0, X1, Xo, ... of vertices such that w(xj) = wj and d(xj_1, Xj) < M
fori > 1. [Here, asusual, d denotes graph-theoretic distance.]

Calculate the probability that the square {1, 2, .. ., k}2 contains both a0 and
al. Deduce by ablock argument that

Yp(M) = Pp(all words are M-seen)

satisfies yp(M) > 0 for M > M(p), and determine an upper bound on the
required M(p).



58 Percolation and Self-Avoiding Walks

3.12 By counting dual SAWS or otherwise, show that there exist at most n4"
cycles of the dual lattice of 1.2 with length n and containing the origin in their
interior.

3.13 [139, 177] Show that the connective constants of the Archimedean lattice
A and the hexagonal lattice H (of Figures 3.2 and 1.5, respectively) satisfy

1 N 11
K(A)2 k(A3 k(H)
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Association and I nfluence

Correlation inequalities have played a significant role in the theory
of disordered spatial systems. The Holley inequality provides a suf-
ficient condition for the stochastic ordering of two measures, and
also aroute to a proof of the famous FKG inequality. For product
measures, the complementary BK inequality involves the concept of
‘digioint occurrence’. Two concepts of concentration are considered
here. The Hoeffding inequality providesabound on thetail of amar-
tingale with bounded differences. Another concept of ‘influence’
developed by Kahn, Kalai, and Linial leads to sharp-threshold theo-
rems for increasing events under either product or FKG measures.

4.1 Holley Inequality

We review the stochastic ordering of probability measures on a discrete
space. Let E be anon-empty finite set and = {0, 1}E. The sample space
Q ispartially ordered by

w1 <wy If wi(e) <wye) foradlecE.
A non-empty subset A C Q iscalled increasing if
weA w<o = o e
and decreasing if
weA o <o = ocA
If A(# Q) isincreasing then its complement A = Q \ Aisdecreasing.

4.1 Definition Given two probability measures w1, u2 on 2, we write
u1 <g w2 and say that w1 is stochastically dominated by o if

n1(A) < u2(A) for al increasing events A.

Equivaently, u1 <g w2 if andonly if u1(f) < ua(f) for al increasing
functions f : @ — R. Thereisanimportant and useful result, often termed
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Strassen’s theorem, that asserts that measures satisfying 1 <g u2 may be
coupled in a ‘ pointwise monotone’ manner. Such a statement is valid for
very general spaces (see[212]), but we restrict ourselves here to the current
context. The proof is omitted, and may be found in many places, including
[221, 283].

4.2 Theorem [271] Let w1 and w2 be probability measures on Q. The
following two statements are equivalent.

(@) p1 <s po.
(b) There exists a probability measure v on ©22 such that

v({(n, w) . < a)}) =1,
and whose marginal measuresare 1 and 2.

For w1, w2 € €, we define the (pointwise) maximum and minimum
configurations by

w1 V w2(€) = mMaX{wi(e), wz(e)},

(4.3) w1 A wp(€) = min{wi(€), w2(8)},

for e € E. A probability measure i on Q2 iscalled positiveif u(w) > 0for
adlw e Q.

4.4 Theorem (Holley inequality) [170] Let w1 and u2 be positive proba-
bility measures on Q2 satisfying

(45)  p2(w1Vw)pui(wr A w2) > p1(wy)pu2(w), w1, w2 € Q.
Then 1 <g 2.

Condition (4.5) is not necessary for the stochastic inequality, but is
equivalent to astronger property of ‘monotonicity’; see [130, Thm 2.3].

Proof. Themain stepisthe proof that 111 and w2 can be‘coupled’ insucha
way that the component with marginal measure 12 lies above (in the sense
of sample realizations) that with marginal measure 1. Thisis achieved by
constructing a certain Markov chain with the coupled measure asuniquein-
variant measure. Elementary introductionsto Markov chains may be found
at [148, Chap. 6] and [150, Chap. 12].

Hereisapreliminary calculation. Let u beapositive probability measure
on 2. We can construct atime-reversible Markov chain with state space
and unique invariant measure . by choosing a suitable generator G satis-
fying the detailed balance equations. The dynamicsof the chaininvolvethe
‘switching on or off’ of single components of the current state.
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For w € Q and e € E, we define the configurations €, we by

(f) iff#e, o(f) if f e
46) o=} f) =
(46) w°(f) :1 ffoe we(T) {0 o« £
Let G : Q2 — R begiven by
4.7) G(we, 0 =1, G(f, a)e)z'u(wE),

p(w®)

fordl w € 2,e € E. Set G(w, @) = 0 for dl other pairs w, o’ with
o # «'. The diagonal elements are chosen in such away that

Z G(w,w) =0, we Q.
' e
It is elementary that . satisfies the so-called ‘ detailed balance equations
w(w)G(w, ) = u(@)G(@, w), w, 0 €,

and therefore G generates atime-reversible Markov chain on the state space
Q. Thischainisirreducible (using (4.7)), and therefore possesses a unique
invariant measure u (see [148, Thm 6.5.4]).

We next follow asimilar routefor pairsof configurations. Let w1 and w2
satisfy the hypotheses of the theorem, and let S be the set of all pairs (7, w)
of configurationsin 2 satisfying m < w. WedefineH : Sx S— R by

(4.8) H (7o, 0: 7%, %) = 1,
(4.9 H(, 0% me, we) = MZ(we)’

p2(w®)
(4.10) H (8, °: e, 0°) = pi(me)  pa(we)

pi(®)  pa(0®)’
for al (, w) € Sand e € E; al other off-diagonal values of H are set to
0. The diagonal terms are chosen in such away that

ZH(n,w;n/,a)/)zo, (m,w) € S.

',

Equation (4.8) specifiesthat, for 7 € 2 ande € E, anedgeeisacquired by
7 (if it does not already containit) at rate 1; any edge so acquired is added
alsotow if it doesnot already containit. (Here, we speak of aconfiguration
Y containing an edge e if ¥ (e) = 1.) Equation (4.9) specifies that, for
w € Qande e E withw(e) = 1, the edge e is removed from o (and also
from  if 7(e) = 1) at the rate given in (4.9). For e with w(e) = 1, there
is an additional rate given in (4.10) at which e is removed from 7 but not
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from w. We need to check that this additional rate is indeed non-negative,
and the required inequality,

p2(@%)pa(me) > pa(m® pa(we), T <o,

follows from (and is indeed equivalent to) assumption (4.5).

Let (Xt, Yt)t>0 be a Markov chain on S with generator H, and set
(Xo, Yo) = (0, 1), whereO (respectively, 1) isthestate of all Os(respectively,
1s). By examination of (4.8)—(4.10), we see that X = (Xt)t>0 isaMarkov
chain with generator given by (4.7) with u = w1, and that Y = (Y=o
arises similarly with © = uo.

Let « be an invariant measure for the paired chain (X, Y)t>o0. Since X
andY have (respective) uniqueinvariant measures 1 and o, the marginals
of x are u1 and up. We have by construction that «(S) = 1, and « isthe
regquired ‘coupling’ of w1 and wo.

Let (71, w) € Sbe chosen according to the measure x. Then

pur(f) =« (f (7)) < k(f(w) = pa(f),
for any increasing function f. Therefore, 1 <g uo. O

4.2 FKG Inequality

The FKG inequality for product measures was discovered by Harris [164],
and is often named now after the authors Fortuin, Kasteleyn, and Ginibre
of [112], who proved the more general version that is the subject of this
section. Seethe appendix of [130] for ahistorical account. Let E beafinite
set and Q = {0, 1}F, asusual.

4.11 Theorem (FKG inequality) [112] Let u be a positive probability
measure on 2 such that

(4.12) p(w1 VvV w2) (w1 A w2) = p(w1) w(w?), w1, w2 € 2.
Then 1 is ' positively associated’ in that

(4.13) pn(fg) = n(fHu(g

for all increasing randomvariables f,g: Q — R.

It is explained in [112] how the condition of (strict) positivity can be
removed. Condition (4.12) is sometimes called the ' FK G lattice condition’.

Proof. Assumethat u satisfies (4.12), and let f and g be increasing func-
tions. By adding a constant to the function g, we seethat it sufficesto prove
(4.13) under the additional hypothesisthat g isstrictly positive. Assumethe
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last holds. Define positive probability measuresu1 and up on Q2 by s =

and
g(@)u(w)

> 9@)p(@)’
Since g isincreasing, the Holley condition (4.5) follows from (4.12). By
the Holley inequality, Theorem 4.4,

pna(f) < pa(f),

u2(w) = w € Q.

which isto say that
2 H@)g(@)p(w)
> 9@ ()
asrequired. d

>y fon©),

4.3 BK Inequality

In the special case of product measure on 2, there is a type of converse
inequality to the FKG inequality, named the BK inequality after van den
Berg and Kesten [41]. Thisis based on a concept of ‘ disoint occurrence’,
which we make more precise as follows.

Forw € Q and F C E, we define the cylinder event C(w, F) generated
by w on F by
Clw,F)={0 €Q:d'(e) =w(e)fordlec F}
= (w(e):ee F) x {0, 1}E\F.
We define the event A B asthe set of all w € Q for which there existsa
set F C E suchthat C(w, F) € AandC(w, E\ F) € B. Thus, AL Bis
the set of configurationsw for which thereexist digoint sets F, G of indices
with the property that: knowledge of w restricted to F (respectively, G)
impliesthat w € A (respectively, w € B). In the special case when A and
B areincreasing, C(w, F) € Aif andonly if wg € A, where
w(e) foreeF,
wF(€) =
0 fore¢ F.
Thus, inthiscase, ALl B = Ao B, where
Ao B = {w: thereexists F € E suchthat wr € A, wg\r € B}.
The set F is permitted to depend on the choice of configuration w.
Three notes about disjoint occurrence:
(4.14) AOBC ANB,
(4.15) if Aand B areincreasing, thensois ALl B (= Ao B),
(4.16) if Aisincreasing and B is decreasing, then ALl B = AN B.
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Let P be the product measure on 2 with local densities pe, € € E, that is

]P)Zl_[l/ve,

ecE

where pe(0) = 1 — pe and pe(1) = Ppe.
4.17 Theorem (BK inequality) [41] For increasing subsets A, B of €2,
(4.18) P(Ao B) < P(A)P(B).

It is not known for which non-product measures (4.18) holds, although
it was shown in [40] that (4.18) holds for the measure Py that selects a k-
subset of E uniformly at random. It would be very useful to show that the
random-cluster measure ¢p q on 2 satisfies (4.18) whenever 0 < q < 1,
although we may have to survive with rather less. See Chapter 8 and [130,
Sect. 3.9].

The conclusion of the BK inequality is in fact valid for al pairs A, B
of events, regardless of whether they are increasing. This is much harder
to prove, and it has not yet been as valuable as originally expected in the
analysis of disordered systems.

4.19 Theorem (Reimer inequality) [248] For A, B C Q,
P(AO B) < P(A)P(B).

Let Aand B beincreasing. By applying Reimer’sinequality to the events
A and B, we obtain by (4.16) that P(AN B) > P(A)P(B). Therefore,
Reimer’s inequality includes both the FKG and BK inequalities for the
product measure P. The proof of Reimer’s inequality is omitted; see [57,
248].

Proof of Theorem 4.17. We present the ‘simple’ proof given in [38, 127,
283]. Those who prefer proofs by induction are directed to [55]. Let
1,2,..., N bean ordering of E. We shall consider the duplicated sam-
ple space Q x ', where @ = Q' = {0, 1}F, with which we associate the
product measure P = P x P. Elements of  (respectively, Q') are written
as w (respectively, »'). Let A and B be increasing subsets of {0, 1}E. For
1<j<N+1land(w, o) e Q2 x Q, definethe N-vector wj by

wj = (' (D), @' @),...,o'(j =1, o), ..., o(N)),

so that the wj interpolate between w1 = w and wn4+1 = o', Let the events
Aj, B of @ x Q' begiven by

A\j = {(0, ») : wj € A}, B= {(w, @) : w € B}.
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Note that:
(@ A1=Ax Q and B =B x @, sothat P(A; o B) = P(Ao B),
(b) An-1 and B are defined in terms of disjoint subsets of E, so that
P(An+1 0 B) = P(An+D)P(B) = P(AP(B).

It therefore suffices to show that
(4.20) P(AjoB) <P(Aj;10B), 1<j=<N,
and thiswe do, for given j, by conditioning on the valuesof the w (i), /(i)
forali # j. Suppose these values are given, and classify them as follows.
There are three cases.

1. Aj o B doesnot occur when o (j) = o'(j) = 1.

2. AjoBoccurswhenw(j) = o'(j) = 0,inwhich case Aj ;1 0 B occurs

also.

3. Neither of the two cases above holds.
Consider thethird case. Since AJ o B doesnot dependonthevaluew’(j), we
havein this case that AJ o B occursif and only if w(j) = 1, and therefore
the conditional probablllty of AJ oBis pj- When w(j) = 1, edge j is
‘contributing’ to either AJ or B but not both. Replau ng o ( by o'(j),we
find similarly that the conditional probability of AJ+1 o Bisat least Pi-

In each of the three cases above, the conditional probability of AjoBis
no greater than that of Aj1 o B, and (4.20) follows. d

4.4 Hoeffding Inequality

Let (Yn, Fn),n > 0, beamartingale. We can obtain boundsfor thetail of Yy
in terms of the sizes of the martingale differences Dx = Yk — Yk—1. These
boundscan be surprisingly tight, and they have substantial impact in various
areas of application, especialy those with a combinatorial structure. We
describe such abound in this section for the case when the Dy are bounded
random variables.

4.21 Theorem (Hoeffding inequality) Let (Yn, 1), n > 0, bea martin-
gale such that |Yx — Yk—1| < Kk (a.s) for all k and some real sequence
(Kx). Then

P(Yn — Yo = X) < exp(—3x%/Ln), X > 0,
where L, = Y p_; K2.

Since Y, isamartingale, so is —Yy, and thus the same bound is valid for
P(Yn — Yo < —X). Such inequalities are often named after Azuma[23] and
Hoeffding [168].
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Theorem 4.21 is one of afamily of inequalities frequently used in prob-
abilistic combinatorics, in what is termed the ‘method of bounded dif-
ferences'. See the discussion in [226]. Its applications are of the fol-
lowing general form. Suppose that we are given N random variables
X1, X2, ..., XN, and we wish to study the behaviour of some function
Z = Z(X1, X2,..., Xn). For example, the X; might be the sizes of ob-
jects to be packed into bins, and Z the minimum number of bins required
to pack them. Let £, = o (X1, X2, ..., Xp), and define the martingale
Yn =E(Z | Fn). Thus, Yo = E(Z) and Yy = Z. If the martingale differ-
ences are bounded, Theorem 4.21 provides a bound for the tail probability
P(|Z — E(Z)| > x). We shall see an application of this type at Theorem
11.13, which deals with the chromatic number of random graphs. Further
applications may be found in [148, Sect. 12.2], for example.

Proof. The function g(d) = e¥? is convex for ¥ > 0, and therefore
(4.22) e’ <la-deV +3Ia+dye, d| < 1.

Applying this to a random variable D having mean 0 and satisfying
P(|D| < 1) = 1, weobtain

4.23 E@E'P) < ieV +e) < eV’ ¥ >0,
2

where the final inequality is shown by a comparison of the coefficients of
the powers y2".
By Markov’s inequality,

(4.24) P(Yn — Yo > x) < e g Y0, 6 > 0.
With Dy = Yp — Yn_1,
E(eG(Yn—Yo)) _ E(eG(Yn,l—Yo)eG Dn)‘
Since Yn—1 — Yp is Fn_1-measurable,
(4.25) B =Y | #,_1) = & n-1=YOhg(ePn | 7, 1)
< &h-17Y0) exp(262K 2),

by (4.23) applied to the random variable D,/K,,. Take expectations of
(4.25) and iterate to obtain

E™Y0) < B(&/n-1770) exp(362K?2) < exp(36°Ln).
Therefore, by (4.24),
P(Yn — Yo > x) < exp(—6x + 36%Ln), 6> 0.



4.5 [Influence for Product Measures 67

Letx > 0,andset9 = x/Lp (thisisthevaluethat minimizesthe exponent).
Then
P(Ya—Yo =) < exp(—3x*/Ln), x>0,

asrequired. O

4.5 Influence for Product M easures
Lete N > 1and E = {1,2,..., N}, and write @ = {0, 1})F. Let u bea
probability measure on €2 and A an event (that is, asubset of 2). Two ways
of defining the ‘influence’ of an element e € E on the event A come to
mind. The conditional influence is defined to be

(4.26) Ja® =pu(AlwE =1 —u(Alw(e =0).
The absolute influenceis
(4.27) la(e) = n(1a(0®) # 1a(we)),

where 14 is theindicator function of A, and w®, we are the configurations
given by (4.6). Note that the above influences depend on the choice of
measure .

In a voting analogy, each of N voters has one vote, and A is the set
of vote-vectors that result in a given outcome. With the vote-vector cho-
sen according to u, the quantities I a(e), Ja(e) may be interpreted as the
‘influence’ of voter e on the outcome.

We make two remarks concerning the above definitions.

(a) Firgt, if Aisincreasing,

Ia(@) = (A% — u(Ae),
where
AP ={weQ:weA, Ac={we Q:wee Al

(b) It is not generally the case that 1a(e) = Ja(e); see [121] and the
remark after Theorem 4.35 below. If Aisincreasing and, in addition,
w isaproduct measure, then | o(e) = Ja(e).
Let ¢p be product measure with density p on 2, and write ¢ = qb%, the
uniform measure. All logarithms are taken to base 2 until further notice.
There has been extensive study of the largest absolute influence, namely
maXe | A(€), when p isa product measure, and this has been used to obtain
“sharp threshold’ theorems for the probability ¢p(A) of an increasing event
Aviewed asafunctionof p. Theprincipal theoremsaregiveninthissection,
with proofsin the next. The account presented here differsin a number of
respects from the original references.
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4.28 Theorem (Influence) [179] There exists a constant ¢ € (0, co) such
that the following holds. Let N > 1, let E bea finite set with |E| = N, and
let A beasubsetof = {0, 1}F with ¢ (A) € (0, 1). Then

(4.29) > 1@ = ch(A)(L—§(A) log1/ max | a(e)].
ecE

where the reference measureis ¢ = qb%. There exists e € E such that

log N

(4.30) la(€) = cH (AL = d(A)——

Note that
P(A(L—¢(A) = Fmin{¢p(A), 1— g (A}
We indicate at this stage the reason why (4.29) implies (4.30). We may
assumethat m = maxe | a(e) satisfiesm > 0, since otherwise
(A1 —-¢(A) =0.
Since
> Ia(®) < Nm,

ecE

we have by (4.29) that

m__ CpAA-¢A)
log(l/m) — N '

Inequality (4.30) follows with an amended value of ¢, by the monotonicity
of m/log(1/m) or otherwise.

Such results have applicationsto several topicsincluding random graphs,
randomwalks, and percolation; see[181]. We summarizetwo such applica-
tions next, and we defer until Section 5.8 an application to site percolation
on the triangular lattice.

|. First-passage percolation Thisisthe theory of passage timeson agraph
whose edges have random * travel-times’. Supposewe assign to each edgee
of the d-dimensional cubic lattice L9 arandom travel-time Te, the Te bei ng
non-negative and independent with acommon distribution function F. The
passage time of a path 7 is the sum of the travel-times of its edges. Given
two vertices u, v, the passage time Ty, is defined as the infimum of the
passage times of the set of paths joining u to v. The main question is to
understand the asymptotic properties of Tp, as |[v| — oo. This model for

Iwhen N = 1, thereis nothing to prove. Thecase N > 2 isleft asan exercise.
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the time-dependent flow of material was introduced by Hammersley and
Welsh [160] and has been studied extensively since.

It is a consequence of the subadditive ergodic theorem that, subject to a
suitable moment condition, the (deterministic) limit

1
ty = lim —Tony
n—oo N

existsalmost surely. Indeed, the subadditive ergodic theorem was conceived
originally in order to prove such a statement for first-passage percolation.
The constant ., is called the time constant in the direction v. It is an open
problem to understand the asymptotic behaviour of var(To ,) as|v| — oo.
Various relevant results are known, and one of the best uses an influence
theorem due to Talagrand [276] and related to Theorem 4.28. Specificaly,
it is proved in [36] that var(Tp,) < C|v|/log|v| for some constant C =
C(a, b, d), in the situation when each Te is equally likely to take either of
the two positive values a, b. It has been predicted that var(To ,) ~ [v]%/3
when d = 2. Thiswork was continued in [34, 80].

I1. Voronoi percolation model This continuum model is constructed as fol-
lows in R2. Let IT be a Poisson process of intensity 1 in R2. With any
u € I1, we associate the ‘tile

Tu=|xeR?:|x—ul < |x—v|foralve I}

Two points u, v € II are declared adjacent, written u ~ v, if Ty and
T, share a boundary segment. We now consider site percolation on the
graph IT with this adjacency relation. It was long believed that the critical
percolation probability of this model is % (almost surely, with respect to
the Poisson measure), and this was proved by Bollobas and Riordan [53]
using aversion of the threshold Theorem 4.69 below, that is consequent on
Theorem 4.28.

Bollobas and Riordan [54] indicated a similar argument leading to an
approach to the proof that the critical probability of bond percolation on Z2
equals % They used Theorem 4.69 in place of Kesten's explicit proof of
sharp threshold for this model; see [186, 187]. A “shorter” version of [54]
is presented in Section 5.8 for the case of site percolation on the triangular
lattice.

Wereturnto theinfluencetheorem anditsramifications. Thereareseveral
useful references concerning influencefor product measures; see[113, 114,
179, 181, 184] and their bibliographies.? Theorder of magnitude N~ log N
is the best possible in (4.30), as shown by the following ‘tribes example

2The treatment presented here makes heavy use of the work of the ‘Israeli’ school.
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taken from [35]. A population of N individuals comprisest ‘tribes’, each
of cardinality s = logN — loglog N + «. Each individua votes 1 with
probability % and otherwise 0, and different individuals vote independently
of one another. Let A be the event that there exists a tribe al of whose
membersvote 1. It is easily seen that

1 t
1—P(A) = (1—5)

_t/95 _1/0a
~ e 2 V2

1\t 1

~ e V2 a1 |°9NN _

The ‘basic’ Theorem 4.28 on the discrete cube @ = {0, 1}E can be
extended to the * continuum’ cube K = [0, 1] &, and thence to other product
spaces. Westatetheresult for K next. Let A beuniform (L ebesgue) measure
on K. For ameasurable subset A C K, it is usual (see, for example, [58])
to define theinfluenceof e € E on Aas

and, for al i,

La(e) = An—1({w € K : 1a(w) isanon-constant function of w(e)}).

That is, L a(e) isthe (N — 1)-dimensional Lebesgue measure of the set o_f
al ¥ e [0, 1]E\® with the property that: both A and its complement A
intersect the ‘fibre’

Fy =Y} x [0, 1] ={weK: :o(f)=y(f), f£e.

It ismore natural to consider elements v+ for which AN Fy, has Lebesgue
measure strictly between 0 and 1, and thus we define the influence in this
text by

(4.31) Ia(e) = An—1({y € [0, 25V 0 < M (AN Fy) < 1)).

Here and later, when convenient, we write Ak for k-dimensional Lebesgue
measure. Notethat [a(€) < L a(e).

4.32 Theorem [58] There exists a constant ¢ € (0, co) such that the fol-
lowing holds. Let N > 1, let E be afinite set with |E| = N, and let A be

The earlier paper of Russo [256] must not be overlooked, and there are several important
papersof Talagrand [275, 276, 277, 278]. Later approachesto Theorem 4.28 can be found
in [103, 250, 251].
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anincreasing subset of the cube K = [0, 1]F with A(A) € (0, 1). Then
(4.33) > 1a@© = cA(A)(L— A(A)) log[1/(2m)],

ecE
where m = maxe | a(€), and the reference measure on K is Lebesgue mea-
sure A. Thereexists e € E such that

(4.34) Ia(€) = cA(A)(1— )»(A))IO%N.

We shall see in Theorem 4.38 that the condition of monotonicity of A
canberemoved. Thefactor ‘2’ in (4.33) isinnocent in the following regard.
The inequality isimportant only when m is small, and, for m < % say, we
may removethe ‘2" and replace ¢ by a smaller positive constant.

Results similar to those of Theorems 4.28 and 4.32 were proved in [121]
for certain non-product measures and all increasing events.

4.35 Theorem[121] Letu beapositiveprobability measureonthediscrete
space Q@ = {0, 1}F satisfying the FKG lattice condition (4.12). For any
increasing subset A of Q with . (A) € (0, 1), we have that

(4.36) D JA® = cu(A)(L— u(A) log1/2m)].

ecE
wherem = maxe Ja(e). Furthermore, there exists e € E such that

logN
(4.37) IA(©) 2 Cu(A (L= u(A) 2=

Note the use of conditional influence Ja(€e), with non-product reference
measure w. Indeed, (4.37) canfail for al ewhen Ja isreplaced by |1 4. The
proof of (4.36) makes use of Theorem 4.32 and is omitted here; see [121,
122].

Theorem 4.32 is concerned with products of the Lebesgue probability
space ([0, 1], 11). It may be extended as follows to powers of an arbitrary
probability space, that is, with ([0, 1], A1) replaced by ageneral probability
space. Let |[E| = N andlet X = (X2, F, P) be a probability space. We
write XE for the product space of X. Let A € £F be measurable. The
influence of e € E isgivenasin (4.31) by

Ia(e) =P({y e SEM® 0 < P(ANFy) < 1)),

with P = PE and Fy, = (¢} x X, the ‘fibre’ of al » € XE such that
w(f)y=vy(f)for f £e

The following theorem amounts to two statements: that the influence
inequalities are valid for general product spaces, and that they hold for
non-increasing events.



72 Association and Influence

4.38 Theorem [58, 137] There exists a constant ¢ € (0, co) such that,
for any probability space X = (2, F, P), any finite set E, and any event
A e FE satisfying P(A) € (0, 1),

(4.39) > " 1a(e) = cP(A) (L - P(A)) log(1/m),

ecE

whereP = PE and m = maxe | a(€). Thereexistse € E with
logN
(4.40) |a() > CP(A)(1— ]P’(A))%.

The proof of Theorem 4.38 is omitted here, and readers are referred to
[137].

4.6 Proofsof Influence Theorems
This section contains the proofs of the theoremsin the last.

Proof of Theorem 4.28. We use a (discrete) Fourier analysis of functions
f : @ — R. Definetheinner product by

(f.9)=¢(fo), f,g:Q—R,
where ¢ = ¢, so that the L2-normof f isgiven by

Ifll2=/o(f2) = y(f, ).

We call f Boolean if it takes values in the set {0, 1}. Boolean functions
are in one—one correspondence with the power set of E via the relation
f =1a < A If fisBoolean, say f = 14, then

(4.41) 115 =¢(f%) = (f) = ¢(A).
For F C E, let
Up () = ]—[(—1)‘“(8) = (=1)XecF@©®) weQ.
ecF

It can be checked that the functionsug, F € E, form an orthonormal basis
for the function space. Thus, afunction f : @ — R may be expressed in

theform .
f=>Y" f(Fuk,
FCE
where the so-called Fourier—Walsh coefficients of f are given by

f(F) = (f,ug), FCE.
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In particular,

f(2) =¢(f),
and A

(f.ay= Y f(F4F).
FCE
The last formulayields the Parseval relation
(4.42) If1z= " f(F?2
FCE

Fourier analysis operates harmoniously with influences as follows. For
f=1pandec E, let

fe(w) = f(0) — f (kew),
where kew is the configuration o with the state of e flipped. Since fe takes

valuesin the set {—1, 0, +-1}, we have that | fe| = f2. The Fourie—Walsh
coefficients of fe are given by

N 1
fe(F) = (fe.up) = ) g [f (@) — frew)](-1)*"F

we

= Z ziN f ()[(=1)/BOFI — (—1)|(BAENNFI]

weR

where B = n(w) ;= {e € E : w(e) = 1} isthe set of w-openindices. Now,

0 ifed F
_1y/BOFI _ (_1)[(BA ()N =! ,
(=D =D ] 2(—1)BFl = 2up (w) ifeeF,
S0 that
(4.4 fu(F) = { Q Medh,
2f(F) ifeeF.
Theinfluence | (e) = I a(e) isthemean of | fe| = fez, so that, by (4.42),
(4.44) L@ =fl5=4 ) f(F)?
F:ecF

and the total influenceis

(4.45) Yl =4> IFIf(F)2

ecE FCE

We propose to find an upper bound for the sum ¢(A) = ) ¢ f(F)2.
From (4.45), wewill extract an upper bound for the contributionsto thissum
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from the fA(F)2 for large |F|. Thiswill be combined with a corresponding
estimate for small |F| that will be obtained by considering a re-weighted
sum Y f(F)2p?Flfor0 < p < 1, asfollows.

For w € [1, 00), we define the L*-norm

lgllw =g,  g:Q—R,

recalling that ||g||,, is non-decreasing in w. For p € R, let T,g be the
function

T,9= Y 4(F)pflug,
FCE

so that
IT,glz =Y a(F)?p?Fl.
FCE
When p € [-1, 1], T,g hasaprobabilistic interpretation. For w € €, let
v, = (¥,(e) : e e E) beavector of independent random variables with

W, () = { w(e) with pr'obability 11+ p),
1—w(e) otherwise.
We claim that
(4.46) To9(w) = E(g(Wo)),

thus explaining why T, is sometimes called the ‘ noise operator’. Equation
(4.46) is proved asfollows. First, for F C E,

E(UF (Vo)) = E(]‘[(—l)‘”w“*))

ecF
= [[0°®3a+p) -3 -0)]
ecF
= p!Flue (o).
Now, g = ) ¢ §(F)ufg, so that
E(9(¥,) = Y §(F)E(UF(¥,))

FCE
= > §(F)p'Flup (@) = T,0(w),

FCE
asclaimed at (4.46).

The next proposition is pivotal for the proof of the theorem. It is some-
times referred to as the * hypercontractivity’ lemma, and it is related to the
log-Sobolev inequality. 1tiscommonly attributed to subsets of Bonami [56],
Gross [152], Beckner [29], each of whom has worked on estimates of this
type. The proof is omitted.
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4.47 Proposition Forg: 2 — Rand p > 0,

ITogll2 = 191114 p2-

LetO < p < 1. Setg = fewhere f = 14, noting that g takesthe values
0, =1 only. Then,

> af(F)?p?F

F:ecF
=Y fe(F)?p?F! by (4.43)
FCE
=T, fell3
<lfel2, 2 = [o( fel )] @9 by Proposition 4.47
= || oA = | (%A by (4.44).
Therefore,
(4.48) Z | (e)2/(l+,02) > 4 Z IF| fA(F)szlFl,
ecE FCE
Lett = ¢(A) = f(2). By (4.48),
(4.49) S 1@ = 4pP N f(F)?
ecE 0<|F|<b
|Fl<b

whereb € (0, co) will be chosen later. By (4.45),

Y@ =4 f(F)?

ecE |F|>b
which we add to (4.49) to obtain
—2b 2/(A+p?) }
(4.50) P~ 1@ 4 - PRIC
ecE ecE
>4 f(F)?—a?
FCE

—4t(1—t) by (4.42).

We are now ready to prove(4.29). Let m = maxe | (e), notingthatm > 0
since¢(A) # 0, 1. Theclaimistrivial if m = 1, andweassumethatm < 1.

Then
e =mBY 1),

ecE ecE
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e 2 1
whence, by (4.50) and the choice p~ = 3,

1
(4.51) (me1/3 + B) > e = ad-t).

ecE

We choose b such that 2°m?/3 = b~1, and it is an easy exercise to show
that b > Alog(1/m) for some absolute constant A > 0. With this choice
of b, (4.29) follows from (4.51) with ¢ = 2A. Inequality (4.34) follows, as
explained after the statement of the theorem. d

Proof of Theorem 4.32. We follow [113]. The idea of the proof isto ‘dis-
cretize’ the cube K and theincreasing event A, and to apply Theorem 4.28.

Let k € {1, 2,...}, to be chosen later, and partition the N-cube K =
[0, 1]E into 2N disjoint smaller cubes each of side-length 27X, These
small cubes are of the form

(452) B() =[] lle.le+27%),
ecE
where|l = (Ie : e € E) and each I is a ‘binary decimal’ of the form

le=0.le1le2---lek Witheachlgj € {0, 1}. Thereisaspecial case. When
le = 0.11-- -1, we put the closed interval [, le + 27%] into the product of
(4.52). Lebesgue measure 1. on K induces product measure ¢ with density
3 onthespace = {0, 1}N of 0/1vectors(lej : j =1,2,...,k ee E).
We call each B(l) a‘small cube'.

Let A € K beincreasing. For later convenience, we assume that the
complement A is a closed subset of K. This amounts to reallocating the
‘boundary’ of A to its complement. Since A is increasing, this changes
neither A(A) nor any influence.

We claim that it sufficesto consider events A that are the unions of small
cubes. For a measurable subset A € K, let A be the subset of K that
‘approximates’ to A, givenby A = Ui B(), where

A={eQ:BlNA#g).

Note that 4 is an increasing subset of the discrete kN-cube 2. We write
I 4 (e, j) for the influence of the index (e, j) on the subset A C Q under
the measure ¢. The next task is to show that, when replacing A by A, the
measure and influences of A are not greatly changed.

453 Lemma [58] In the above notation,
(4.54) 0 < A(A) — A(A) < N27K,
(4.55) 1@ —la® <N27¥,  ecE.
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Proof. Clearly A € A, whence A(A) < A(A). Let u : K — K be
the projection that maps (xs : f € E)yto (xf —m : f € E), where
m = Mingcg Xg. We have that

(4.56) A(A) — A(A) < |R|27KN,

where R is the set of small cubes that intersect both A and its complement
A. Since Aisincreasing, R cannot contain two distinct elementsr, r’ with
w(r) = u(r’). Therefore, |R| isno larger than the number of faces of small
cubeslying in the ‘hyperfaces’ of K, that is,

(4.57) IR| < N2K(N-D),

Inequality (4.54) follows by (4.56).

Lete e E,and let K€ = {w € K : w(e) = 1}. The hyperface K€ of
K is the union of ‘small faces' of small cubes. Each such small face L
correspondsto a‘tube’ T (L) comprising small cubesof K, based on L with
axisparallel to the eth direction (see Figure4.1). Such atube has‘last’ face
L and ‘first’ face F = F(L) :=T(F)N{w € K : w(e) = 0}, and we write
B (respectively, Bg) for the (unique) small cube with face L (respectively,
F). Let .£ denote the set of all last faces.

We shall consider the contributionto A :=1;(e) — I a(e) made by each
L € £. Since A isaunion of small cubes, the contribution of L € £ to
| 1(e), denoted & (L), equalseither Oor An—1(L) = 27K(N-1_ Asin (4.31),
the contribution of L to I ao(e) is

(4.58) k(L) =an-1({y € L:0 < (AN Fy) < 1)).

(Here, Fy, denotesthe fibre associated with (¢ : f € E\ {€}).) Note that
0 <«(L) < An—1(L),andwrite A(L) = k(L) — «(L).

Since (4.57) is an upper bound for A, we need consider only those L for
which A(L) > 0. We may assumethat (L) = An—1(L), Since otherwise
A(L) = —« (L) < 0. Under this assumption, it followsthat AN BE = @
and AN BL # @. Since Aisincreasing, thereexistsa € AN L.

Wemay assumethat« (L) < An—1(L), sinceotherwise A(L) < 0. Since
AN BF = @, thesubset {yy € L : .1(AN Fy) = 0} has strictly positive
AN—1-measure. Since A isclosed, thereexists g € AN L.

We adapt the argument leading to (4.57), working within the (N — 1)-
dimensional set K €, to deduce that the total contributionto A from all such
L e «£ isbounded above by (N — 1)2k(N=2) . 2-k(N-1) < N2—k, O

Assume0 <t = A(A) < 1, and let m = maxe 1 a(€). We may assume
that 0 < m < % since otherwise (4.33) is a triviality. With A given as
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w(e)

Figure 4.1 The small boxes B = B(r, s) form the tube T(r). The
region A is shaded.

above for some value of k to be chosen soon, we write f = A(A) and
M = maXe | 3(€). We shall prove below that

(4.59) > 1@ = cf(1—f) log[1/(2r)],

ecE
for some absolute constant ¢ > 0. Suppose for the moment that this has
beenproved. Lete = ex = N27X andletk = k(N, A) besufficiently large
that the following inequalities hold:

(4.60)
1 1 1
inlit1—-t) 1_ - Z —
e<m|n{2t(1 t), 3 m}, Iog(z(m+6)> > 2Iog<2m>,
(4.61) Ne < gct(1—t)log[1/(2m)].
By Lemma4.53,
(4.62) t—fl<e, M<m+e,

whence, by (4.60),
(4.63)
t—fl <3t@-t), m<3, logl/(2f)] > 3log[1/(2m)].
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By Lemma4.53 again,

IRNCEDRRCELS

ecA ecA

The required inequality follows thus by (4.59), (4.61), and (4.63):
> 1a@® = c[t(d—t) — |t — []log[1/(2r)] — Ne

ecA
> fet(1—t) log[1/(2m)].
It suffices therefore to prove (4.59), and we shall henceforth assume that
(4.64) Alisaunion of small cubes.

4.65 Lemma|58, 113] Forec E,

k
Y lale ) < 21ae).
j=1

Proof. Lete € E,andletr = (r1,ro, ..., rn_1) € ({0, 1})EM® . Consider
the *tube’ T (r) comprising the union of the small cubes B(r, s) of (4.52)
over the 2X possible valuesin s € {0, 1}X. We see after alittle thought (see
Figure 4.1) that

Late j) =Y (N, ),
r

where K (r, j) isthe number of unordered pairsS = B(r, s), S' = B(r, s
of small cubesof T(r) suchthat: SC A, S ¢ A,and|s—S| =2 !. Since
Alisanincreasing subset of K, we can see that

K(r, j) <2, i=12...Kk

whence
2

. 2K
Z la(e ) < sz_lJN = 2k(N—-D) In,
i

where Jy isthe number of tubes T (r) that intersect both A and its comple-
ment A. By (4.64),

1
Ia(e) = SK(N-T) IN,
and the lemmais proved. d

We return to the proof of (4.59). Assumethat m = maxe | a(€) < 3. By
Lemma4.65,
l4(e, j) <2m foradl e, j.
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By (4.29) applied to the event + of the KN-cube €,
> late i) = ct(d —t)log[1/(2m)],

ej
where ¢ is an absolute positive constant andt = A(A). By Lemma 4.65
again,

> 1a@ = 3cit(l —t)log[1/(2m)],

ecE

asrequired at (4.59). d

4.7 Russo’s Formula and Sharp Thresholds

Let |[E| = N, andlet ¢p denote product measurewith density p onthefinite
product space Q = {0, 1} E.

4.66 Theorem (Russo’'sformula) For any event A C Q,

dipasp(A) = [p(A%) = p(Ae)].
ecE

Russo’s formula, or its equivalent, has been discovered independently
by a number of authors. See, for example, [25, 224, 255]. The element
e € Eiscalled pivotal for the event Aif the occurrenceor not of A depends
on the state of g, that is, if 1a(we) # 1a(®w®). When Aisincreasing, the
above summation equals ) . I a(€), where the absolute influence | a(e) is
givenin (4.27). That is, Russo’'s formula for increasing events states that
the derivative qbl/o(A) equals the mean number of pivotal elementsof E.

Proof. Thisis standard; see for example [127]. Since

¢p(A) = 1a(@)¢p(),

it is elementary that

d _ o (1@ N =)
(4.67) d—p¢p(A)—Z( S )1A(w>¢>p<w>,

we
where n(w) = {e € E : w(e) = 1} and N = |E|. Let 1¢ be the indicator
function that e isopen. Since ¢p(le) = pforalec E,and [n] = ) o 1e,

d
p(l— P)d—p¢p(A) = ¢p([Inl — pPN]1a)

= [ppLeln) — ¢p(le)pp(1n)].

ecE
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The summand equals

PPp(A®) — p[Pdp(A°) + (1 — P)dp(Ae)].

and the formulais proved. d

Let A be an increasing subset of @ = {0, 1}F that is non-trivia in that
A # @, Q. Thefunction f(p) = ¢p(A) isnon-decreasing, with f(0) =0
and f (1) = 1. Thenext theoremisanimmediate consequenceof Theorems
4.38 and 4.66 (or of Exercise 4.13).

4.68 Theorem [276] Thereexistsaconstant ¢ > 0 such that the following
holds. Let A be anincreasing subset of  with A £ @, Q. For p € (0, 1),

d
d—p¢p(A) = Chp(AN(1 — dp(A)) log[1/(2max 1 a(e))],
where | o(e) istheinfluence of e on A with respect to the measure ¢p,.

Theorem 4.68 takes an especially simple form when A has a certain
symmetry property. Insuch acase, the sharp-threshold theorem given below
implies that f(p) = ¢p(A) increases from (near) O to (near) 1 over an
interval of p-valueswith length of order not exceeding 1/ log N.

Let IT be the group of permutations of E. Any = € II acts on Q by
7w = (w(me) : € € E). We say that a subgroup 4 of IT acts transitively
on E if, for al pairs j, k € E, thereexistsa € A withaj = k.

Let 4 beasubgroup of T1. A probability measure ¢ on (2, ) iscalled
A-invariant if ¢(w) = ¢(aw) foradl a € A. Anevent A € F iscalled
A-invariantif A = o Aforal o € 4. Itiseasily seenthat, for any subgroup
A, ¢p is A-invariant.

4.69 Theorem (Sharp threshold) [114] There exists a constant ¢ satis-
fying ¢ € (0, co) such that the following holds. Let N = |E| > 1. Let
A € F beanincreasing event, and suppose there exists a subgroup 4 of I
acting transitively on E such that A is #-invariant. Then

d
(4.70) d—p¢>p(A) > Copp(A) (1 — dp(A) logN, pe (0 1.

From amongst the issues arising from the sharp-threshold Theorem 4.69,
we identify two. First, to what degree is information about the group +4
relevant to the sharpness of the threshold? Secondly, what can be said when
p = pn tendsto 0 as N — oo? The reader is referred to [181] for some
answers to these questions.
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Proof. We show first that the influences | o(e) are constant for e € E. Let
e, f € E,andfinda € 4 suchthat we = f. Under the given conditions,

¢p(A 1t =1) = > ¢p(@)lt(@) =Y dplaw)le(aw)

weA weA
=Y ¢p@)le(@) = ¢p(A, le=1),
o' eA

where 14 is the indicator function that w(g) = 1. On setting A = Q,
we deduce that ¢p(1f = 1) = ¢p(le = 1). Ondividing, we obtain that
$p(A| 1t =1) = ¢p(A | 1le = 1). A similar equality holds with 1
replaced by 0, and therefore 1 a(e) = 1a(T).
It follows that
> 1a(f) = Nla(e).

feE

By Theorem 4.38 applied to the product space (2, F, ¢p), theright sideis
at least cop(A)(1— ¢p(A)) log N, and (4.70) is a consequence of Theorem
4.66. O

Lete € (O, %) and let A beincreasing and non-trivial. Under the condi-
tions of Theorem 4.69, ¢p(A) increasesfrom e to 1 — € over an interval of
valuesof p having length of order not exceeding 1/log N. Thisamountsto
aquantification of the so-called S-shape results described and cited in [127,
Sect. 2.5]. An early step in the direction of sharp thresholds was taken by
Russo [256] (see also [276]), but without the quantification of log N.

Essentially the same conclusions hold for a family {up : p € (0, 1)}
of probability measures given as follows in terms of a positive probability
measure 1 satisfying the FKG lattice condition. For p € (0, 1), let i be
given by

(4.71) pp(w) = Zi(l_[ pw(e)(]_ - p)l—a)(E))M(w)’ weQ,

ecE
where Z is chosen in such away that wp is a probability measure. It is
easy to check that each 1 p satisfies the FKG lattice condition. It turns out
that, for anincreasing event A # &, Q,

d
(4.72) d—pup(A) > 1p(A) (1~ pp(A) log[1/(Zmax Ja(e))],

_ G
pd—p)
where

&p = min[up(@(€) = Dip(w(e) = 0)].

Note the use of conditional influence Ja(e) rather than absolute influence.
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The proof of (4.72) usesinequality (4.36); see[121, 122]. Thisextension
of Theorem 4.68 is useful in the study of the random-cluster model (see
Chapter 8) and of the Ising model with external field (see [122]).

A dlight variant of Theorem 4.69isvalid for measures 1 p givenby (4.71).

4.73 Theorem (Sharp threshold) [121, 130] Let xp be given by (4.71)
where u is a positive probability measure satisfying the FKG lattice condi-
tion. There exists a constant ¢ satisfying ¢ € (0, co) such that the following
holds. Let N = |E| > 1. Let A € ¥ be anincreasing event, and suppose
there exists a subgroup 4 of IT acting transitively on E such that both A
and u are A-invariant. Then

d c&p
4.74) —pup(A) > ——
@79 gpte p—p)
The proof followsthat of Theorem 4.69, with (4.72) in place of Theorem
4.68.

np(A) (1 —¢p(A)logN,  pe(01).

4.8 Exercises

41 Let Xn, Yn € L2(Q, F,P) besuchthat Xn — X, Yn — Y in L2. Show
that XnYn — XY in L. [Reminder: LP isthe set of random variables Z with
E(|Z|P) < o0, and Zy — Zin LPif E(JZy — Z|P) — 0. You may use any
standard fact such as the Cauchy—Schwarz inequality.]

4.2 [164] Let P be the product measure on the space {0, 1}" with density p.
Show by induction on n that Pp satisfies the Harris-FK G inequality, which is to
say that Pp(AN B) > Pp(A)Pp(B) for any pair A, B of increasing events.

4.3 (continuation) Consider bond percolation on the square lattice Z2. Let X
and Y be increasing functions on the sample space such that Ep(X?), Ep(Y?) <
oo. Show that X and Y are positively correlated in that E(XY) > E(X)E(Y).

4.4 Coupling.

() Take Q = [0, 1], with the Borel o-field and Lebesgue measure P. For
any distribution function F, define arandom variable Zg on Q2 by

ZE(w) =inf{z:w < F(2)}, w € Q.

Prove that
P(ZF <2)=P([0, F(2)]) = F(2),

whence Zg has distribution function F.

(b) For real-valued random variables X, Y, wewrite X <g Y if P(X < u) >
P(Y < u) for al u. Show that X <g Y if and only if there exist random
variables X', Y’ on 2, with the same respective distributions as X and
Y, suchthat P(X’ <Y’) =1

4.5 [130] Let 1 be a positive probability measure on the finite product space
Q= {0, 1}E.
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(@) Show that 1 satisfies the FKG lattice condition

w(w VvV w)p(wy A wz) = u(wp)pu(w), w1, w € £2,

if and only if thisinequality holdsfor all pairsw1 , w that differ on exactly
two elements of E.

(b) Show that the FKG lattice condition is equivalent to the statement that
is monotone in that, for e € E,

f(e &) =pn(w@ =1w(f)=4(f)for f £e)

isnon-decreasingin ¢ € {0, 1)E\{e},
4.6 [130] Let u1, uo be positive probability measures on the finite product
Q = {0, 1}E. Assume that they satisfy

n2(w1 VvV w)puy (w1 A @2) > pi(wp)uz(wr),

for al pairs w1, w> € Q2 that differ on exactly one element of E, and, in addition,
assume that either 11 or uo satisfiesthe FKG lattice condition. Show that o >«
M1
4.7 Let X1, Xo, ... beindependent Bernoulli random variableswith parameter
p,andlet Sy = X1+ Xo+- - -+ Xn. Show by Hoeffding’sinequality or otherwise
that
P(IS — np| = x/N) < 2exp(—3x?/m?), x>0,

wherem = max{p, 1 — p}.

4.8 Let Gp, p betherandom graph with vertex set V = {1, 2, ..., n} obtained
by joining each pair of distinct vertices by an edge with probability p (different
pairs are joined independently). Show that the chromatic number xn, p satisfies

IF’(|Xn,p —Exn,pl = X) < ZEXP(—%XZ/n), X > 0.

4.9 Russo’s formula. Let X be arandom variable on the finite sample space
Q = {0, 1}E. Show that

d
—Ep(X) =Y Ep(eX),
dp ecE

where e X (w) = X(0®) — X(we), and o€ (respectively, we) is the configuration
obtained from w by replacing w (e) by 1 (respectively, 0).

Let A be anincreasing event, with indicator function 15. Anedgeeiscalled
pivotal for the event A in the configuration w if del ao(w) = 1. Deduce from the
abovethat the derivative of Pp(A) equalsthe mean number of pivotal edgesfor A.
Find arelated formulafor the second derivative of Pp(A).

What can you show for the third derivative, and so on?
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4.10 [121] Show that every increasing subset of the cube [0, 1]N is Lebesgue-
measurable.

4.11 Heads turn up with probability p on each of N coin flips. Let A be
an increasing event, and suppose there exists a subgroup A of permutations of
{1,2,..., N} acting transitively, such that A is A-invariant. Let pc be the value
of psuchthat Pp(A) = 1 Show that there exists an absol ute constant ¢ > 0 such
that

Pp(A) = 1— NP=P)  p> p,

with asimilar inequality for p < pc.
4.12 Let ;1 be a positive measure on 2 = {0, 1}F satisfying the FKG lattice
condition. For p € (0, 1), let up be the probability measure given by

1
Hp@) = = (H P (1~ p)l_‘”(e))u(w), weQ.
P NecE

Let A be an increasing event. Show that there exists an absolute constant ¢ > 0
such that

1py (A1 — pp,(A)] < ABP27PD 0 < pp < pp <1,

where
B= inf {i} . Ep=min[up@(® = Dup(w(e) = 0)],
pe(pr.p2) L P(L—p) ecE
and X satisfies
2maxJa(€) <A,  e€E, pe(p1 p2),
ecE

with Ja(e) the conditional influence of eon A.

4.13 Let¢p bethe product measureon 2 = {0, 1}E with density p € (0, 1), and
let Abeanincreasing subset of 2. Apply theinfluencetheorem for the continuous
cube [0, 1]E in order to obtain the corresponding inequality for the pair ¢p, A
That is, use Theorem 4.32 to prove (4.29) with ¢ replaced by ¢p.
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Further Percolation

The subcritical and supercritical phases of percolation are charac-
terized respectively by the absence and presence of an infinite open
cluster. Connection probabilities decay exponentially when p < pc,
and there is a unique infinite cluster when p > pc. Thereis a
power-law singularity at the point of phase transition. It is shown
that pc = % for bond percolation on the square lattice. The Russo—
Seymour—Welsh (RSW) method is described for site percolation on
thetriangular lattice, and thisleadsto astatement and proof of Cardy’s
formula.

5.1 Subcritical Phase

In language borrowed from the theory of branching processes, apercolation
processis termed subcritical if p < pe, and supercritical if p > pc.

In the subcritical phase, al open clusters are (almost surely) finite. The
chance of a long-range connection is small, and it approaches zero as the
distance between the endpoints diverges. The processis considered to be
‘disordered’, and the probabilities of long-range connectivities tend to zero
exponentially in the distance. Exponential decay may be proved by ele-
mentary means for sufficiently small p, asin the proof of Theorem 3.2, for
example. It is somewhat harder to prove exponential decay for al p < pc,
and the story of the proof of thisis slightly complicated. Exponential decay
was proved for percolation around 1986 by Aizenman and Barsky [6] in the
USA and independently by Menshikov [230, 231] in the USSR. The two
proofs, whiledistinct, have certain elementsin common, and are quite deep;
they may be found in [127]. A third proof emerged only in 2015, namely
that of Duminil-Copinand Tassion[92]. Thisproof ismuchsimpler thanthe
first two, and may be regarded as an optimized version of the 1957 proof by
Hammersley [155] that exponential decay holds whenever x (p) = Ep|C]|
satisfies x (p) < oco. Thatis, inthelanguage of physics, finite susceptibility
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implies exponential decay.!

The methods of Sections 5.1-5.4 are fairly robust with respect to the
choice of process and lattice. For concreteness, we consider bond percola-
tionon LY withd > 2. Thefirst principal result is the following theorem.
Part (b) is actually a result for the supercritical regime, but it forms part
of the proof of part (a) of the theorem. We write A(n) = [—n, n]¥ and
AA(N) = A(n)\ A(n —1).

5.1 Theorem
(a) [6, 230, 231] There exists ¥ (p), satisfying ¥ (p) > Owhen p < pe,
such that
(5.2) Pp(0 <> dA(n)) < e (P, n> 1.

(b) [71, 72, 229] For p > pc,

P— Pc
0 _
(P = pP(1— pc)

Proof. We follow Duminil-Copin and Tassion [92], and shall first derive an
upper bound for Pp(0 <+ 9 A(n)). Then we optimizethisbound, and finally
we show that it is, in a sense, sharp.

Let S be a finite set of vertices containing the origin 0, with external
edge-boundary

AS={e=(x,y):xeS y¢S}

Fore = (X, y) € AS, we shall aways write x to denote the endpoint of e
that liesin S. Let

$p(S=p Y PBp0 <> x),

e=(X,y)eAS

where {0 PN x} is the event that there exists an open path from 0 to x
using only vertices of S.

Here is some further notation. Let En(y) = {y < dA(n)}, and write
En = En(0) and gp(n) = Pp(En). Choose L suchthat S € A(L). As

1A further method was introduced in [87, 88]. This powerful approach may be applied
to arange of percolation-type processesincluding finitely dependent percolation, Voronoi
percolation, and the random-cluster model.
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JAKL)

Figure5.1 If 0 < dA(KL), there existse = (x, y) € AS such that:

0 <i> X, eisopen, y < dA(kL), and furthermore these three events
occur digointly.

illustrated in Figure 5.1, for k > 1, by the BK inequality,

ekl < Y Pp ({0 <25 %) o {eisopen} o EkL(y)>
e=(X,y)eAS

< gpl(k — 1)L>{p Y Bp0 < x)}
ecAS
= ¢p(S)gp((k — 1)L ).
Therefore, by iteration,
gp(kL) < ¢p(9¥, k=0
Since gp(n) isnon-increasingin n,
(5.3) gp(M) < gp(9M,  nx>1

Equation (5.3) isonly useful if ¢p(S) < 1. Since¢p(S) isnon-decreasing
in p, itisnatural to define

(54) Pc = sup{p:thereexists S> O with |S| < co and ¢p(S) < 1}.
By (5.3) and the fact that gp(n) < 1forn>1and p < 1,
(5.5 for p < Pc, (5.2) holds with some  satisfying v (p) > O.
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We move now to the second part of the proof. Letn > 1 and
8 ={xeAn):x< AN}

By Russo’'sformula,

gp(n = ZPp(e is pivotal for Ep,)
e

1
= —1 _ ZPp(eis closed, and pivotal for En)

- Z Y Pp0<Hx 8=9

830 e=(X,y)eAS

_ Z Y Pp0 < 0P8 = 9)

SaO e=(X,y)eAS

- p(l qup(smp(z; =9),

where we have used the fact that, for agiven S, the events {0 <i> x} and
{8 = S} areindependent. Let p > {ic, sothat ¢p(S) > 1for al appropriate
Sin (5.4). Then,

/ 1 —
(5.6) gp(n) = m X:Pp(5 =9

S50

1
S E %)

We integrate (5.6) from pc to p to obtain

p
[ toact— gp] = |1oa (125 | -

Pc
Therefore, _
1 - 1-gp.(n) - P(1— Pe)
1-gp(n) ~ 1—gp(M) ~ Pe(l—p)’
which we reorganize to obtain

P— Pe
n>————.
% = pP(1— Pe)

Onlettingn — oo,
p— Bc

5.7 o —
(5.7) (p) = o~ B0

P> P
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It is immediate from (5.5) and (5.7) that pc = pc, and the proof is
complete. O

5.2 Supercritical Phase

Thecritical value pcisthevalueof pabovewnhichthepercolation probability
0(p) becomes strictly positive. It is widely believed that 6(pe) = 0, and
thisis perhaps the major conjecture of the subject.

5.8 Conjecture For percolation on L4 with d > 2, it is the case that
0(pc) = 0.

It is known that 6(pc) = 0 when either d = 2 (by resultsin [164]; see
Theorem 5.25) or d > 11 (by the lace expansionsin [107, 161, 162]). The
claim is believed to be canonical for percolation models on al lattices and
inall dimensions.

Suppose now that p > pe, sothat 6(p) > 0. What can be said about the
number N of infinite open clusters? Sincethe event {N > 1} istranslation-
invariant, it istrivial under the product measure Py, (see Exercise5.8). Now,

Pp(N > 1) > 6(p) > O,

whence
Pp(N >1) =1, p > pc.

We shall seein the forthcoming Theorem 5.14 that Pp(N = 1) = 1 when-
ever 0(p) > 0, whichisto say that there existsauniqueinfinite open cluster
throughout the supercritical phase.

A supercritical percolation process in two dimensions may be studied
in either of two ways. The first of these is by duality. Consider bond
percolation on L2 with density p. The dual process (as in the proof of
the upper bound of Theorem 3.2) is bond percolation with density 1 — p.
We shall see in Theorem 5.25 that the self-dual point p = % is aso the
critical point. Thus, the dual of a supercritical process is subcritical, and
thisenablesastudy of supercritical percolationonL2. A similar argumentis
valid for certain other lattices, although the self-duality of the squarelattice
is special.

While duality is the technique for studying supercritical percolation in
two dimensions, this process may also be studied by the block argument
that follows. The block method was devised expressly for three and more
dimensionsin the hopethat, anongst other things, it would imply the claim
of Conjecture5.8. Block argumentsareawork-horse of thetheory of general
interacting systems.
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We assume henceforththat d > 3andthat pissuchthat 6(p) > O; under
thishypothesis, we wish to gain some control of the geometry of theinfinite
open paths. The main result is the following, of which an outline proof is
included later in the section. Let A € Z9, and write pc(A) for the critical
probability of bond percolation on the subgraph of 1.9 induced by A. Thus,
for example, pc = pc(ZY). Recall that A (k) = [—k, k]9.

5.9 Theorem [142] Letd > 3. If F isan infinite connected subset of Z4
with pc(F) < 1, then for each n > 0 there exists an integer k such that

Pc(2kF + A(K)) < pc+ 1.

Thatis, for any set F sufficiently largethat p.(F) < 1, wemay ‘fatten’ F
to aset having critical probability as closeto pc asrequired. One particular
application of this theorem is to the limit of slab critical probabilities, and
we elaborate on this next.

Many results have been proved for subcritical percolation under the*finite
susceptibility’ hypothesisthat x (p) < oco. The validity of this hypothesis
for p < pc isimplied by Theorem 5.1. Similarly, several important results
for supercritical percolation have been proved under the hypothesis that
‘percolation occursin slabs'. The two-dimensional slab Fy of thickness 2k
isthe set

Fr = 22 x [k, K972 = (22 x {0}972) + A(K),

with critical probability pc(Fk). Since Fx € Fyy1 C 79, the decreas-
ing limit pc(F) = limk_ o Pc(Fk) exists and satisfies pc(F) > pe. The
hypothesis of ‘ percolation in slabs’ isthat p > pc(F). By Theorem 5.9,

(5.10) lim pc(Fx) = pe.
k— o0

One of the best examples of the use of ‘ slab percolation’ isthe following
estimate of the extent of a finite open cluster. It asserts the exponential
decay of a‘truncated’ connectivity function whend > 3. A similar result
may be proved by duality for d = 2.

5.11 Theorem [74] Letd > 3. Thelimit
1
o(p) = lim {——IogIP’p(0<—> dA(n), |IC| < oo)}
n—o0 n

exists. Furthermore, o (p) > 0if p > pc.

Weturn briefly to adiscussion of the so-called ‘ Wulff crystal’, illustrated
in Figure 5.2. Much attention has been paid to the sizes and shapes of
clusters formed in models of statistical mechanics. When a cluster C is
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Figureb5.2 Imagesof the Wulff crystal intwo dimensions. Thesearein
fact images created by numerical simulation of the Ising model, but the
general featuresare similar tothose of percolation. Thesimulationswere
for finite time, and the images are therefore only approximations to the
true crystals. The pictures are 1024 pixels square, and the Ising inverse
temperaturesare 8 = %, }—(1). The corresponding random-cluster models
haveq = 2and p = 1 — e ¥3,1 — e 1911 o that the right-hand
pictureis closer to criticality than the left.

infinite with a strictly positive probability, but is constrained to have some
large finite size n, then C is said to form alarge ‘droplet’. The asymptotic
shape of such adroplet asn — oo is prescribed in general terms by the
theory of the so-called Wulff crystal; see the original paper [289] of WuIff.
Specializing to percolation, we ask for properties of the open cluster C at
the origin, conditioned on the event {|C| = n}.

The study of the Wulff crystal is bound up with the law of the volume of
afinite cluster. This hasatail that is ‘ quenched exponentia’,

(5.12) Pp(ICl =n) = eXp(—pn(d_l)/d),

where p = p(p) € (0, oo) for p > pc, and ~ isto beinterpreted in terms
of logarithmic asymptotics. The explanation for the curious exponent is as
follows. The*most economic’ way to create alargefinite cluster istofind a
region R containing an open connected component D of size n, satisfying
D < o0, and then to cut all connectionsleaving R. Since p > pc, such
regions R exist with |R| (respectively, |0 R|) having order n (respectively,
n@-1/d) and the‘cost’ of the construction is exponential in |9 R|.

The above argument yields alower bound for Pp(|C| = n) of quenched-
exponential type, but considerably more work is required to show the exact
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asymptotic of (5.12), and indeed one obtainsmore. The (conditional) shape
of Cn—%9 convergesas n — oo to the solution of a certain variational
problem, and the asymptotic region is termed the ‘Wulff crystal’ for the
model. Thisisnot too hard to makerigorouswhend = 2, sincethe externa
boundary of C isthen a closed curve. Serious technical difficulties arise
when pursuing this programme for d > 3. See [67] for an account and a
bibliography.

Outline proof of Theorem 5.11. The existence of the limit is an exercise
in subadditivity of a standard type, although with some complications in
this case (see[73, 127]). We sketch here a proof of the important estimate
o(p) > 0.

Let S bethe (d — 1)-dimensional slab

S =[0,K x z9-1.

Since p > pc, we have by Theorem 5.9 that p > pc(S) for somek, and
we choosek accordingly. Let Hy, bethe hyperplaneof verticesx of L9 with
X1 = n. It sufficesto prove that

(5.13) Pp(0 < Hp, |IC| < 00) < e "
for somey = y(p) > 0. Define the slabs
Ti={xeZd:(-Dk<xs<ik}, 1<i<[n/k].

Any path from 0 to H,, traverses each T;. Since p > pc(S«), each slab
contains (almost surely) an infinite open cluster (see Figure5.3). I1f 0 <+ Hp,
and |C| < oo, thenall pathsfrom0to H, must evadeall such clusters. There
are |[n/k] slabsto traverse, and apriceis paid for each. Modulo atouch of
rigour, thisimplies that

Pp(0 < Hp, |IC| < 0) <[1- gk(p)]Ln/kJ’

where
Ok(p) = Pp(0 < o0 in &) > 0.

Theinequality o (p) > 0is proved. d
Outline proof of Theorem 5.9. The full proof can be found in [127, 142].
For simplicity, wetake F = 72 x {0}9-2, so that

2kF + A(K) = 72 x [k, K]92.

There aretwo main stepsin the proof. In thefirst, we show the existence of
long finite paths. I1n the second, we show how to take such finite paths and
build an infinite cluster in aslab.
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\ Hsk

\/

T1 T> T3

Figure 5.3 All paths from the origin to Hg, traverse the regions T,
i=123.

The principal parts of the first step are as follows. Let p be such that

o(p) > 0.
1. Lete > 0. Sinced(p) > 0, there exists m such that

Pp(A(mM) <> o0) > 1 —e.

[This holds since there exists, almost surely, an infinite open cluster .]

Letn > 2m, say, and let k > 1. We may choose n sufficiently large
that, with probability at least 1 — 2¢, A(m) isjoined to at least k points
inaA(n). [If, for somek, thisfails for unbounded n, then there exists
almost surely N > m such that A(m) <4 dA(N).]

By choosing k sufficiently large, we may ensure that, with probability
at least 1 — 3¢, A(m) isjoined to some point of d A(n), whichisitself
connected to a copy of A(m) lying ‘on’ the surface 3 A (n) and every
edge of which is open. [We may choose k sufficiently large that there
are many non-overlapping copies of A(m) in the correct positions,
indeed sufficiently many that, with high probability, one such copy is
totally open.]

The open copy of A(m), constructed above, may be used as a * seed’

for iterating the above construction. When doing this, we shall need
some control over where the seed is placed. It may be shown that
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Figure 54 An illustration of the event that the block centred at the
origin is open. Each black squareis a seed.

every face of 9 A (n) contains (with large probability) a point adjacent
to some seed, and indeed many such points. See Figure5.4. [Thereis
sufficient symmetry to deduce this by the FKG inequality.]

Aboveisthe schemefor constructing long finite paths, and we turn to the
second step.

5. This construction is now iterated. At each stage there is a certain
(small) probability of failure. In order that there be a strictly positive
probability of an infinite sequence of successes, we iterate in two ‘in-
dependent’ directions. With care, we may show that the construction
dominates a certain supercritical site percolation process on 1.2

6. We wish to deduce that an infinite sequence of successes entails an
infinite open path of 1.9 within the corresponding slab. There are two
difficulties with this. First, since we do not have total control of the
positions of the seeds, the actual pathin LY may leave every slab. This
may be overcomeby aprocessof ‘ steering’, inwhich, at each stage, we
chooseaseedin such aposition asto compensatefor earlier deviations
in space.

7. A greater problem is that, in iterating the construction, we carry with
usamixture of ‘positive’ and ‘ negative’ information (of the form that
‘certain paths exist’ and ‘others do not’). In combining events, we
cannot usethe FK G inequality. Thepractical difficulty isthat, although
we may have an infinite sequence of successes, therewill generally be
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breaks in any corresponding open route to co. This is overcome by
‘sprinkling’ down afew more open edges, that is, by working at edge-
density p + § where§ > O, rather than at density p.

In conclusion, we find that, if 6(p) > 0and § > O, there exists k such
that, with large probability, an infinite (p + §8)-open path existsin a slab of
theform Ty = Z2 x [k, K]9~2. The claim of the theorem follows.

There are many details to be considered in carrying out the above pro-
gramme, but these are omitted here. O

5.3 Uniqueness of the Infinite Cluster

The principal result of this section is the following: for any value of p for
which 6(p) > 0, there exists (almost surely) a unique infinite open cluster.
Let N = N(w) bethe number of infinite open clusters.

5.14 Theorem [13] If6(p) > O,thenPp(N =1) = 1.

A similar conclusion holds for more general probability measures. The
two principal ingredientsof the generalization are the translation-invariance
of the measure, and the so-called ‘finite-energy property’, which statesthat,
conditional on the states of all edges except e, say, the state of e is O (re-
spectively, 1) with a strictly positive (conditional) probability.

Proof. We follow [62]. The claim is trivial if p = 0, 1, and we assume
henceforththat 0 < p < 1. Let S = S(n) be the ‘diamond’ S(n) =
{x € 29 : 5(0,x) < n}, and let Eg be the set of edges of L% joining
pairs of verticesin S. We write Ns(0) (respectively, Ns(1)) for the total
number of infinite open clusters when all edges in Es are declared to be
closed (respectively, open). Finaly, Mg denotes the number of infinite
open clustersthat intersect S.

The sample space 2 = {0, l}]Ed is aproduct space with a natural family
of tranglations, and IP, is aproduct measure on 2. Since N isatranslation-
invariant function on €2, it is almost surely constant (see Exercise 5.8):

(5.15) Jk=Kk(p) €{0,1.2,...} U {oo} suchthat Pp(N = k) = 1.

Next we show that the k in (5.15) necessarily satisfies k € {0, 1, oo}.
Suppose that (5.15) holds with k < co. Since every configuration on Es
hasastrictly positive probability, it follows by the almost-sure constancy of
N that

Pp(Ns(0) = Ns(1) =k) = 1.
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Now Ns(0) = Ng(1) if and only if Sintersects at most one infinite open
cluster (thisiswhere we use the assumption that k < 00), and therefore

Pp(Ms > 2) = 0.

Clearly, Mg isnon-decreasingin S = S(n), and Mgny — N asn — oo.
Therefore,

whichisto say that k < 1.

It remains to rule out the case k = co. Suppose that k = co. We will
derive a contradiction by using a geometrical argument. We call a vertex x
atrifurcation if:

(@) x liesinan infinite open cluster,
(b) there exist three or more open edges incident to x, and
(c) thedeletion of x and its incident open edges splits thisinfinite cluster
into three or more disjoint infinite clusters and no finite clusters.
Let Ty betheevent that x isatrifurcation. By tranglation-invariance, Pp(Tx)
is constant for all x, and therefore

1
(5.17) |S(n)|Ep< Z 1Tx> = Pp(To).

XxeS(n)

It will be useful to know that the quantity Pp(To) is strictly positive, and it
is here that we use the assumed infinity of infinite clusters. Let Mg(0) be
the number of infinite open clusters that intersect S when all edges of Es
are declared closed. Since Ms(0) > Ms, by the remarks around (5.16),

Pp(Msmn)(0) > 3) > Pp(Mgn) > 3)
—Pp(N>3) =1 asn — oo.
Therefore, there exists m such that
Pp(Msm)(0) > 3) > 3.

Weset S= S(m)and S = S(m) \ S(m — 1). Note that:
(a) theevent {Ms(0) > 3} isindependent of the states of edgesin Es,
(b) if the event {Ms(0) > 3} occurs, there exist X, y,z € S lying in
distinct infinite open clusters of E9 \ Es.

Let o € {Ms(0) > 3}, and pick X = X(w), ¥ = Y(w), Z = Z(w)
accordingto (b). If thereis more than one possible such triple, we pick such
a triple according to some predetermined rule. It is a minor geometrical
exercise? (see Figure 5.5) to verify that there exist in Es three pathsjoining

2Thisis where we use the fact that Sisa‘diamond’ rather than a‘square'.
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Figureb.5 Takeadiamond Sthat intersectsat least threedistinctinfinite
open clusters, and then alter the configuration inside Sin order to create
aconfiguration in which O isatrifurcation.

the origin to (respectively) x, y, and z, and that these paths may be chosen
in such away that:
(i) theorigin isthe unigque vertex common to any two of them, and
(i) each path touches exactly onevertex lyingin 8 S.
Let Jy v, betheevent that all the edgesin these paths are open, and that all
other edgesin Eg are closed.
Since Sisfinite,

Pp(Jxy.z | Ms(0) = 3) > [min{p, 1— p}]* > 0,
where R = |Eg|. Now,
Pp(Oisatrifurcation) > Pp(Jx,y,z | Ms(0) > 3)Pp(Ms(0) > 3)
> 3[min{p, 1- p}]" >0,

which isto say that Pp(Tg) > 0in (5.17).

It follows from (5.17) that the mean number of trifurcationsinside S =
S(n) growsinthemanner of |S| asn — oo. Onthe other hand, we shall see
next that the number of trifurcationsinside S can be no larger than the size
of the boundary of S, and this provides the necessary contradiction. The
following rough argument is appealing. Select atrifurcation (t1, say) of S,
and choose some vertex y1 € dSsuch that t; <> y1in S. We now select
anew trifurcation tp € S. It may be seen, using the definition of the term
‘trifurcation’, that there exists y» € dSsuch that y1 # y, andt; <> y>in
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S. We continue similarly, at each stage picking a new trifurcationty € S
and anew vertex yx € 9S. If there are t trifurcationsin S, then we abtain
7 distinct vertices yi of 9S. Therefore, 0S| > 7. However, by the remarks
above, Ep(7) isof order |S|. Thisisacontradiction for large n, since |3 S|
growsin the manner of 1 and | S| grows in the manner of n9.

The above may be written out rigorously. Let  be the set of open edges
with at least oneendvertex in S(n — 1), and write K for the ensuing induced
subgraph of S := S(n). We perform the following surgery on K. Set
Ko = K.

(@ Fori = 0,1,2,..., pick some circuit C; of Kj, remove an edge
chosen arbitrarily from C;, and denote the resulting graph by Kj_ 1.
The process terminates after some finite number of deletions, and we
write K’ for the ensuing forest.

(b) Let D bethe set of edges of K’ having at least one endvertex which
is not 2-vertex-connected to 9Sin K’. We delete from K’ the edges
in D and any such endvertex, thus obtaining a sub-forest K” every
component of which intersects 9 S.

We may check that: (i) every trifurcation in S(n — 1) is avertex of K”
with degree 3 or more, and (ii) every leaf (or degree-1 vertex) of K” liesin
8S. Itisastandard fact about forests that the number of leavesis equal to
at least the number of vertices with degree 3 or more. Therefore, [0S] > 1
as claimed above.

It follows that
psmi= ) 1r.
xeS(h—1)
Take expectations (asin (5.17)) to obtain [0 S(n)| > [S(n — 1)|Pp(To), and
let n — oo to obtain a contradiction. O

5.4 Phase Transition

M acroscopic functions, such asthe percolation probability and mean cluster
size,

0(p) =Pp(IC| = 00), x(p) =Ep|C],

have singularities at p = pc, and there is overwhelming evidence that
these are of ‘power law’ type. A great deal of effort has been invested
by physicists and mathematicians towards understanding the nature of the
percolation phase transition. The picture is now fairly clear whend = 2,
owing to the very significant progress in recent years in relating critical
percolation to the Schramm-L owner curve SLEg. There remain however
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Function Behaviour Exp.
percolation
probability 8(p) = Pp(IC| = 00) 0(p) ~ (p — po)? B
truncated
mean cluster size | x'(p) = Ep(ICI1ic|<co) x'(P) ~ Ip = pel 7 %
number of
clusters per vertex k(p) = ]Ep(|c|fl) K"(p) ~ |p — pel 1@ o
Xli 1(P)
cluster moments | xf(p) = Ep (ICI¥ljc|<o0) | “H ~ [p— pel ™2, k> 1| A
Xk (P)
correlation length £(p) £(p) ~ |p — pel™” v
cluster volume Pp(ICl = n) ~ n—-1-1/s s
cluster radius Ppc(rad(C) = n) ~ n1-e | p
connectivity function P pe(0 <> X) ~ [Ix||2—d=" "

Table 5.6 Eight functions and their critical exponents.

substantial difficulties to be overcome before this chapter of percolation
theory can be declared written, even when d = 2. The case of large d
(currently, d > 11) is aso well understood, through work based on the
so-called ‘lace expansion’. Most problemsremain open in the obvious case
d = 3, and ambitious and brave students are directed thence with caution.

Thenature of the percolation singularity issupposed canonical,inthatitis
expected to have certain general featuresin common with phase transitions
of other models of statistical mechanics. These features are sometimes
referred to as ‘ scaling theory’ and they relate to ‘ critical exponents’. There
are two sets of critical exponents, arising firstly inthelimitas p — pc, and
secondly inthelimit over increasing distanceswhen p = p.. Wesummarize
the notation in Table 5.6.
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The asymptotic relation =~ should be interpreted loosely (perhaps via
logarithmic asymptotics®). The radius of C is defined by

rad(C) = sup{lIx|l : 0 < x},

where
d
X[l = supxi|, X = (X1, X2, ..., Xd) € Z",
|

is the supremum (L*°) norm on Z9. The limit as p — pc should be
interpreted inamanner appropriatefor thefunctioninquestion (for example,
asp | pcforé(p),butasp — pcforx(p)).

There are eight critical exponents listed in Table 5.6, denoted «, 8, v,
8, v, n, p, A, but thereis no general proof of the existence of any of these
exponents for arbitrary d. In general, the eight critical exponents may be
defined for phase transitions in a quite large family of physical systems.
However, it is believed that they are not independent variables, but rather
that they satisfy the scaling relations

2—a=y+2=606+1),

A =8B,

Yy = V(2 - 77),
and, when d is not too large, the hyperscaling relations

dpo=6+1,
2 —a=dv.

Theupper critical dimensionisthelargest valued. suchthat thehyperscaling
relations hold for d < dc. Itisbelieved that d. = 6 for percolation. There
isno general proof of the validity of the scaling and hyperscaling relations,

athough quite alot is known when d = 2 and for large d.
In the context of percolation, there is an analytical rationale behind the

scaling relations, namely the ‘ scaling hypotheses' that
Pp(ICl =n) ~n~? f(n/&(p)")
Pp(0 < X, |C| < 00) ~ [x[[Z~@"g(1Ix|l/&(p))

in the double limit as p — pc, N — oo, and for some constants o, 7, n
and functions f, g. Playing loose with rigorous mathematics, the scaling
relations may be derived from these hypotheses. Similarly, the hyperscaling

SWe say that f (x) islogarithmically asymptotic to g(x) (as either x — 0 or X — o)
if log f(x)/logg(x) — 1. Thisisoften written as f (x) ~ g(x).
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relations may be shown to be not too unreasonable, at least when d is not
too large. For further discussion; see [127].

We note some further points.
Universality. It is believed that the numerical values of critical exponents
depend only on the value of d and are independent of the particular perco-
lation model.
Two dimensions. When d = 2, perhaps the following hold:

—_2 -5 % -
a=-35 P=zx% v= =%

See (5.37) below.

Large dimension. When d is sufficiently large (actually, d > d¢) it is
believed that the critical exponents are the same as those for percolation on
atree (the ‘mean-field model’), namely 6 = 2,y = 1, v = 3, p = 3,
and so on (the other exponents are found to satisfy the scaling relations).
Using the first hyperscaling relation, this is consistent with the contention
that d; = 6. Such statements are known to hold for d > 11; see[107, 161,
162] and the remarks later in this section.

Open challengesinclude to prove:

— the existence of critical exponents,

— universality,

— the scaling and hyperscaling relations,

— the conjectured valueswhend = 2,

— the conjectured valueswhend > 6.

Progress towards these goals has been positive. For sufficiently large d,
exact values are known for many exponents, namely the values from per-
colation on aregular tree. There has been remarkable progress in recent
yearsfor d = 2, inspired largely by the work of Schramm [258], enacted
by Smirnov [266], and confirmed by the programme pursued by Lawler,
Schramm, and Werner to understand SLE curves (see Section 5.6). Further
progress towards proving universality in two dimensions may be found in
the work [134, 141] of Grimmett and Manolescu, who proved that the val-
uesof certain critical exponentsfor bond percolation onisoradial graphsare
independent of the choice of graph.

We close this section with some further remarks on the case of large d.
The expression ‘mean-field’ permits several interpretations depending on
context. A narrow interpretation of the term ‘ mean-field theory’ for perco-
lation involves trees rather than lattices. For percolation on aregular tree,
it is quite easy to perform exact calculations of many quantities, including
the numerical values of critical exponents. Thatis, § =2,y =1,v = %
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o= % and other exponentsare given according to the scaling relations; see
[127, Chap. 10].

Turning to percolation on LY, it is known, as remarked above, that the
critical exponents agree with those of aregular tree when d is sufficiently
large. In fact, thisis believed to hold if and only if d > 6, but progress so
far assumesthat d > 11. In the following theorem, we write f (x) >~ g(x)
if there exist positive constants c1, ¢ such that ¢1 f(X) < g(x) < c2f(X)
for al x closeto alimiting value.

5.18 Theorem [107,162] For d > 11,

0(p) =~ (p—po)t  aspl pe
x(P) > (pc—pP)"* asptpe
E(P) = (pc— P2 aspt pe
K2 (P)
XK(P)

Note the strong form of the asymptotic relation ~, and the identification
of the critical exponents 8, ¥, A, v. The proof of Theorem 5.18 centres on
aproperty known as the *triangle condition’. Define

(5.19) TP = ) Pp0 X)Py(X < Y)Pp(y < 0),

x,yezd

~(pc—p) 2 asp1 pefork>1.

and consider the triangle condition

Thetriangle condition wasintroduced by Aizenman and Newman [16], who
showed that it implied that x (p) >~ (pc — p) tas p + pe. Subsequently
other authors showed that thetriangle condition implied similar asymptotics
for other quantities. It was Hara and Slade [161] who verified the triangle
conditionfor d > 19, exploiting atechniqueknown asthe‘lace expansion’,
and Fitzner and van der Hofstad who improved the bound to d > 11.

5.5 Open Pathsin Annuli

The remainder of this chapter is devoted to percolation in two dimensions,
in the context of either the site model on the triangular lattice T or the bond
model on the square lattice 1.2,

Thereis a very useful technique for building certain open paths in two
dimensions. It leads to a proof that the chance of an open cycle within an
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Figure5.7 Thetriangular lattice T and the (dual) hexagonal lattice H.

annulus[—3n, 3n]2\ [—n, n]?isat least f(8), where s isthe chance of an
open crossing of the square [—n, n]?, and f is a strictly positive function.
Thisresult was useful in some of the original proofs concerning the critical
probability of bond percolation on L2 (see [127, Sect. 11.7]), and it has
re-emerged more recently as central to estimates that permit the proof of
Cardy’s formula and conformal invariance. It is commonly named after
Russo [254] and Seymour—Welsh [264]. The RSW lemma will be stated
and provedin thissection and utilized inthe next three. Sinceour application
in Sections 5.6-5.7 is to site percolation on the triangular lattice, we shall
phrase the RSW lemmain that context. It is left to the reader to adapt and
develop the arguments of this section for bond percolation on the square
lattice; see Exercise 5.5. The triangular lattice T is drawn in Figure 5.7,
together with its dual hexagonal lattice H.

Thereis aspecial property that is common to the bond model on 1.2 and
the site model on T, namely that the *external’ boundary of a finite open
cluster contains a closed cycle. Thiswasillustrated in Figure 3.1 for bond
percolation on 1.2, and may be seen similarly for T. This property is central
to the proofs that these models have critical probability p; = %

RSW theory is presented in [127, Sect. 11.7] for the square lattice 1.2
and general bond-density p. We could follow the same route here for the
triangular lattice, but for the sake of variation (and with an eye to later
applications) we shall restrict ourselvesto the case p = % and shall givea
shortened proof dueto Stanislav Smirnov. The more conventional approach
may be found in [284]; see also [283], and [53] for a variant on the square
lattice. Thus, in this section we restrict ourselves to site percolation on T
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with density 1. Each site of T is coloured black with probability 3, and
white otherwise, and the relevant probability measure is denoted as PP.

The triangular lattice is embedded in R? with vertex-set {mi + nj :
(m,n) € Z2}, wherei = (1,0) and j = 3(1,+/3). Write Ry for the
subgraph induced by vertices in the rectangle [0, a] x [0, b], and we shall
restrict ourselves always to integers a and integer multiples b of %«/:_3 We
shall consider left-right crossings of rectangles R, and to this end we let
its left edge L (R) (respectively, right edge R(R)) be the set of vertices of
R within distance % of its left side (respectively, right side). This minor
geometrical complication arises becausethe vertical lines of 1.2 are not con-
nected subgraphs of T. Let Ha p be the event that there exists a black path
that traverses Ry p from L(Ry, p) to R(Ra,p). The‘engineroom’ of the RSW
method is the following lemma.

5.20 Lemma P(Hzap) > %]P’(Ha,b)z-

By iteration of the above inequality,

1 P
(5.21) P(Hyap) = 4[P(Hap)]”, k=0
As‘input’ to thisinequality, we prove the following.
5.22 Lemma Wehavethat P(H, , 73) > 3.

Let A bethe set of verticesin T at graph-theoretic distance m or less
from the origin 0, and define the annulus A, = A3zy \ Ap—1. Let Op be
the event that A, contains a black cycle C such that O lies in the bounded
component of R? \ C.

5.23 Theorem (RSW) There exists o > 0 such that P(Op) > o for all
n> 1.

Proof of Lemma 5.20. We follow a previously unpublished argument of
Stanislav Smirnov.* Let g be a path that traverses R, , from left to right.
Let p denote reflection in the line x = a, so that pg connects the left and
right edges of [a, 2a] x [0, b]. See Figure 5.8. Assume for the moment
that g does not intersect the x-axis. Let Ug be the connected subgraph of
Ra,b lying ‘strictly beneath’ g, and Ug the corresponding graph lying ‘on
or beneath’ g. Let Jy (respectively, Jp) be the part of the boundary dUyg
(respectively, Ry p) lying on either the x-axis or y-axis but not in g, and let
pJg (respectively, p Jp) beits reflection.

4Seealso [282].
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Figure5.8 Thecrossing g and itsreflection pg in the box Rog . The
events By and W, areillustrated by the two lower paths, and exactly
one of these events occurs.

Next we use the self-duality of site percolationon T. Let By be the event
that there existsapath of Ug U pUg joining some vertex of g to some vertex
of pJg, with the property that every vertex not belonging to g is black. Let
W,,g bedefined similarly intermsof awhite path of UgU pUg from pgto Jg.
Thekey factisthefollowing: W,q occurswhenever By doesnot. Thisholds
as follows. Assume By does not occur. The set of vertices reached along
black pathsfrom g doesnot intersect p Jg. Itsexternal boundary (away from
g U pQg) iswhite and connected, and thus contains a path of the sort required
for W,g. Thereisacomplication that does not arise for the bond model on
1.2, namely that both Bg and W,,¢ can occur if the right endvertex of g lies
onthelinex = a.

By symmetry, P(Bg) = P(W,q), and by the above,

(5.24) P(Bg) = P(W,g) = 1.

The same holdsif g touches the x-axis, with Jg suitably adapted.
LetL betheleft edgeof Roa p and Ritsright edge. By the FKGinequality,

P(Hzap) = P(L < pJp, R« Jy)
> P(L < pJp)P(R < Jp) =P(L < pp)?,

where <> denotes connection by ablack path.
Lety bethe*highest’ black path fromtheleft sideto theright sideof R, p,
if such a path exists. Conditional on the event {y = g}, the states of the
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sites beneath g are independent Bernoulli variables, whence, in particular,
the events By and {y = g} areindependent. Therefore,

P(L < pdp) = Y P(y =0, By) =) P(ByP(y =)
¢} 9
>3 P(y =0) = 3P(Hap)
9

by (5.24), and the lemmais proved. d

Proof of Lemma 5.22. This is similar to the argument leading to (5.24).
Consider the rhombus R of T comprising all vertices of the form mi + nj
for0 < m,n < 2a. Let B be the event that R is traversed from left
to right by a black path, and W the event that it is traversed from top to
bottom by a white path. These two events are mutually exclusive and have
the same probability, and one or the other necessarily occurs. Therefore,
P(B) = % On B, there exists a left—right crossing of the (sub-)rectangle

[a, 2a] x [0, a+/3], and the claim follows. O

Proof of Theorem5.23. By (5.21) and Lemma5.22, thereexistse > 0 such
that
P(Hsn,nﬁ) > a, n>1

We may represent the annulus Ay as the pairwise-intersection of six copies
of Rg, , /3 obtained by translation and rotation, asillustrated in Figure 5.9.
If each of these is traversed by a black path in its long direction, then the
event Op occurs. By the FKG inequality,

P(On) > o,

and the theorem is proved. d

5.6 The Critical Probability in Two Dimensions

Werevert to bond percolation onthesquarelatticein thissection. Thesquare
lattice has a property of self-duality, illustrated in Figure 1.5. ‘Percolation
of open edges on the primal lattice’ is dual to ‘ percolation of closed edges
on the dual lattice’. The self-dua value of pisthus p = % and it was
long believed that the self-dual point is also the critical point pc.. Theodore

Harris [164] proved by a geometric construction that 6(%) = 0, whence

pe(Z?) > % Harry Kesten [186] proved the complementary inequality.

5.25 Theorem [164, 186] The critical probability of bond percolation on
the square lattice equals 3. Furthermore, 6(3) = 0.
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Figure 5.9 If each of the six long rectangles are traversed in the long
direction by black paths, then the intersection of these paths contains a
black cycle within the annulus An.

Before giving a proof, we make some comments on the original proof.
Harris [164] showed that, if 0(%) > 0, then we can construct closed dual
cycles around the origin. Such cycles prevent the cluster C from being in-
finite, and thereforee(%) = 0, acontradiction. Similar * path-construction’
arguments were developed by Russo [254] and Seymour—Welsh [264] in
aproof that p > pcif andonly if x(1 — p) < oco. Thisso-caled ‘RSW
method’ has acquired prominencethrough recent work on SLE (see Sections
5.5and 5.7).

The complementary inequality pe(Z2) < % was proved by Kesten in
[186]. More specifically, he showed that, for p < % the probability of an
open left—right crossing of the rectangle [0, 2] x [0, 2¢t1] tends to zero
ask — oo. With the benefit of hindsight, we may view his argument as

establishing atype of sharp-threshold theorem for the event in question.

The arguments that prove Theorem 5.25 may be adapted to certain other
situations. For example, Wierman [284] proved that the critical probabilities
of bond percolation on the hexagonal/triangular pair of lattices (see Figure
5.7) are the dua pair of values satisfying the star—triangle transformation.
Russo [255] adapted the argumentsto site percolation on the square lattice.
Itiseasily seen by the same argumentsthat site percolation on thetriangular
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lattice has critical probability 3.5
The proof of Theorem 5.25 is broken into two parts.

Proof of Theorem5.25: 6(3) = 0, and hence pc > 3. Zhang discovered a
beautiful proof of this, using only the uniqueness of the infinite cluster; see
[127, Sect. 11.3]. Set p = 3, andassumethatd(3) > 0. Let T (n) = [0, n]?,
and find N sufficiently large that

Pi(0T(M) < 00) >1- (", n=N.

Wesetn = N + 1. Let A, A", A, A be the (respective) events that the
left, right, top, bottom sides of T (n) arejoined to oo off T (n). By the FKG
inequality,

P1(T(n) 4 00) = P%(Emﬁmﬁmﬁ)
> Py (A)P(A)P(AYP(AD)
=Py (AD*
by symmetry, for g = I, r,t,b. Therefore,
Py(A%) 2 1= Py(T(N) 004 > 4.
We consider next the dual box, with vertex set
T(Ma=[0,n—1°+(3, 3.

Let A'd, Al AE,, Ag denote the (respective) events that the left, right, top,
bottom sides of T (n)q are joined to co by a closed dua path off T (n)g.
Since each edge of the dual is closed with probability %

g 7 —
Pi(AD>§  g=Lrtb.

Consider the event A = Al 0 A" n A N Al illustrated in Figure 5.10.
Clearly, ]P’%(K) < 3, so that Py(A) = 3. However, on A, either L? has
two infinite open clusters or its dual has two infinite closed clusters. By
Theorem 5.14, each event has probability 0, a contradiction. We deduce
that 6(3) = 0, implying in particular that pc > 3. O

Proof of Theorem5.25: pe < % We givetwo proofs. Thefirst usesthegen-
eral exponential-decay Theorem 5.1. The second was proposed by Stanislav
Smirnov, and avoids the appeal to Theorem 5.1. It is close in spirit to

5See also Section 5.8.
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T(n)

—< [

Figure5.10 Theleftand right sidesof thebox T (n) arejoined toinfinity
by open paths of the primal lattice, and the top and bottom sides of the
dual box T (n)q are joined to infinity by closed dual paths. Using the
uniqueness of theinfinite open cluster, the two open paths must be joined
by an open path. Thisforcesthe existence of two digoint infinite closed
clustersin the dual.

Kesten's original proof and resonates with Menshikov’s proof of Theorem
5.1. A third approach to the proof uses the sharp-threshold Theorem 4.68,
and thisis deferred to Section 5.8.

Proof A Supposeinstead that pc > % By Theorem 5.1, thereexistsy > 0
such that

(5.26) P1(0 < -, nj%) <e ", n>1

Let S(n) be the graph with vertex-set [0, n + 1] x [0, n] and edge-set con-
taining all edgesinherited from 1.2 except those in either the left side or the
right side of S(n). Let A bethe event that there exists an open path joining
theleft side and right side of S(n). If A does not occur, then the top side of
the dual of S(n) isjoined to the bottom side by a closed dua path. Since
the dual of S(n) is isomorphic to S(n), and since p = % it follows that

Py(A) = 3 (see Figure 5.11). However, by (5.26),

P1(A) < (n+ e ",
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Figure5.11 If thereis no open left—right crossing of S(n), there must
exist a closed top—bottom crossing in the dual.

acontradiction for large n. We deducethat p; < %

Proof B Let A(k) = [—k, k], and let Ax = A(3k) \ A(k) bean ‘annulus .
The principal ingredient of the proof is an estimate that follows from the
square-lattice version of the RSW Theorem 5.23.5 Let p = % There exist
¢, o > Osuch that:

(@) thereareat least clogr disjoint annuli Ag within [—r, r]?,

(b) each such annulus contains, with probability at least «, a dual closed

cyclehaving Oinitsinside.

Therefore, g(r) = IP’%(O < 0A(r)) satisfies

(5.27) gr)y < (1- o)clor — o,
wherea = a(c, o) > 0. For future use, let D be arandom variable with
(5.28) P(D>r)=g(r), r >0.

There are a variety of ways of implementing the basic argument of this
proof, of which we choosethefollowing. Let Ry = [0, 2n] x [0, n], where
n > 1, and let Hy be the event that R, is traversed by an open path from
left to right. The event A given in Proof A satisfies]P’%(A) =1 Hence by

6See Exercise 5.5.
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Lemma 5.20 rewritten for the square lattice, there exists y > 0 such that
(5.29) ]P’%(Hn) >y, n>1

Thisinequality will be used later in the proof.

We take p > % and work with the dual model. Let S, be the dual box
(3, 3)+10,2n—1] x [0, n+1], and et VV, bethe event that S, istraversed
from top to bottom by a closed dual path. Let N = N, be the number of
pivotal edges for the event V,,, and let IT be the event that N > 1 and all
pivotal edges are closed (in the dual). We shall prove that

(5.30) Ep(N | IT) > ¢'n%,

for some absolute positive constant c’.

For any top—bottom path 1 of S,, wewrite L (1) (respectively, R(1)) for
the set of edges of S, lying strictly to the ‘left’ (respectively, ‘right’) of A.
On I, there exists a closed top—bottom path of S, and from amongst such
pathswe may pick theleftmost, denoted A. Asin the proof of Lemma5.20,
A ismeasurable on the states of edgesin and to the left of A; that isto say,
for any admissible path 1, the event {A = 1} depends only on the states of
edgesin A U L(%). (See Figure5.12.)

Assume as above that IT occurs, and that A = A. Every pivotal edge for
Vp liesin A. Eachedgee = (X, y) € A hasadual edgeeyq = (u;, ur), for
someu, Uy € Z2. Since A is leftmost, exactly one of these endvertices, u;
say, is hecessarily connected to the left side of R, by an open primal path
of edges dual to edgesof L(A). In addition, e is pivotal for V, if and only
if ur isconnected to theright side of R, by an open primal path.

We now take awalk along A from bottom to top, encountering its edges
in order. Let f1, fo, ..., fn be the pivotal edges thus encountered, with
fi = (Xi, Vi), and let yp be theinitial vertex of A and xn1 thefinal vertex.
Given I1, we have that N > 1, and there exists a ‘lowest’ open path W
connecting the right side of R, to an endvertex of the dual edge of f1. By
symmetry,

(5.31) Pp(y1 liesin the lower half of S, | TT) > 3.

Consider now aconfiguration w € T, with A = A and ¥ = v, say. The
states of edgesin theregion T (A, ¥) of §,, lying both to the right of A and
above v, are unaffected by the conditioning. That is, for given A, ¢, the
states of the edgesin T (1, v) are governed by product measure. What is
the distance from f; = (X3, y1) to the next pivota edge fo = (x2, y2)? No
pivotal edge is encountered on the way, and therefore there exists a closed
path of T (%, ) from y; to X2. Sincel — p < % the L°° displacement of



5.6 The Critical Probability in Two Dimensions 113

TG, ¥)

R(L)

Yo
Figure5.12 Theleftmost closed top—bottom crossing A. Primal vertices
just tothe‘left’ of A are connected by open (dotted) pathsto the left side
of therectangle. Anedge f1 of A ispivotal if thevertex just toits‘right’
isjoined by an open path to the right side of the rectangle. Between any
two successive pivotal edges, there exists aclosed path lying entirely in
R(1). Therearethreepivotal edges f; inthisillustration, and the dashed
lines are the closed connections of R()) joining successive fj.

such apath is no larger in distribution than a random variable D satisfying
(5.28). Having reached f;, we iterate the argument until we attain the top
of Sy. The vertical displacement between two consecutive pivotal edges
is (conditional on the construction prior to the earlier such edge) bounded
aboveindistribution by D + 1, where the extra 1 takes care of the length of
an edge.

By (5.31) and the stochastic inequality, we have

(532 Pp(N>k+1|T) > 3P(Z<n/2), k=0,

where D’ = 14+ min{D, n/2} and X; = D; + D5 + - -- 4 Dy isasum of
independent copiesof D’. Thereare at |east two waysto continue. Thefirst
isto deduce that

2Pp(N > k+1|T)>1-P(D > n/(2k) for somel <i <Kk)
> 1—kg(n/(2k) — 1).

Wechoosehereto useinstead therenewal theorem asintheproof of Theorem
5.1. Sum (5.32) over k to obtain that

(5.33) Ep(N | IT) > 3E(K),
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where K = min{k : Xk > n/2}. By Wald's equation,
3n < E(Zx) = E(K)E(D),

so that
n/2 n/2
(5.34) E(K) > — = — )
E(D) — y V4 qr)

Inequality (5.30) follows from (5.33), (5.34) and (5.27), (5.28).”
We prove next that
(5.35) Pp(IT) > Pp(Hn)Pp(Vh).

Suppose V,, occurs, with A = A, and let W, be the event that there exists
e € X such that: its dual edge eg = (u, v) has an endpoint connected to
the right side of R, by an open primal path of edges of R(1). The states of
edges of R()) are governed by product measure, so that

Po(W | A =2) = Pp(Hn).
Therefore,

Pp(Hn)Pp(Va) < Y Pp(W | A = MPp(A = 4) = Py(ID).
|

Since Pp(Hn) = 1 — Pp(Vh), by (5.30) and Russo’s formula (Theorem
4.66), we have

d
apEr(H) = Ep(N) = cn*Pp(Hn)[1 —Bp(Hn)l.  p= 3

The resulting differential inequality

[ 1,1 }ip(dena
Pp(Hn) ' 1—Pp(Hp) [dp P ™ =

may be integrated over the interval [%, p] to obtain® via (5.29) that

1
1—Pp(Hn) <~ exp[—¢'(p — $)n*].

This may be used to prove exponential decay in two dimensions (as in
Theorem 5.1), but here we use only the (lesser) consequence that

Nl

(5.36) > [1—Pp(Hn)] < oo, P>

n=1

"Readers are invited to complete the details of the above argument.
8The same point may be reached using the theory of influence, asin Exercise 5.4.
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Figure5.13 The rectangles with aspect ratio 2 are arranged in such a
way that, if all but finitely many aretraversed in the long direction, then
there must exist an infinite cluster.

We now use a block argument that was published in [70].° Let p > %
Consider the nested rectangles

Bor_1=1[0,2%] x [0,2% Y], By =[0,2%] x [0, 22 1], r>1,

illustrated in Figure 5.13. Let Ko 1 (respectively, Ko ) be the event that
Bor_1 (respectively, By ) is traversed from left to right (respectively, top
to bottom) by an open path, so that Pp(Kk) = Pp(Hx-1). By (5.36) and
the Borel—Cantelli lemma, all but finitely many of the Ky occur, Pp-almost
surely. By Figure 5.13 again, this entails the existence of an infinite open
cluster, whence 6 (p) > 0, and hence pc < % d

5.7 Cardy’'sFormula

Thereisarich physical theory of phasetransitionsin theoretical physics,and
critical percolationisat the heart of thistheory. The case of two dimensions
isvery special, in that methods of conformality and complex analysis, bol-
stered by predictionsof conformal field theory, have given riseto abeautiful
and universal vision for the nature of such singularities. Thisvisionis both
analytical and geometrical. Its proof has been one of the principal targets of
probability theory and theoretical physics over recent decades. The ‘road
map’ to the proof is now widely accepted, and many key ingredients have
become clear. There remain some significant problems.

The principal ingredient of the mathematical theory is the SLE process
introduced in Section 2.5. In aclassical theorem of Lowner [216], we see

9An alternative block argument may be found in Section 5.8.
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that agrowing path y in R? may be encoded via conformal maps g; interms
of a so-called *driving function’ b : [0, co) — R. Oded Schramm [258]
predicted that avariety of scaling limits of stochastic processesin R? may be
formulated thus, with b chosen as a Brownian motion with an appropriately
chosen variance parameter k. He gave a partial proof that LERW on 1.2,
suitably re-scaled, haslimit SLE,, and heindicated that UST haslimit SLEg
and percolation SLEg.

These observations did not come out of the blue. Therewas considerable
earlier speculation around the idea of conformality, and we highlight the
statement by John Cardy of hisformula[66], and the discussions of Michael
Aizenman and others concerning possibleinvariance under conformal maps
(see, for example, [4, 5, 195]).

Much hasbeen achieved since Schramm'’ spaper [258]. Stanislav Smirnov
[266, 267] has proved that critical site percolation on the triangular lattice
satisfies Cardy’sformula, and hisrouteto‘ completeconformality’ and SLEg
has been verified; see [63, 64] and [198, 272, 282]. Many of the critical
exponents for the model have now been calculated rigorously, namely

(5.37) B=%. yv=1 v=3% p=%

together with the ‘two-arm’ exponent 2; see [202, 270]. On the other
hand, it has not yet been possible to extend such results to other principal
percolation models such as bond or site percolation on the square lattice
(some extensions have proved possible; see [75] for example).

On a related front, Smirnov [268, 269] proved convergence of the re-
scaled cluster boundaries of the critical 1sing model (respectively, the asso-
ciated random-cluster model) on IL? to SLE3 (respectively, SL Eie/3). This
was extended in [77] to the Ising model on any so-called isoradial graph,
that is, agraph embeddablein R? in such away that the vertices of any face
lie on the circumference of some circle of givenradiusr. Seeaso[76, 91].

The theory of SLE will soon constitute a book in its own right,° and
similarly for the theory of the several scaling limits that have now been
proved. These general topics are beyond the scope of the current work. We
restrict ourselves here to the statement and proof of Cardy’s formula for
critical site percolation on the triangular lattice, and we make use of the
accountsto be found in [282, 283]. See also [30, 55, 247].

We consider site percolation on the triangular lattice T, with density
p = % of open (or ‘black’) vertices. It may be proved very much as in
Theorem 5.25 that pe =  for this process (see also Section 5.8), but this

105ee[197, 281].
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fact does not appear to be directly relevant to the material that follows. It
is, rather, the ‘ self-duality’ or ‘self-matching’ property that counts.

Let D (s C) be an open simply connected domain in R?; for simplicity
we shall assume that its boundary 9D is a Jordan curve. Let a, b, ¢ be
distinct points of 9D, taken in anticlockwise order around aD. There exists
a conformal map ¢ from D to the interior of the equilateral triangle T of
C with vertices A = 0, B = 1, C = €7//3, and this ¢ can be extended
to the boundary aD in such away that it becomes a homeomorphism from
D uUaD (respectively, dD) totheclosedtriangle T (respectively, dT). There
exists a unique such ¢ that maps a, b, c to A, B, C, respectively. With ¢
chosen accordingly, the image X = ¢(x) of afourth point x € dD, taken
for exampleonthearcfrombtoc, liesonthearc BC of T (seeFigure5.14).

C=e3=(1 B

¢ T 3X

c A=0 B=1

Figure5.14 The conformal map ¢ isabijection from D to the interior
of T, and extends uniquely to the boundaries.

Thetriangular lattice T isre-scaled to have mesh-size §, and we ask about
the probability Ps(ac <> bx in D) of an open path joining the arc ac to the
arc bx, in an approximation to the intersection (§T) N D of the re-scaled
lattice with D. It is a standard application of the RSW method of the last
section to show that Ps(ac <> bx in D) is uniformly bounded away from
Oand1asé — 0. It thus seems reasonable that this probability should
convergeas$§ — 0, and Cardy’s formula (together with conformality) tells
us the value of the limit.

5.38 Theorem (Cardy’s formula) [66, 266, 267] In the notation intro-
duced above,

(5.39) Ps(ac < bxin D) — |BX| asé — 0.

Some history: In [66], Cardy stated the limit of Ps(ac <> bxin D) in
terms of a hypergeometric function of a certain cross-ratio. His derivation
was based on arguments from conformal field theory. Lennart Carleson
recogni zed the hypergeometric functionin terms of the conformal map from
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arectangleto atriangle, and hewas|led to conjecturethe simpleform (5.39).
The limit was proved in 2001 by Stanislav Smirnov [266, 267]. The proof
utilizes the three-way symmetry of the triangular lattice in a somewhat
mysterious manner.

Cardy’s formula is, in a sense, only the beginning of the story of the
scaling limit of critical two-dimensional percolation. It leads naturally to
afull picture of the scaling limits of open paths, within the context of the
Schramm—Ldwner evolution SLEg. While explicit application is towards
thecalculation of critical exponents[202, 270], SLEg presentsamuch fuller
picture than this. Further details may be found in [64, 65, 267, 282]. The
principal open problem at the time of writing is to extend the scaling limit
beyond the triangular site model to either the bond or site model on another
major lattice.

We prove Theorem 5.38 in the remainder of this section. This will be
donefirst with D = T, the unit equilateral triangle, followed by the general
case. Assumethenthat D = T with T given as above. The verticesof T
aeA=0,B=1C =¢"/3 Wetakes = 1/nand shal later let n — oc.
Consider site percolation on Tp, = (n~1T) N T. We may draw either Ty, or
its dual graph H,, which comprises hexagonswith centres at the vertices of
Tn, illustrated in Figure 1.5. Each vertex of Ty, (or equivalently, each face
of H) is declared black with probability % and white otherwise. For ease
of notation later, wewrite A = A;, B = A, C = A2, where

T = e2ni/3‘
For verticesV, W of T wewrite VW for the arc of the boundary of T from
V toW.

Let z be the centre of a face of T, (or equivaently, z € V(Hy), the
vertex-set of the dual graph Hy). The eventsto be studied are as follows.
Let ET(2) be the event that there exists a self-avoiding black path from
A1A; to AjA 2 that separates z from A A2. Let E](2), E?z(z) be given
similarly after rotating the triangle clockwise by t and 72, respectively. The
event Ei‘(z) isillustrated in Figure 5.15. We write

H'2 =PE]2). j=Lr.1°

5.40 Lemma The functions Hj”, j = 1, 1,2 are uniformly Holder on
V (Hp), in that there exist absolute constants ¢ € (0, co), € € (0, 1) such
that

(541) IHjn(Z) - Hjn(Z/)I <clz—-Z7|, z,Z € V(Hy),
(5.42) 1- Hj”(z) <clz— Al ze V(Hp),
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C=A.

A=A B=A;

Figure5.15 Anillustration of the event E}(2), that z is separated from
Ar A 2 by ablack path joining Az A; and AlAfz.

where Aj in these relations is interpreted as the complex number at the
vertex A.

The domain of the H j” may be extended as follows: the set V (Hy) may
be viewed as the vertex-set of a triangulation of a region dlightly smaller
than T, on each triangle of which H j” may be defined by linear interpolation
between its values at the three vertices. Finaly, the H J-” may be extended
up to the boundary of T in such away that the resulting functions satisfy
(5.41) foralz Z € T,and
(5.43) H'(A) =1, j=1r1 72
Proof. It sufficesto prove (5.41) for small |z— Z'|. Suppose |z—Z| < ﬁ,
say, and let F be the event that there exist both ablack and awhite cycle of
the entire re-scaled triangular lattice T/ n, each of diameter smaller than %1,
and each having both z and Z' in the bounded component of its complement.
If F occurs, then either both or neither of the events Ej”(z), Ej”(z’) occur,

whence
IH"(2) — H'(@)| < 1-P(F).

When zand 7 area‘reasonable’ distance from A;, the white cycle prevents
the occurrence of one of these events without the other. The black cycleis
needed when z, 7' arecloseto A;.
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ThereexistsC > 0 such that we may find log(C/|z— Z|) vertex-disjoint
annuli, each containing z, Z' in their central ‘hole', and each within distance
% of both z and Z' (the definition of annulus precedes Theorem 5.23). By
Theorem 5.23, the chance that no such annulus contains a black (respec-
tively, white) cycleis no greater than

, z— 7|\ 91~
1_ gylouc/iz—z) _ (12=21 ,
1-o0) C

whencel—P(F) < c|z—Z|¢ for suitablec and ¢. Inequality (5.42) follows
similarly with ' = A;. d

It is convenient to work in the space of uniformly Holder functions on
the closed triangle T satisfying (5.41) and (5.42). By the Arzela-Ascoali
theorem (see, for example, [84, Sect. 2.4]), this spaceisrelatively compact.
Therefore, the sequence of triples (H', H;, HI) possesses subsequential
limits in the sense of uniform convergence, and we shall see that any such
limit is of the form (Hy, H., H,2), wherethe H; are harmonic with certain
boundary conditionsand satisfy (5.41) and (5.42). The boundary conditions
guarantee the uniqueness of the Hj, and it will follow that H' — H; as
n — oo.

We shall seein particular that

H.2(2) = %Ilm(Z)l,
the re-scaled imaginary part of z. The values of Hi and H; are found by
rotation. The claim of the theorem will follow by lettingz — X € BC.
Let (Hi, H;, H,2) be a subsequential limit as above. That the H; are
harmonic will follow from the fact that the functions
(5.44) Gi=Hi+H;, +H2 Gp=Hi+1tH; +1%H2,
are analytic, and this analyticity will be implied by Morera’'s theorem on
checking that the contour integrals of G1, G2 around triangles of a certain
form are zero. The integration step amounts to summing the Hj(z) over
certain zand using acancellation property that followsfromthe next lemma.
Let z be the centre of a face of T, with vertices labelled s, S, s3 in

anticlockwise order. Let z1, zp, z3 be the centres of the neighbouring faces,
labelled relative to the s; asin Figure 5.16.

5.45 Lemma Wk have that
P[E](z2) \ E] (2)] = P[E}(22) \ E}(2)] = P[E],(z3) \ E)>(2)].

Before proving this, we introduce the exploration process illustrated
in Figure 5.17. Suppose that all vertices ‘just outside’ the arc A1A,2
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C=A.

A=A B=A;

Figure5.16 Anillustration of theevent E](z1) \ E] (2). Thepathly is
white, and |2, |3 are black.

(respectively, A; A2) of T are black (respectively, white). The explo-
ration path is defined to be the unique path n, on the edges of the dual
(hexagonal) graph, beginning immediately above A, and descending to
A1 A;, and satisfying the following: aswe traverse i, from top to bottom,
the vertex immediately to our left (respectively, right), looking along the
path from A_z, is white (respectively, black). When traversing n, thus,
thereis awhite path on the left and a black path on theright.

Proof. The event E7(z1) \ E(2) occursif and only if there exist digjoint
pathsly, I2, I3 of Ty, such that:

(i) 11 iswhiteand joinss; to A A2,

(ii) 12 isblack and joins s to A1 A, 2,
(iii) 1z isblack and joins sz to A1 A;.
See Figure 5.16 for an explanation of the notation. On this event, the ex-
ploration path nn of Figure 5.17 passes through z, having arrived at z along
the edge (z3, z) of Hy,. Furthermore, up to thetime at which it hits z, it lies
in the region of Hj, between |, andl1. Indeed, we may takel, (respectively,
I1) to be the black path (respectively, white path) of Ty, lying on the right
side (respectively, left side) of n, up to this point.

Conditional on the event above, and with 11 and I> given in terms of 5y,

accordingly, the states of vertices of Ty, lying below |1 U |, are independent
Bernoulli variables. Therefore, the conditional probability of a black path
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A=A B=A;

Figure5.17 The exploration path nn started at the top vertex A > and
stopped when it hits the bottom side A1 A; of the triangle.

I3 satisfying (iii) is the same asthat of awhite path. We make this measure-
preserving change, and then we interchange the colours white and black to
conclude that: Ef(z1) \ E}(2) has the same probability as the event that
there exist digoint pathslq, |2, I3 of Ty, such that:

(i) 11 isblack andjoinss; to A; A2,

(ii) 12 iswhiteand joinssp to A1 A2,
(iii) lzisblack and joins sz to A1 A;.
Thisis precisely theevent E](z2) \ E?(2), and thelemmaisproved. [

We use Morera's theorem in order to show the required analyticity. This
theorem states that: if f : R — C is continuous on the open region R, and
fy f dz = Ofor al closed curves y in R, then f isanalytic. It is standard
(see [252, p. 208]) that it suffices to consider triangles y in R. We may in
fact restrict ourselves to equilateral triangles with one side parallel to the
x-axis. This may be seen either by an approximation argument or by an
argument based on the threefold Cauchy—Riemann equations

of  1af 1 of

5.46 - = —
(5.46) 91 tar 129t

where 3/9) meansthe derivative in the direction of the complex number j.



5.7 Cardy'sFormula 123

5.47 Lemma Let I" be an equilateral triangle contained in the interior of
T with sides parallel to those of T. Then

?5 H{'(z)dz= ?g[Hr”(z)/t] dz+0O(n™°)
r r

= f[H,”Z(Z)/rZ] dz+40(n™),
r
where € is given in Lemma 5.40.

Proof. Every triangular facet of Ty (that is, a triangular union of faces)
points either upwards (in that its horizontal side is at its bottom) or down-
wards. Let I' be an equilateral triangle contained in the interior of T with
sides paralel to those of T, and assume that I points upwards (the same
argument works for downward-pointing triangles). Let I'" be the subgraph
of Ty, lying within T, so that 'y, is atriangular facet of T,,. Let D" be the
set of downward-pointing faces of I'". Let 5 be avector of R? such that: if
z is the centre of aface of Dy, then z + 7 is the centre of a neighbouring
face, thatis, n € {i,it,i72}/(nv/3). Write
hi'(z, n) = P[E}z+ m) \ E]'(2)].
By Lemma 5.45,
HI'(z+n) — H[ (2 = h}(z n) — hi(@z+n, —n)
= h(z, n7) — h}(z+ 0, —n7).
Now,
H(z+ nt) — H'(2) = h}(z, n7) — h}(z+ nT, —n1),
and so thereisacancellationin
(548) 1= > [H{@+m - H@] - Y [H@+nv) - H) (@]
zeD" zeD"

of all terms except those of theformhf(z', —nt) for certain Z' lyingin faces
of Ty, that abut 9T'". Thereare O(n) such Z, and therefore, by Lemma5.40,

5.49 1" < o).
n
Consider the sum
1
=0+l + ?11,).

where | J-” is an abbreviation for the Ij”/n e of (5.48). Theterms of the form

H j” (2) in (5.48) contribute 0 to J", since each is multiplied by

1+7t+ Tz)n_l =0.
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The remaining terms of the form Hj”(z+ n), Hj”(z+ nt) mostly disappear
also, and we areleft only with terms H j”(z’) for certain Z at the centre of the
upwards-pointing faces of T" abutting aT"". For example, the contribution
from Z if itsfaceis at the bottom (but not the corner) of I'" is

1 1
ﬁ[(z +HHNZ) - A+ H@D)] = —E[Hf(z/) — HZ)/x].
When Z' is at the right (respectively, left) edge of I'", we obtain the same
term multiplied by ¢ (respectively, t2). Therefore,
(5.50) yg [H{(2) — HM(2)/r]dz= —J3"+ O(n~€) = O(n™°),
Fn

by (5.49), wherethefirst O(n—¢) term coversthefact that the zin (5.50) isa
continuousrather than discrete variable. SinceI" and I'" differ only around
their boundaries, and the Hjn are uniformly Holder,

(551 f1Hr@ - Hr@y/ldz =0

and, by asimilar argTJment,

(552 $ @ - HL@/7 dz = o)

Thelemmais prov:;d. d

Asremarked after the proof of Lemmab.40, the sequence (H[', H7', H3)
possesses subsequential limits, and it suffices for convergence to show that
all such limitsare equal. Let (H1, H;, H,2) be such a subsequential limit.
By Lemma 5.47, the contour integrals of Hy, H,/t, H,2/7? around any T
areequal. Therefore, the contour integrals of the G; in (5.44) around any I’
equal zero. By Morera's theorem [2, 252], G and G2 are analytic on the
interior of T, and furthermore they may be extended by continuity to the
boundary of T. In particular, G; isanalytic and real-valued, whence G is
aconstant. By (5.42), G1(2) - lasz — 0, whence

Gi=Hi+H;+H2=1 onT.
Therefore, the real part of G, satisfies

(5.53) Re(Gz) = H1 — 3(H + H,2) = 3(3H1 — 1),
and similarly
(5.54) 2Re(Gy/1) =3H, —1, 2Re(Gy/1?) =3H_—1.

Since the H; are the real parts of analytic functions, they are harmonic. It
remainsto verify the relevant boundary conditions, and we will concentrate
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on the function H_2. There are two ways of doing this, of which the first
specifies certain derivatives of the H; along the boundary of T.

By continuity, H,2(C) = 1 and H,2 = 0 on AB. We claim that the
horizontal derivative, dH,2/91, is0 on AC U BC. Once thisis proved, it
followsthat H,2(2) is the unique harmonic function on T satisfying these
boundary conditions, namely the function 2|Im(z)|/+/3. The remaining
claim is proved as follows. Since G is analytic, it satisfies the threefold
Cauchy—Riemann equations (5.46). By (5.53) and (5.54),

oH._ 2 2 190G 2 190G oH1
5.55 —F =-Re[|S5——=)==Re| 55— ) = —.
(555) 0l 3 (rz 31) 3 (‘L’3 Tt ) at

Now, H1 = 0 on BC, and BC has gradient =, whence the right side of
(5.55)1* equalsOon BC. Thesameargument holdson AC with H; replaced
by H;.

Thealternativeisdlightly smpler; see[30]. Forz € T, G2(2) isaconvex
combination of 1, 7, 72, and thus maps T to the complex triangle T’ with
these three vertices. Furthermore, Go maps dT to dT’, and Go(Aj) = |
for j = 1, 7, 2 Since Gy isanalytic on the interior of T, it is conformal,
and there is a unique such conformal map with this boundary behaviour,
namely that composed of a suitable dilation, rotation, and translation of T.
Thisidentifies G2 uniquely, and the functions H; aso by (5.53), (5.54).

This concludes the proof of Cardy’s formula when the domain D is an
equilateral triangle. The proof for general D is essentialy the same, on
noting that a conformal image of a harmonic function is harmonic. First,
we approximate the boundary of D by acycle of the triangular lattice with
mesh §. That G; (= 1) and G, are analytic is proved as before, and hence
the corresponding limit functions H1, H,, H.,2 are each harmonic with ap-
propriate boundary conditions. We now apply conformal invariance. By the
Riemann mapping theorem, there exists a conformal map ¢ from theinside
of D totheinside of T that may be extended uniquely to their boundaries,
and that maps a (respectively, b, c) to A (respectively, B, C). The triple
(Hio¢ ™, Hy 0971, H.2 0 ¢~1) solvesthe corresponding problemon T.
We have seen that there is a unique such triple on T, given as above, and
equation (5.39) is proved.

11\We need also that G, may be continued analytically beyond the boundary of T; see
[283].
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5.8 The Critical Probability via the Sharp-Threshold Theorem
We use the sharp-threshold Theorem 4.68 to prove the following.

5.56 Theorem [284] The critical probability of site percolation on the
triangular lattice satisfies pc = 3. Furthermore, 6(3) = 0.

This can be proved in very much the same manner as Theorem 5.25, but
we choose hereto use the sharp-threshol d theorem. Thistheorem providesa
convenient ‘ package’ for obtaining the steepness of abox-crossing probabil-
ity, viewed asafunction of p. Other means, more elementary and discovered
earlier, may be used instead. These include Kesten's original proof [186]
for bond percolation on the square lattice, Russo’s ‘ approximate zero—one
law’ [256], and, most recently, the proof of Smirnov presented in Section
5.6. Sharp-thresholdswerefirst usedin [53] in the current context, and | ater
in[54, 121, 122]. The present proof may appear somewhat shorter than that
of [54].

Proof. Let 6(p) denote the percolation probability on the triangular lattice
T. We have that 9(%) = 0, just as in the proof of the corresponding lower
bound for the critical probability pe(1L?) in Theorem 5.25, and so we say no

more about this. Therefore, pc > 3.

Two steps remain. First, we shall use the sharp-threshold theorem to
deducethat, when p > % long rectanglesaretraversed with high probability
in the long direction. Then we shall use that fact, within ablock argument,
to show that 0(p) > 0.

Each vertex is declared black (or open) with probability p, and white
otherwise. In the notation introduced just prior to Lemma5.20, let H, =
Hien.ny3 D€ the event that the rectangle Ry = Rygq, , /3 is traversed by a
black path in the long direction. By Lemmas 5.20-5.22, there existst > 0
such that

(5.57) ]P’%(Hn) > 1, n>1

Let x be avertex of Ry, and write I p(x) for the influence of x on the
event Hyp under the measure Pp; see (4.27). Now, x is pivotal for Hy if and
only if:

(i) theleft and right sides of R, are connected by a black path when x is
black,
(i) thetop and bottom sides of R, are connected by awhite path when x
iswhite.
Thiseventisillustrated in Figure 5.18.
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Figure 5.18 The vertex x is pivotal for Hp if and only if there is a
left—right black crossing of Ry when x is black, and a top—bottom white
crossing when x iswhite.

Let 3 < p < 3, say. By (i),
(1—p)ln,p(X) < P1_p(rad(Cx) = n),

where
rad(Cx) = max{ly — x| : X <> y}

is the radius of the cluster at x. (Here, |z| denotes the graph-theoretic
distance from z to the origin.) Since p > 2

21
P1_p(rad(Cx) = n) < nn,
where
(5.58) = P%(rad(co) >n)— 0 asn — oo,
by the fact that 6(3) = 0.
By (5.57) and Theorem 4.68, for large n,

Py(Hn) = ct(1=Pp(Hn) log[l/@Bm)],  pel3, 31,
which may be integrated to give

(659  1-Fp(Hy)<@-0)Br]" P2,  pe[d.
Let p > 3. By (5.58)«(5.59),
(5.60) Pp(Hn) — 1 asn — oo.

We turn to the required block argument, which differs from that of Sec-
tion5.6inthat weutilize no explicit estimate of P, (Hp). Roughly speaking,
copies of the rectangle R, are distributed about T in such away that each
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Figure5.19 Each block is ‘red’ with probability pon. Thereis an infi-
nite cluster of red blocks with strictly positive probability, and any such
cluster contains an infinite open cluster of the original lattice.

copy corresponds to an edge of a re-scaled copy of T. The detailed con-
struction of this‘renormalized block lattice’ isomitted, and we shall rely on
Figure 5.19 for explanation. The ‘blocks’ (that is, the copiesof R,) arein
one-one correspondence with the edges of T, and thus we may label them
as Be, e € Er. Each block intersects just ten other blocks.

Next we define a ‘block event’, that is, a certain event defined on the
configuration within a block. The first requirement for this event is that
the block be traversed by an open path in the long direction. We shall
require some further pathsin order that the union of two intersecting blocks
contains a single component that traverses each block in itslong direction.
In specific, we require open pathstraversing the block in the short direction,
within each of the two extremal 3n x n+/3 regionsof the block. A block is
designated red if the above three paths exist within it. See Figure 5.20. If
two red blocks, Be and B say, are such that e and f share a vertex, then
their union possesses a single open component containing paths traversing
each of Be and Bs.

If the block Ry fails to be red, then one or more of the blocksin Figure
5.20 is not traversed by an open path in the long direction. Therefore,
pn = Pp(Ry isred) satisfies

(5.61) 1—pn<3[1-Pp(Hn)] =0 asn — oo,
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Figure 520 A block is declared ‘red’ if it contains open paths that:
(i) traverseitinthelong direction, and (ii) traverseit in the short direction
withinthe3n x n+/3regionat each end of theblock. Theshorter crossings
exist if theinclined blocks are traversed in the long direction.

by (5.60).

Thestatesof different blocksare dependent random variabl es, but disjoint
blocks have independent states. We shall count pathsinthe dual, asin (3.8),
to obtain that there exists, with strictly positive probability, an infinite path
in T comprising edges e for which Bg isred. Thisimplies the existence of
an infinite open cluster in the original lattice.

If the red cluster at the origin of the block lattice is finite, there exists a
path in the dual lattice (a copy of the hexagonal lattice) that crosses only
non-red blocks (as in Figure 3.1). Within any dual path of length m, there
exists a set of [m/12] or more edges such that the corresponding blocks
are pairwise digoint. Therefore, the probability that the origin of the block
lattice liesin afinite cluster only of red blocksis no greater than

o0
> 3"~ pn) ™

m=6

By (5.61), thismay be made smaller than % by choosing n sufficiently large.
Therefore, 6(p) > Ofor p > % and the theorem is proved. d
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5.9 Exercises

5.1 [41] Consider bond percolation on 1.2 with p = % and define the radius
of the open cluster C at the origin by rad(C) = max{n : 0 <> 3[—n, n]?}. Use
the BK inequality to show that

1
P%(rad(C) >n) > NGR

5.2 Let Dy, be the largest diameter (in the sense of graph theory) of the open
clusters of bond percolation on Z9 that intersect the box [—n, n]9. Show, when
p < Pc, that Dpn/logn — a(p) amost surely, for some «(p) € (0, co).

5.3 Consider bond percolation on 1.2 with density p. Let T, bethebox [0, n]2
with periodic boundary conditions, that is, identify any pair (u, v), (X, y) satis-
fying: eitheru=0,x =n,v=y,0orv =0,y =n,u = x. Forgivenm < n, let
A be the event that there exists some translate of [0, m]2 in Ty, that is crossed by
an open path either from top to bottom, or from left to right. Using the theory of
influence or otherwise, show that

1 -1
1-Pp(A) < [@n2)* P22l mi v, P>

5.4 Consider site percolation on the triangular lattice T, and let A (n) be the
ball of radius n centred at the origin. Use the RSW theorem to show that

P1(0 < dA(N)) <cn™ ¢, n>1,
P

for constantsc, o > 0.
Using thecoupling of Section 3.3 or otherwise, deducethat 6 (p) < c’(p—%)ﬁ
for p > % and constants ¢’, g > 0.

5.5 By adapting the arguments of Section 5.5 or otherwise, develop an RSW
theory for bond percolation on Z2.

5.6 Let D be an open simply connected domain in R? whose boundary 9D
isaJordan curve. Let a, b, X, ¢ be distinct points on 9D taken in anticlockwise
order. Let Ps(ac <> bx) bethe probability that, in site percolation on there-scaled
triangular lattice ST with density % there exists an open path within D U 9D
from some point on the arc ac to some point on bx. Show that Ps(ac <> bx) is
uniformly bounded away fromOand 1 as§ — O.

57 Let f : D — C, where D is an open simply connected region of the
complex plane. If f is C1 and satisfies the threefold Cauchy—Riemann equations
(5.46), show that f isanalytic.

5.8 Ergodicity of product measure. A trandation t of L9 induces atranslation
of @ = {0, 1}]Ed given by 7(w)(e) = w(r ~1(e)). Let r beatrandation other than
the identity, and suppose that X : 2 — R isinvariant under . Show that X is
Pp-almost-surely constant.



6

Contact Process

The contact process is a model for the spread of disease about the
vertices of a graph. It has a property of duality that arises through
timereversal. For avertex-transitive graph such asthe d-dimensional
lattice, thereisamultiplicity of invariant measuresif and only if there
is a strictly positive probability of an unbounded path of infection
in space-time from a given vertex. This observation permits the
use of methodology developed for the study of oriented percolation.
When the underlying graph is a tree, the model has three distinct
phases, termed extinction, weak survival, and strong survival. The
continuous-time percolation model differs from the contact process
in that the time axis is undirected.

6.1 Stochastic Epidemics

One of the simplest stochastic models for the spread of an epidemic is as
follows. Consider a population of constant size N + 1 that is suffering
from an infectious disease. We can model the spread of the disease as a
Markov process. Let X(t) be the number of healthy individuals at time t
and suppose that X(0) = N. We assume that, if X(t) = n, the probability
of anew infection during a short time-interval (t, t 4+ h) is proportional to
the number of possible encounters between ill folk and healthy folk. That
is,

P(X(t+h)=n—1|X(@t) =n)=An(N+1-nh+oth) ash]O0.

In thesimplest situation, we assumethat nobody recovers. Itiseasy to show
that

N
G(s, t) = Es*V) = Zs”]P’(X(t) =n)
n=0

G G 9%G
— =A1l-95(N—= -s—
ot ds 3s?

satisfies
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with G(s,0) = sN. There is no simple way of solving this equation,
athough alot of information is available about approximate solutions.

This epidemic model is over-simplistic through the assumptions that:
— the processis Markovian,
— there are only two states and no recovery,

— thereistotal mixing, inthat therate of spreadisproportional to the product
of the numbers of infectives and susceptibles.

In ‘practice’ (computer viruses apart), an individual infects only othersin
itsimmediate (bounded) geographical vicinity. The introduction of spatial
relationships into such a model adds a major complication, and leads to
the so-called ‘contact model’ of Harris [165]. In the contact model, the
membersof the popul ation inhabit the vertex-set of agiven graph. Infection
takes place between neighbours, and recovery is permitted.

Let G = (V, E) be a (finite or infinite) graph with bounded vertex-
degrees. The contact model on G is a continuous-time Markov process
on the state space © = {0, 1}V. A state is therefore a 0/1 vector & =
(E(X) : x € V), where 0 represents the healthy state and 1 the ill state.
There are two parameters. an infection rate A and arecovery rate §. The
transition rates are given informally as follows. Suppose that the state at
timetis& € X,andlet x € V. Then

P(t+h(x) =01 & =§) = sh +o(h), if&(x) =1,
PGn(¥) =115 =§) = AN:(Oh+o(h),  if&(x) =0,

where N (x) is the number of neighbours of x that are infected in &,

Ne () = [{y e Vi y ~ x, &(y) =1}].

Thus, each ill vertex recovers at rate §, and in the meantime infects any
given neighbour at rate A.

Care is needed when specifying a Markov process through its transition
rates, especially when G isinfinite, sincethen X isuncountable. Weshall see
in the next section that the contact model can be constructed viaa countably
infinite collection of Poisson processes. More genera approaches to the
construction of interacting particle processes are described in [206] and
summarized in Section 10.1.

The basic properties of the contact model were derived in [165]. More
complete treatments are found in [206, 208].
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6.2 Coupling and Duality

The contact model can be constructed in terms of families of Poisson pro-
cesses. Thisrepresentation is both informative and useful for what follows.
Foreachx € V,wedraw a‘time-line [0, co). Onthetime-line {x} x[0, co)
we place a Poisson point process Dy with intensity §. For each ordered
pair X, y € V of neighbours, we let By y be a Poisson point process with
intensity A. These processes are taken to be independent of each other, and
we can assume without loss of generality that the times occurring in the
processes are distinct. Points in each Dy are called ‘points of cure’, and
pointsin By y are called ‘arrows of infection’ from x to y. The appropriate
probability measureis denoted by P, 5.

Thesituationisillustrated in Figure 6.1 with G = IL. Let (X, S), (y, 1) €
V x [0, o) wheres < t. Wedefine a(directed) path from (x, s) to (y, t) to
be a sequence (X, 8) = (Xo. to), (Xo, t1), (X1, t1), (X1, 12), . . ., (Xn, thy1) =
(y,t)withtp <t; <--- <tps1, Suchthat:

(i) eachinterval {x;} x [ti, ti+-1] contains no points of Dy,
(i) tt e By_,x fori=21,2,...,n.
We write (X, s) — (Y, t) if there exists such a directed path.

We think of apoint (x, u) of cure as meaning that an infection at x just
prior to timeu iscured at timeu. An arrow of infection from x to y at time
u meansthat any infection at x just prior to u ispassed at timeu to y. Thus,
(X,8) — (y,t) means. yisinfected at timet if x isinfected at time s.

Let € ¥ = {0,1}V, and define & € X, t € [0, o0), by &(y) = 1if
and only if there exists x € V suchthat £&p(x) = 1 and (x, 0) — (y,t). It
isclear that (& : t € [0, 00)) isa contact model with parameters A and §.

The above ‘graphical representation’ has several uses. First, it is a geo-
metrical picture of the spread of infection providing a coupling of contact
models with all possible initial configurations &. Secondly, it provides
couplings of contact models with different values of A and §, as follows.
Let A1 < A2 and 81 > &2, and consider the above representation with
(A, 8) = (A2, 81). If we remove each point of cure with probability §2/81
(respectively, each arrow of infection with probability A1/12), we obtain
arepresentation of a contact model with parameters (A2, §2) (respectively,
parameters (A1, §1)). We obtain thus that the passage of infection is non-
increasing in § and non-decreasingin X.

Thereisanatural one—one correspondence between X and the power set
2V of the vertex-set, given by £ < 1z = {x € V : &(x) = 1}. We shall
frequently regard vectors ¢ assets l;. For & € = and A C V, we write &
for the value of the contact model at timet starting at time O from the set A
of infectives. It isimmediate by the rules of the above coupling that:
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Figure6.1 The so-called ‘graphical representation’ of the contact pro-
cessonthelinelL. Thehorizontal linerepresents’ space’, and the vertical
line above apoint x isthe time-line at X. The marks o are the points of
cure, and the arrows are the arrows of infection. Suppose we are told
that, at time 0, the origin is the unique infected point. In this picture, the
initial infective is marked 0, and the bold lines indicate the portions of
space-time that are infected.

(@ the coupling is monotonein that éA € &B if A C B,
(b) moreover, the coupling is additive in that £AVB = A U &B.

6.1 Theorem (Duality relation) For A, B C V,
(62) Prs(E N B # 2) =P, 55 N A+ 2).
Equation (6.2) can be written in the form
PLs(6 =00n B) =P (& = 0on A),

wherethe superscriptsindicatetheinitial states. Thismay betermed ‘weak’
dudlity, in that it involves probabilities. There is aso a ‘strong’ dual-
ity, involving configurations of the graphical representation, that may be
expressed informally as follows. Suppose we reverse the direction of time
in the ‘primary’ graphical representation, and also the directions of the
arrows. The law of the resulting processis the same asthat of the original.
Furthermore, any path of infection in the primary process, after reversal,
becomes a path of infection in the reversed process.

Proof. Theevent ontheleft sideof (6.2) istheunionovera € Aandb € B
of the event that (a, 0) — (b, t). If we reverse the direction of time and
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the directions of the arrows of infection, the probability of this event is
unchanged and it corresponds now to the event on the right side of (6.2). [

6.3 Invariant Measures and Percolation

Inthisand the next section, we consider the contact processé = (& it > 0)
on the d-dimensional cubic lattice 1.9 with d > 1. Thus, & isa Markov
process on the state space = = {0, 1}Zd. Let £ be the set of invariant
measures of &, that is, the set of probability measures 1 on ¥ such that
uwS = u, where S = (§ : t > 0) is the transition semigroup of the
proc&ss.l Itiselementary that { isaconvex set of measures. if ¢1, ¢2 € 4,
then a1 + (1 — a)¢2 € 4 for o € [0, 1]. Therefore, 4 is determined by
knowledge of the set f of extremal invariant measures.

The partial order on X inducesapartial order on probability measureson
¥ inthe usual way (as in Section 4.1), and we denote this by <. It turns
out that J possesses a“‘minimal’ and a‘maximal’ element with respect to
the partial order <g. The minimal measure (or ‘lower invariant measure’)
is the measure, denoted §, that places probability 1 on the empty set. Itis
called ‘lower’ because §o <« u for all measures i on X.

The maximal measure (or ‘upper invariant measure’) is constructed as
the weak limit of the contact model beginning with the set £o = Z9. Let us
denote the law of sszd. Since gszd c 74,

HoSs = Hs st [O-
By the monotonicity of the coupling,

Hstt = 0SS = 1sS <g¢ H0S = ut,
whence the limit
lim e (F)
t—oo

exists for any bounded increasing function f : ¥ — R. Itisagenera
result of measuretheory that the space of probability measureson acompact
sample spaceis relatively compact (see [45, Sect. 1.6] and [84, Sect. 9.3]).
The space (X, ) isindeed compact, whence the weak limit

V= Ilim put
t—o0
exists. Sincev isalimiting measure for the Markov process, it isinvariant,

and itis called the upper invariant measure. It is clear by the method of its
construction that ¥ is invariant under the action of any translation of LLd.

1A discussion of thetransition semigroup and itsrelationship to invariant measurescan
befound in Section 10.1. The semigroup Sis Feller; see the footnote in Section 10.1.
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6.3 Proposition Wehavethat §5 <g v <q Vv for everyv € {.

Proof. Letv € {. Thefirstinequality istrivial. Clearly, v <g o, Since o
isconcentrated on the maximal set Z9. By themonotonicity of the coupling,
V=1§ <g¢ H0S = ut, t>0.

Lett — oo toobtainthat v <4 V. O

By Proposition 6.3, there exists aunique invariant measure if and only if
vV = 8. Inorder tounderstand when thisisso, wedeviatebriefly to consider
a percolation-type question. Suppose we begin the process at a singleton,

the origin say, and ask whether the probability of survival for al time is
strictly positive. That is, we work with the percolation-type probability

(6.4) O, 8) =Py s # oforalt > 0),

wheregt0 = gt{O}. By are-scaling of time, wehaved (i, §) = 6(A»/8, 1), and

we assume henceforth in his section that § = 1 and write P, = Py, 1.

6.5 Proposition The density of ill verticesunder v equals6(1). That is,
o(1) =v(lo € T :ox = 1)), x e 79.

Proof. Theevent {£2 N9 # @} isnon-increasingin T, whence
000 = lim P, (9N 278 # o).
T—oo
By Proposition 6.1,
d
Pr(EY N 20 # 2) = PyET (0) = 1),
and, by weak convergence,
d _
PEF (00=1) > V(o e T:00=1}).
The claim follows by the trandlation-invariance of v. a
We define the critical value of the process by
The function 6 (1) is non-decreasing, so that

: - 0 |f )\, < )\,C,
0(A) .
>0 ifA>Ac

By Proposition 6.5,

[ =684 IfA <A,

v{ £85 ifA> Ac
The case . = Ac is delicate, especialy when d > 2, and it was shown
in [42], using a slab argument related to that of the proof of Theorem 5.9,
that 6(Ac) = Oford > 1. We arrive at the following characterization of
uniqueness of extremal invariant measures.
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6.6 Theorem [42] Consider the contact model on L9 with d > 1. The set
J of invariant measures comprises a singleton if and only if A < Ac. That
is, . = {6z} ifandonlyif A < Ac.

There are further consequences of the arguments of [42] of which we
mention one. The geometrical constructions of [42] enable a proof of the
equivalent for the contact model of Theorem 5.9 (for percolation). This
in turn completes the proof, initiated in [95, 99], that the set of extremal
invariant measures of the contact model on LY isexactly 4 = {85, V}. See
[97] aso.

6.4 TheCritical Value

This section is devoted to the following theorem.? Recall that the rate of
cureistakenass = 1.

6.7 Theorem [165] For d > 1, we havethat (2d) =t < A¢(d) < oo.

The lower bound is easily improved to A¢(d) > (2d — 1)~1. The upper
bound may be refined to A¢(d) < d~1Ac(1) < oo, asindicated in Exercise
6.2. See the accounts of the contact model in the two volumes [206, 208]
by Tom Liggett. The asymptotic behaviour of A.(d) asd — oo isgiven by
the lace expansion; see [265].

Proof. The lower bound is obtained by a random walk argument which is
sketched here.® Theinteger-valued process Ny = |£0| decreasesby 1 at rate
N;. Itincreasesby 1atrate A Ti, where T; isthenumber of edgesof L9 exactly
one of whose endvertices x satisfies gto(x) = 1. Now, Tt < 2dN;, and so
thejump-chain of N; isbounded above by anearest-neighbour random walk
R=(Ry:n>0)0n{0,1,2,...}with absorption at 0, and which moves
to the right with probability

o 2da
=1 2dn
at each step. It is elementary that

P(R, =O0forsomen>0)=1 if p<3

and it follows that

1
o) =0 if 1< _—.
) I =24

2There are physical reasons to suppose that A¢(1) = 1.6494. . . ; see the discussion of
the so-called reggeon spin model in [123, 206].
3The details are left as an exercise.
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Figure6.2 The points (m, nA) are marked for even values of m + n.
A point is‘open’ if there are arrows of infection immediately following,
and no point of cure just prior. The open points form a site percolation
process on the rotated positive quadrant of the square lattice.

Just asin the case of percolation (Theorem 3.2) the upper bound on A
requires more work. Since I may be viewed as a subgraph of L9, it is
elementary that Ac(d) < Ac(1). We show by a discretization argument that
Ac(l) < 00. Let A > 0, and let m, n € Z be such that m + n is even. We
shall define independent random variables Xm n taking the values 0 and 1.
We declare Xm,n = 1, and call (m, n) open, if and only if, in the graphical
representation of the contact model, the following two events occur:

() thereisno point of cureintheinterval {m} x ((n — 1A, (n+ 1A],
(b) thereexist left- and right-pointing arrows of infection from theinterval
{m} x (nA, (n+ DA].
(See Figure 6.2.) It isimmediate that the Xm n are independent, and

p=pA)=P,(Xmn=1) = e_ZA(l _ e—)»A)Z.
We choose A to maximize p(A), which isto say that

and
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Figure6.3 Part of the binary tree T.

Consider the Xm n as giving rise to a directed site percolation model on
the first quadrant of a rotated copy of 2. It can be seen that 0, > By,
where B, isthe set of verticesof theform (m, n) that are reached from (0, 0)
along open paths of the percolation process. Now,

P.(IBnl > 1fordln>0) >0 if p> ﬁgite’
where ffjte isthecritical probability of the percolation model. By (6.8),

; 3 =site
Since pg'® < 1,* thefinal inequality isvalid for sufficiently large 2, and we
deducethat Ac(1) < oo. O

6.5 The Contact Model on a Tree

Letd > 2 and let Ty be the homogeneous (infinite) labelled tree in which
every vertex has degree d + 1, asillustrated in Figure 6.3. We identify a
distinguished vertex, caled the origin and denoted 0. Let & = (& : t > 0)
be acontact model on Ty with infectionrate A and initial state £y = {0}, and
takes = 1.
With
6(r) = Py (& # @ fordl t),

4Exercise.
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the processis said to dieout if 6(A) = O, and to surviveif (1) > 0. Itis
said to survive strongly if

P;.(£(0) = 1 for unbounded timest) > O,

and to survive weakly if it survivesbut does not survive strongly. A process
that survivesweakly hasthe property that (with strictly positive probability)
the illness exists for al time, but that (almost surely) there is a final time
at which any given vertex is infected. It can be shown that weak survival
never occurs on a lattice L9; see [208]. The picture is quite different on a
tree.

Thepropertiesof survival and strong survival areevidently non-decreasing
in A, whence there exist values A¢, Ags Satisfying A¢ < Ags such that the
process:

diesout if A < Ag,
survivesweakly if Ac < A < Ass,
survivesstrongly  if A > Ass.
When is it the case that Ac < Ass? The next theorem indicates that this
occurson Ty if d > 6. It was further proved in [238] that strict inequality
holds whenever d > 3, and this was extended in [207] to d > 2. See[208,

Chap. 1.4] and the references therein. Since Ty contains a copy of L, we
havethat Ass < 0.

6.9 Theorem [238] For the contact model on thetree Tq withd > 2,

1 1
< Ass < OCO.

d-1" 2d~

Proof. The lower bound for A¢ is proved as in Theorem 6.7, and we turn
to the upper bound. Let p € (0, 1), and v, (A) = p!A for any finite subset
A of the vertex-set V of Tq. We shall observe the process v, (). Let
gAt) = EfNv,(&)). Itisan easy calculation that

Vo (A)
0

—— < Ac =<

d+1

610 g*0 = 1A () 4 ANat(pv, ()
+ (1 —[Alt = ANaDV,(A) + o(D),

ast | 0, where
Na=[{(x,y):x e A y¢A}

is the number of edges of Ty with exactly one endvertex in A. Now,

(6.11) Na = (d+ DIA - 2(A - 1),
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since there are no more than | A| — 1 edges having both endverticesin A.
By (6.10),

d a
(6.12) a9 ®

_ [Al
=A-p)|— —ANa ) v, (A
t=0 o

A
(1= p)vy(A) [%'(1 —Ap(d—=1)) — 2x}

IA

< -2(1-pvp(A) =0,
whenever
(6.13) Ap(d—1) > 1.
Assume that (6.13) holds. By (6.12) and the Markov property,
d d
14 —a?u) = EA [ Zgbu
(6.14) g0 W=E; (dtg ® tz()) <0,

implying that g(u) is non-increasing in u.
With A = {0}, we havethat g(0) = p < 1, and therefore

lim g(t) < p.
t—o0

Ontheother hand, if the processdiesout, then (almost surely) & = & for all
larget, so that, by the bounded convergence theorm, g(t) — 1ast — oo.
From this contradiction, we deducethat the process surviveswhenever there
exists p € (0, 1) such that (6.13) holds. Therefore, (d — D)Ac < 1.
Turning to the lower bound, let o € (0, 1) once again. We draw the tree
in the manner of Figure 6.4, and welet | (x) be the generation number of the
vertex X relative to O in this representation. For afinite subset A of V, let

wy(A) = o™,
XeA

with the convention that an empty summation equals 0.
Asin (6.12), hA(t) = ENw), (&)) satisfies

d
=0 xeA yeV: y~x,
yEA
< —w,(A+1Y p®dp+ph
XeA
= do + 20"t = Dw,(A).
Let
1 1
6.16 =—, A< —0,
(6.16) r=5 Wi
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Figure6.4 Thebinary tree T» ‘suspended’ from agiven doubly infinite
path, with the generation numbers as marked.

sothat Adp + 1p~1 — 1 < 0. By (6.15) and time-homogeneity, w, (&) isa
positive supermartingale. By the martingal e convergencetheorem, thelimit

(6.17) M= t|—|>ncjo wp(é:t),

exists ]P’f—al most surely. See[148, Sect. 12.3] for an account of the conver-
gence of martingales.

Ontheevent | = {&(0) = 1 for unbounded timest}, the process w, (&)
changesits value (almost surely) by p° = 1 on an unbounded set of times
t, in contradiction of (6.17). Therefore, P2(1) = 0, and the process does
not survive strongly under (6.16). The theorem is proved. O

6.6 Space-Time Percolation

The percolation models of Chapters 2 and 5 are discrete in that they inhabit
adiscrete graph G = (V, E). There are avariety of continuum models of
interest (see [131] for a summary), of which we distinguish the continuum
model on V x R. We can consider this as a contact model with undirected
time. We will encounter the related continuum random-cluster model in
Chapter 9, together with its application to the quantum Ising model.

Let G = (V, E) beafinite graph. The percolation model of this section
inhabitsthe space V x R, which werefer to as space-time, and we consider
V x R asobtained by attachinga‘time-line’ (—oo, co) toeachvertexx € V.
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Let A,§ € (0,00). The continuum percolation model on V x R is
constructed viaprocessesof ‘ cuts’ and‘ bridges' asfollows. Foreachx € V,
we select a Poisson process Dy of pointsin {x} x R with intensity §; the
processes{Dy : x € V} areindependent, and the pointsinthe Dy aretermed
‘cuts’. Foreache = (X, y) € E, weselect aPoisson process Be of pointsin
{e} x Rwithintensity A; the processes{ B¢ : € € E} areindependent of each
other and of the Dy. Let P, s denote the probability measure associated
with the family of such Poisson processesindexed by V U E.

Foreache = (x,y) € E and (e, t) € B, wethink of (e, t) as an edge
joining theendpoints(x, t) and (y, t), andwerefer tothisedgeasa'bridge'.
For (x,s), (Y,t) € V x R, wewrite (X, S) <> (Y, t) if there existsa path
with endpoints (X, S), (Y, t) suchthat: = isaunion of cut-free sub-intervals
of V x Randbridges. For A, A CV x R, wewrite A < A if thereexist
aec Aandb e A suchthata < b.

For (x,8) € V x R, let Cy s be the set of all points (y, t) such that
(X, 8) < (Y, t). TheclustersCy s werestudiedin [43], wherethecase G =
79 was considered in some detail. Let 0 denotethe origin (0, 0) € Z9 x R,
and let C = Cg denote the cluster at the origin. Noting that C isaunion of
line segments, we write |C| for its Lebesgue measure. The radius rad(C)
of C isgiven by

rad(C) = sup{l|x|| + It| : (x,t) € C},

where ||x|| = sup; |X;| denotes the supremum norm on A
The critical point of the processis defined by

Ac(8) = sup{r : 6(x, 8) = 0},

where
O(r,8) =P 5(|C| = 00).

It is immediate by re-scaling time that 6(A, §) = 6(A/8, 1), and we shall
use the abbreviations Ac = A¢(1) and 8 (L) = 6(A, 1).

6.18 Theorem [43] Let G = L9 whered > 1, and consider continuum
percolationon LY x R.

(@) Letx,d € (0,00). Thereexist y, v satisfying y, v > 0for /8 < Ac
such that

P, s(Cl =k <e "k k>0,
P;.s(rad(C) > k) < ek, k> 0.
(b) Whend = 1, A = 1and 6(%c) = O.
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Thereisanatural duality in 141 dimensions(that is, when theunderlying
graphisthelinelL), and it iseasily seenin this case that the processis self-
dual when A = §. Part (b) identifies this self-dual point as the critical
point. For general d > 1, the continuum percolation model onL¢ x R has
exponential decay of connectivity when A/§ < Ac. The proof, which is
omitted, uses an adaptation to the continuum of the methods used for Ld+1,
Theorem 6.18 will be useful for the study of the quantum Ising model in
Section 9.4.

There has been considerable interest in the behaviour of the continuum
percolation model on a graph G when the environment is itself chosen
at random, that is, when we take the A = A¢ and § = 8¢ to be random
variables. More precisely, suppose that the Poisson process of cuts at a
vertex X € V has some intensity 8y, and that of bridges parallel to the
edgee = (X, y) € E hassome intensity A.. Suppose further that the §y,
X € V, are independent, identically distributed random variables, and the
Ae, € € E dso. Write A and A for independent random variables having
the respective distributions, and P for the probability measure governing
the environment. [As before, P, s denotes the measure associated with the
percolation model in the given environment. The above use of the letters
A, A to denote random variables is temporary only in this volume] The
problem of understanding the behaviour of the system is now much harder,
because of the fluctuations in the intensities about G.

If thereexist A/, 8’ € (0, oo) suchthat A’/8’ < Ac and
PA<AM)=PA>§)=1,

then the process is amost surely dominated by the subcritical percolation
process with parameters A/, §’, whence there is (almost surely) exponential
decay in the sense of Theorem 6.18(a). Thiscan fail in an interesting way if
there is no such almost-sure domination, in that (under certain conditions)
we can prove exponential decay in the space direction but only a weaker
decay in the time direction. The problem arises since there will generally
exist regions of space that are favourable to the existence of large clusters,
and other regions that are unfavourable. In afavourable region, there may
be unnaturally long connections between two points with similar valuesfor
their time coordinates.

For (x,s), (y,t) € Z9 x Randq > 1, we define

8q(x, 83y, t) = max{|x — yl|, [log(L + s — t)]}.
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6.19 Theorem [189, 190] Let G = L9, whered > 1. Suppose that
K =max | P([log(1 + A)I¥). P(llogd + A5 < oo,

for someB > 2d%(1++/1+d=1+(2d)~1). ThereexistsQ = Q(d, ) > 1
such that the following holds. For q € [1, Q) and m > O, there exists
e=¢(d, B, K,mq) >0andn=n(d,pB, q) > 0suchthat: if

P([log+ a/an]’) <e.

there exist identically distributed randomvariables Dy € L7(P), x € 74,
such that

Prs((X,9) < (y,1)) < exp[—méq(x,s; ¥, )] if q(X,s;y,t) > Dy,
for (x,9), (y,1) € Z9 x R.

This version of the theorem of Klein can be found with explanation in
[145]. Itis proved by aso-called multiscale analysis.

The contact process also may inhabit a random environment in which
theinfection rates A y and curerates 6x are independent random variables.
Very much the same questions may be posed as for disordered percolation.
Thereisin addition a variety of modelsin physics and applied probability
for which the natural random environment is exactly of the above type. A
brief survey of directed modelswith long-range dependency may be found
with referencesin [132].

6.7 Exercises

6.1 Finda < 1suchthat the critical probability of oriented site percolation on
1.2 satisfies pgt€ < a.
6.2 Letd > 2, andlet IT : Z9 — 7 be given by

d
TI(XL X2, .o Xd) = > X;.
i=1

Let (At : t > 0) denote a contact process on 79 with parameter A and starting
at the origin. Show that A may be coupled with a contact process C on Z with
parameter Ad and starting at the origin, in such away that IT(A¢) 2 C; for al t.
Deduce that the critical point Ac(d) of the contact model on LY satisfies

ho(d) < d71ac(D).

6.3 [43] Consider unoriented space-time percolation on Z x R, with bridges
a rate A and cuts at rate §. By adapting the corresponding argument for bond
percolation on 1.2, or otherwise, show that the percolation probability 6(x, §)
satisfiesf(n, L) =0for A > O.
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Gibbs States

A positive probability measure on afinite product may be decomposed
into factorsindexed by the cliques of its dependency graph. Closely
related to this is the well known fact that a positive measure is a
spatial Markov field on a graph G if and only if it is a Gibbs state.
Thelsing and Potts models are introduced, and the n-vector model is
mentioned.

7.1 Dependency Graphs

Let X = (X3, X2, ..., Xp) be afamily of random variables on a given
probability space. Fori,j € V = {1,2,...,n} withi # j, we write
i L jif: conditional on (X : k # i, j), the random variables X; and X;
are independent. The relation L is thus symmetric, and it givesrise to a
graph G with vertex-set V and edge-set E = {{i, j) : i £ ]}, caled the
dependency graph of X (or of its law). We shall see that the law of X may
be expressed as a product over terms corresponding to complete subgraphs
of G.

A complete subgraph of G is called a clique, and we write X for the set
of all cliquesof G. For notational simplicity later, we designate the empty
subset of V asaclique, and thus @ € K. A cliqueis maximal if no strict
superset isaclique, and we write M for the set of maximal cliques of G.

We assumefor simplicity that the X; take valuesin some countable subset
Sof therealsR. Thelaw of X givesrise to a probability mass function =
on S" given by

m(X) =P(X; = x fori e V), X = (X1, X2, ..., Xn) € S".
It is easily seen by the definition of independencethati L j if and only if
7 may be factorized in the form
(7.1) m(x) = g(xi, U)h(xj, U), xe S,
for some functions g and h, whereU = (x¢ : k #1i, j). For K € X and
x € S, wewritexkx = (Xj ;i € K). Wecal = positiveif 7 (x) > 0for all
x e S
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Hereis the main result of the section.

7.2 Theorem Let 7 be a positive probability mass function on S". There
exist functions fk : SK — [0, 00), K € M, such that

(7.3) )= ] fkxx). xe S
KeM

In the simplest non-trivial example, let usassumethati L j whenever
li —j| > 2. The maximal cliques of the dependency graph are the pairs
{i, i + 1}, and the mass function = may be expressed in the form

n-1
700 =[] ik, xi+0),  xeS,
i=1

so that X isaMarkov chain, whatever the direction of time.

Proof. Leti, j € V,i # j. A representation of 7 in the form

(7.4) 7<) =]]F

issaid to separate the pair (i, j) if every F; isaconstant function of either
Xi Or Xj, that is, no F depends non-trivialy on both x; and ;.

Brook’slemma, which follows, is an elementary result about conditional
probabilities. The proof is given after the current proof.

75 Lemmal[6l] Let 2 = {(i,j) e V2:i L j, i # j}. Thereexistsa
representation of the form (7.4) that separates every pair (i, j) € P.

Let (7.4) be arepresentation of r that separates every element of 5. For
each r, there exists a clique K; such that F; is a function of the vector
Xk, = (Xk : k € Ky) only. Therefore, there exist Gk, K € X such that

)= [] Gkxk).

KeX

The theorem follows by associating to each K € K a maximal clique
containing K. O

Proof of Lemma 7.5. Lét (i, j) € &, and suppose (7.4) is a representation
that does not separate the pair (i, j). We claim that there exists a rep-
resentation that separates the pair (i, j) in addition to any member of &
aready separated by (7.4). The lemma follows by iteration, starting from
the identity representation.
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Sincei L j, m may be expressed in the form (7.1) for some g, h, where
= Xk : kK #1i,j). Fixs € S, and write H|k for the function H(x)

evaluated with xx = s. Thus, H| requires x; = xj = s. Evidently,

7 (X)

7.6
(7.6) 7(X) = 7(X); X ”

By (7.1), theratio
w(X) h(xj, U)

7], h(s V)

isindependent of x;, so that

7(X) 17 F ()],

n(x)h FF(X)|i’j.
By (7.6),
Fr()|;
T(X) = (1_[ Fr(X)| )(l—[ F r(x)|| )
which is the required representation. g

7.2 Markov and Gibbs Random Fields

Let G = (V, E) be afinite graph, taken for ssimplicity to be without loops
or multiple edges. Within statistics and statistical mechanicsthere has been
a great deal of interest in probability measures having a type of ‘spatial
Markov property’ given in terms of the neighbour relation of G. We shall
restrict ourselves here to measures on the sample space © = {0, 1}V, while
noting that the following results may be extended without material difficulty
to alarger product SV, where Sisfinite or countably infinite.

The vector o € X may be placed in one—one correspondence with the
subsetn(o) = {v € V : o, = 1} of V, and we shall usethis correspondence
freely. For any W C V, we define the external boundary

AW ={veV:v¢W, v~ wforsomew € W}.

Fors= (s, : v € V) € &, wewrite sy for the sub-vector (s, : w € W).
We refer to the configuration of verticesin W as the ‘ state’ of W.

7.7 Definition A probability measure 7 on X is said to be positive if
n(o) > Oforal o € ¥. Itiscaled a Markov (random) field if it is
positive and if: for all W C V, conditional on the state of V \ W, the law
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of the state of W depends only on the state of AW. That is, 7 satisfies the
global Markov property

(7.8) n(aw = Sw | oV\W = Sv\w) = n(aw = Sw |UAW = SAW)s
foralse ¥,andW C V.

The key result about such measuresis their representation in terms of a
‘potentia function’ ¢, in aform known as a Gibbs random field (or some-
times ‘ Gibbs state’). Recall the set X of cliques of the graph G, and write
2V for the set of all subsets (or ‘ power set’) of V.

7.9 Definition A probability measure = on X is called a Gibbs (random)
field if there existsa‘ potential’ function ¢ : 2V — R, satisfying ¢c = 0 if
C ¢ X, such that

(7.10) n(B) = exp( > ¢K), BCV.

KcB

We allow the empty set in the above summation, so that log 7 (2) = ¢4 .

Condition (7.10) has been chosen for combinatorial simplicity. It is not
the physicists' preferred definition of a Gibbs state. Let us here define a
Gibbs state as a probability measure = on X such that there exist functions
fk : {0, 1K = R, K € X, with

(7.11) (o) = exp(z fK(oK)), ceEX.

KeX
It may be checked that 7 satisfies (7.10) for some ¢ whenever it satisfies
(7.11). The converse holds also, and is left as Exercise 7.1.

Gibbs fields are thus named after Josiah Willard Gibbs, whose volume
[116] made available the foundations of statistical mechanics. A simplistic
motivation for the form of (7.10) is as follows. Suppose that each state o
has an energy E, and aprobability 7 (o). We constrain the average energy
E =), Esn (o) to befixed, and we maximize the entropy

() =—» m(o)logm (o).
oex

With the aid of a Lagrange multiplier 8, we obtain the ‘ Gibbs formula
n(a)o<e_’3E”, o€ X.

The theory of thermodynamicsleadsto the expression 8 = 1/(kT), where
k is Boltzmann's constant and T is (absolute) temperature. Formula (7.10)
ariseswhen the energies E, may be expressed as the sum of the energies of
the sub-systems indexed by cliques.
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7.12 Theorem A positiveprobability measurex on ¥ isa Markovrandom
field if and only if it is a Gibbs random field. The potential function ¢
corresponding to the Markov field 7 is given by

¢k = Y (=D'"\ogm(L), K e X.
LCK
A positive probability measure  issaid to havethelocal Markov property
if it satisfiesthe global property (7.8) for al singleton setsW and al s € X.
Theglobal property evidently impliesthelocal property, andit turnsout that
the two properties are equivalent. For notational convenience, we denote a
singleton set {w} asw.

7.13 Proposition Let 7 be a positive probability measure on . The fol-
lowing three statements are equivalent.

(a) & satisfiesthe global Markov property.

(b) = satisfiesthelocal Markov property.

(c) Forall ACV andany pair u,v € V withu ¢ A,v € Aandu ~ v,
T(AUU) _ T(AUU\ v)

(A ma(A\v)

(7.14)

Proof. Itistrivia that (a) implies (b). Assume (b) holds, and let u ¢ A,
v e A andu ~ v. Applying (7.8) with W = {u} and, for w # u, with
sy = lifandonly if w € A, wefind that
(7.15)
T(AUU)
w(A) +7(AUU)

=7'[(0u=1|UV\u=A)

=7T(O'u =1 | OAU = AN AU)
=m(oy=1|ov\u=A\v) sincev ¢ Au
T(AUU\ v)
7(A\v) +7(AUU\v)’
Equation (7.15) is equivalent to (7.14), and thus (c) holds. Conversely, the
preceding calculation showsthat (c) implies (b).

It remains to show that the local property implies the global property.
The proof requires a short calculation, and may be done either by Theorem
7.2 or within the proof of Theorem 7.12. We follow the first route here
(the second route is taken in the next proof). Assumethat = is positive and
satisfiesthelocal Markov property. Thenu L vforalu, v € V withu ~ v.
By Theorem 7.2, there exist functions fx, K € M, such that

(7.16) (A = ] fk(ANK), ACV.
KeM
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Let W C V. By (7.16),for ACWandC C V \ W,
Mkew fk((AUC) NK)

Y eew [ lkenu fk(BUC)NK)

Any clique K with K N W = @ makes the same contribution fx (C N K)
to both numerator and denominator, and may be cancelled. The remaining
cliquesare subsetsof W = W U AW, so that

mlow = Aloyw =C) =

[Tken kew fk((AUC) N K)

ZBQW HKE,M, KCW fk(BUC)NK) .
Theright side does not depend on O\\W whence

m(ow = Aloyw =C) =

m(ow = Alov\w =C) =n(ow = Al oaw = CNAW),
asrequired for the global Markov property. d

Proof of Theorem 7.12. Assume first that 7 isapositive Markov field, and
let

(7.17) ¢c =Y (-D/%\ogm(L), CcV.
LcC
By the inclusion—exclusion principle,
(7.18) logz(B) = ) ¢c. BcCV,
ccB

and we need only show that ¢c = O for C ¢ K. Supposeu,v € C and
u ~ v. By (7.17),

_ _\IC\L| a(LUuUv) m(L Uv)
¢c = Z (-1 Iog( T LUW 0 )

LSC\{u,v}
which equals zero by the local Markov property and Proposition 7.13.
Therefore, 7w isa Gibbsfield with potential function ¢.

Conversely, suppose that 7 is a Gibbs field with potential function ¢.
Evidently, 7 is positive. Let A C V,andu ¢ A, v € Awithu ~ v. By
(7.18),

T(AUU)
°g< (A )_ 2 o

KCAUU, uekK
KeX

= Z ék  sinceu~vandK € X

K AUU\v, ueK
KeX

—lo T(AUU\ v)
- g( Z(A\0) )
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The claim follows by Proposition 7.13. d

We close this section with some notes on the history of the equivalence
of Markov and Gibbs random fields. This may be derived from Theorem
7.2, but it is perhaps more informative to prove it directly as above via
the inclusion—exclusion principle. It is normally attributed to Hammersley
and Clifford, and an account was circulated (with a more complicated for-
mulation and proof) in an unpublished note dating from 1971, [157] (see
also [78]). Versions of Theorem 7.12 may be found in the later work of
several authors, and the above proof istaken essentially from [124]. Theas-
sumption of positivity isimportant, and complicationsarisefor non-positive
measures, see [232] and Exercise 7.2.

For applications of the Gibbs-Markov equivalence in statistics; see, for
example, [196].

7.3 Ising and Potts M odels

In a famous experiment, a piece of iron is exposed to a magnetic field.
The field is increased from zero to a maximum and then diminished to
zero. If the temperature is sufficiently low, the iron retains some residual
magnetization, otherwiseit doesnot. Thereisacritical temperaturefor this
phenomenon, often named the Curie point after Pierre Curie, who reported
this discovery in his 1895 thesis.! Thefamous (Lenz-)lsing model for such
ferromagnetism, [173], may be summarized as follows. Let particles be
positioned at the points of some lattice in Euclidean space. Each particle
may bein either of two states, representing the physical states‘ spin-up’ and
‘spin-down’. Spin-values are chosen at random according to a Gibbs state
governed by interactions between neighbouring particles, and are given in
the following way.

Let G = (V, E) be afinite graph representing part of the lattice. Each
vertex X € V is considered as being occupied by a particle that has a
random spin. Spins are assumed to come in two basic types (‘up’ and
‘down’), and thus we take the set = = {—1, +1}V as the sample space.
The appropriate probability massfunction Ag 3 h on X hasthree parameters
satisfying 8, J € [0, oo) and h € R, and is given by

1
(7.19) Ag.an(0) = ?e_ﬁH(”), o€x,
[
where the ‘Hamiltonian’ H : ¥ — R and the ‘partition function’ Z, are

1seealso [178].
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given by
(720) H(O'):—J Z o'Xo'y_hZo-X, Zl — Ze_ﬂH(J)~

e=(x,y)eE xeV oEX

The physical interpretation of g is asthe reciprocal 1/ T of absolute tem-
perature, of J as the strength of interaction between neighbours, and of h
as the external magnetic field. We shall consider here only the case of zero
external field, and we assume henceforth that h = 0. Since J is assumed
non-negative, the probability Ag 3 0(c) decreasesas H (o) increases. Thus,
the measure Ag ;.0 places greater weight on configurations having many
neighbour-pairs with like spins, and for this reason it is called ‘ ferromag-
netic'. The *antiferromagnetic’ case J < 0isnot considered here.

Each edge has equal interaction strength J in the above formulation.
Since g and J occur only asaproduct 8 J, themeasure Ag, 5,0 haseffectively
only a single parameter 8J. In a more complicated measure, not studied
here, different edges e are permitted to have different interaction strengths
Je. Inthemeantimewe shall set J = 1, andwriteAg = Ag 1.0

Whereas the Ising model permits only two possible spin-values at each
vertex, the so-called (Domb-)Pottsmodel [244] hasageneral number g > 2,
and is governed by the following probability measure.

Let g be an integer satisfying q > 2, and take as sample space the set
of vectors = = {1, 2, ..., q}V. Thuseach vertex of G may bein any of q
states. For an edgee = (X, y) and aconfigurationo = (ox : X € V) € X,
we write de(0) = 30,0, Where §; j is the Kronecker delta. The relevant
probability measureis given by
(7.21) p.q(0) = Zipe—ﬂ'”“), cex,

where Zp = Zp(8, q) is the appropriate partition function (or normalizing
constant) and the Hamiltonian H’ is given by

(7.22) H)== Y delo).
e=(x,y)eE

Inthe special caseq = 2,

(7.23) Sor,00 = 3(14+0102), 01,00 € {—1, +1},

Itiseasy to seein this case that the ensuing Potts model is simply the Ising
model with an adjusted value of g, inthat g » isthe measure obtained from
Ag,/2 by relabelling the local states.

We mention onefurther generalization of thelsing model, namely the so-
called n-vector or O(n) model. Letn € {1, 2, ...} andlet S"~1 bethe set of
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vectorsof R" with unit length, that is, the (n — 1)-sphere. A ‘model’ is said
to have O(n) symmetry if its Hamiltonian is invariant under the operation
on S"1 of n x n orthonormal matrices. One such model is the n-vector
model on G = (V, E), with Hamiltonian

Hi®=— Y 5. s=(s:veV)eS™hHY,
e=(x,y)eE
where s, - sy denotes the scalar product. When n = 1, thisis simply the
Ising model. It iscaled the X/Y model when n = 2, and the Heisenberg
model whenn = 3.

The Ising and Potts models have very rich theories and are amongst
the most intensively studied models of statistical mechanics. In ‘classical’
work, they are studied via cluster expansions and correlation inequalities.
The so-called ‘ random-cluster model’, developed by Fortuin and Kasteleyn
around 1960, provides a single framework incorporating the percolation,
Ising, and Potts models as well as electrical networks, uniform spanning
trees, and forests. It enables a representation of the two-point correlation
function of a Potts model as a connection probability of an appropriate
model of stochastic geometry, and thisin turn allows the use of geometrical
techniques aready refined in the case of percolation. The random-cluster
model is defined and described in Chapter 8; see also [130].

Theq = 2 Pottsmodel isessentially thelsing model, and special features
of the number 2 allow a special analysis for the Ising model that is not yet
replicated for general Potts models. This method is termed the ‘random-
current representation’, and it has been especially fruitful in the study of the
phase transition of the Ising model on L9, See [3, 7,10, 11, 93] and [130,
Chap. 9].

7.4 Exercises

7.1 Let G = (V, E) be afinite graph, and let = be a probability measure on
the power set & = {0, 1}V. A configuration o € ¥ isidentified with the subset
of V onwhich it takesthevalue 1, that is, withtheset n(o) = {v € V : o, = 1}.

Show that
n(B)=exp<Z ¢>K>, BCV.
KCB
for some function ¢ acting on the set X of cliquesof G, if and only if

(o) = @(p( > fK<aK)), cex,
KeX

for some functions fx : {0, 1} — R, with K ranging over K. Recall the
notation ox = (o : v € K).
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Figure7.1 Eachvertex of the4-cyclemay bein either of thetwo statesO
and 1. The marked vertices have state 1, and the unmarked vertices have
state 0. Each of the eight configurations shown above has probability % ,
and the other eight configurations have probability 0.

7.2 [232] Investigate the Gibbs—-Markov equivalence for probability measures
that have zeroes. It may be useful to consider the exampleillustrated in Figure 7.1.
The graph G = (V, E) isa4-cycle, and the local state space is {0, 1}. Each of
the eight configurations shown in the figure has probability %, and the other eight
configurations have probability 0. Show that this measure p satisfies the local
Markov property but cannot be written in the form

uB)= [ fK), Bcv,
KCB

for some f satisfying f(K) = 1if K ¢ X, the set of cliques.
7.3 Ising model with external field. Let G = (V, E) be afinite graph, and let
 be the probability measure on = = {—1, +1}V satisfying

A(U)O(@(p(hZGv + B Z O’UO’U), o€exn,

veV e=(u,v)

where 8 > 0. Thinking of = asa partially ordered set (wheres < o’ if and only
if oy < of foral v e V), show that:
(a) A satisfiesthe FKG lattice condition and hence is positively associated,
(b) forve V,A( | oy = —1) <g¢ A <gt A(- | oy = +1).
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Random-Cluster M odel

Thebasic propertiesof themodel are summarized, anditsrelationship
to the Ising and Potts models described. The phase transition is de-
fined in terms of infinite-volume measures. After an account of a
number of areas meriting further research, there are two sections
devoted to planar duality and to the value of the critical point on the
square lattice. The random-cluster model is linked in more than one
way to the study of a random even subgraph of a graph.

8.1 The Random-Cluster, Ising, and Potts M odels

Let G = (V, E) be afinite graph, and write @ = {0, 1}E. For w € Q, we
write n(w) = {e € E : w(e) = 1} for the set of open edges, and k(w) for
the number of connected components, or ‘open clusters’, of the subgraph
(V, n(w)). Therandom-cluster measure on 2, with parameters p € [0, 1],
g € (0, oco) isthe probability measure given by

(8,1) ¢p,q(w) = % {l—[ pw(e)(l _ p)l—a)(e)}qk(a)), weQ,

ecE

where Z = Zg, p q isthe normalizing constant.

This measure was introduced by Fortuin and Kasteleyn in a series of pa-
persdated around 1970. They sought a unification of thetheory of electrical
networks, percolation, |sing models, and Potts models, and were motivated
by the observation that each of these systems satisfies certain seriesand par-
alel laws. Percolation is evidently retrieved by setting q = 1, and it turns
out that electrical networks arise viathe uniform spanning tree (UST) limit
obtained on taking the limit p, g — 0 in such away that q/p — 0 (see
Section 8.4). Therelationship to Ising and Potts modelsis more complex in
that it involves atransformation of measures, to be described next. In brief,
the connection probabilities for the random-cluster measure correspond to

L1t isimportant to include isolated verticesin this count.
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correlations for ferromagnetic Ising and Potts models, and this allows a
geometrical interpretation of their correlation structure.

A fuller account of the random-cluster model and its history and associ-
ations may be found in [130]. When the emphasis is upon its connection
to Ising and Potts models, the random-cluster model is often called the ‘ FK
representation’.

In the remainder of this section, we summarize the relationship between
a Potts model on G = (V, E) with an integer number q of local states,
and the random-cluster measure ¢p q. As the configuration space for the
Potts model, we take = = {1,2,...,q}V. Let F be the subset of the
product space X x 2 containing al pairs (o, w) such that: for every edge
e=(X,y) € E,ifw(e) = 1,thenox = oy. Thatis, F contains all pairs
(0, w) such that o is constant on each cluster of w.

Let ¢p = ¢p,1 be product measure on 2 with density p, and let « bethe
probability measureon X x 2 given by

(8.2 (o, w) x ¢pp(w)1F (o, w), (o,w) € X x Q,

where 1 istheindicator function of F.

Four calculationsare now required, in order to determinethetwo marginal
measures of p and the two conditional measures. |t turns out that the two
marginals are exactly the g-state Potts measure on X (with suitable pair-
interaction) and the random-cluster measure ¢p q.

Marginal on ¥ When we sum u (o, w) over w € 2, we have afree choice
except that w(e) = 0 whenever oy # oy. That is, if ox = oy, thereis no
constraint on the local state w(e) of the edge e = (X, y); the sum for this
edgeissmply p+ (1 — p) = 1. We areleft with edges e with ox # oy,
and therefore

(8.3 u(o, ) == Z (o, w) l—[(l — p)toe@),
we ecE
where §¢ (o) isthe Kronecker delta
(84) de(o) = 5JX,Jyv e=(X,y) e E.
Otherwise expressed,
(o, ) o exp{ﬂ Zae(a)}, oEX,
ecE
where
(8.5) p=1—e’.

Thisisthe Potts measure g o of (7.21). Notethat g > 0, whichisto say
that the model is ferromagnetic.
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Marginal on 2 For givenw, theconstraintono isthat it be constant on open
clusters. There are gk(®) such spin configurations, and (o, ) is constant
on thisset. Therefore,

nE )= ) o, ) {H p - p)l—‘”<e>}qk<‘">

oceX ecE

Thisisthe random-cluster measure of (8.1).

The conditional measures It isaroutine exerciseto verify the following.
(i) Given w, the conditional measure on X is obtained by putting (uni-
formly) random spins on entire clusters of  that are constant on given
clusters and independent between clusters.
(il) Giveno, theconditional measureon Q2 isobtained by settingw(e) = 0
if Se(c) = 0, and otherwise setting w(e) = 1 with probability p
(independently of other edges).

The *two-point correlation function’ of the Potts measure g q on G =
(V, E) isthe function 74 ¢ given by

1
T'B’q(x, y)=JT/3yq(O'X=O'y)—a, X,yGV

The *two-point connectivity function’ of the random-cluster measure ¢p q
isthe probability ¢p q(X <> y) of an openpathfrom x toy. It turnsout that
these *two-point functions' are (except for a constant factor) the same.

8.6 Theorem[182] Forqe {2,3,...},>0,andp=1—eF,
6,406 Y) = (L—q Hgpg(x < ).

Proof. We work with the conditional measure (o | w) thus:

764X V) = D [Loy=oy)(0) — (0. @)

o,w

= ¢pa@) Y 1o | 0)[Lo=oy)(0) —q 7]
= $p.a@[(1 = Hlxoy (@) + 0 x Lixpy ()]

= (1=q Hpgx < Y.
and the claim is proved. d
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8.2 Basic Properties

We list some of the fundamental properties of random-cluster measuresin
this section.

8.7 Theorem (Positive association) [110] The measure ¢ g satisfies the
FKG lattice condition if > 1, and is thus positively associated.

Proof. If p = 0, 1, the conclusion is obvious. Assume0 < p < 1, and
check the FK G Iattice condition (4.12), which amounts to the assertion that

k(w VvV @) + kiw A ©) > k(o) + ko), w, 0 € Q.
Thisisleft as a graph-theoretic exercise for the reader. g
8.8 Theorem (Comparison inequalities) [110] We have that
(89) ¢pq <s¢pg ifP<p.d=q. 9 =1

. p’ p
8.10) ¢y o > if > ,
G109 =2 dpa TG =55 = ga—p)

qd=>0q,9=>1

Proof. This follows by the Holley inequality, Theorem 4.4, on checking
condition (4.5). d

In the next theorem, the role of the graph G is emphasized in the use of
the notation ¢, p q. The graph G\e (respectively, G.e) is obtained from G
by deleting (respectively, contracting) the edge e.

8.11 Theorem [110] Lete € E.
(8@ Conditional onw () = 0, themeasureobtainedfromeg p.qiSdc\e p.q-
(b) Conditional onw(e) = 1, themeasureobtainedfromeg p qiS¢c.e p.q-

Proof. Thisisan elementary calculation of conditional probabilities. [

In the mgjority of the theory of random-cluster measures we assume that
g > 1, since then we may use positive correlations and comparisons. The
case q < lisdightly mysterious. It is easy to check that random-cluster
measures do not generally satisfy the FKG lattice condition whenq < 1,
and indeed that they are not positively associated (see Exercise 8.2). Itis
considered possible, even likely, that ¢p o satisfies a property of negative
association when g < 1, and we return to thisin Section 8.4.
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8.3 Infinite-Volume Limits and Phase Transition
Recall the cubic lattice L9 = (29, EY). We cannot define a random-cluster
measure directly on L9, sinceit is infinite. There are two possible ways to
proceed. Assumeq > 1.
Letd > 2and 2 = {0, 1}Ed. The appropriate o -field of Q2 isthe o-field
F generated by thefinite-dimensional sets. Let A beafiniteboxinZd. For
b € {0, 1}, define

Qf ={weQ:wE =bforeg¢Ex),

where E is the set of edges of L9 joining pairs of vertices belonging to
aset A. Each of the two values of b corresponds to a certain ‘boundary
condition’ on A, and we shall be interested in the effect of these boundary
conditionsin the infinite-volume limit.

On @, we define a random-cluster measure 4R | , as follows. For
p €[0,1] andq € (0, c0), let
(8.12)

l p—
Mopg@ = 55— [] P"OQ-p @ 1gken. weaf,
A,p.q ecEp

where k(w, A) is the number of clusters of (Z9, n(w)) that intersect A.
Here, as before, n(w) = {e € EY : w(e) = 1} isthe set of open edges. The
boundary condition b = 0 (respectively, b = 1) is sometimestermed ‘free
(respectively, ‘wired’).

8.13 Theorem [125] Let q > 1. The weak limits
b _ b _
Pp.q _All_)rr%d¢A,p’q, b=0,1,
exist and are translation-invariant and ergodic.
Theinfinite-volumelimit is called the ‘ thermodynamic limit’ in physics.

Proof. Let A bean increasing cylinder event defined in terms of the edges
lying in somefiniteset S. If A € A’ and A includes the ‘base’ S of the
cylinder A,

$h.p.q(A) = bx pq(Aldl edgesinExn o areopen) > ¢y, , o (A),
where we have used Theorem 8.11 and the FKG inequality. Therefore, the
limit lim, _, ;d ¢>[1\’ 0.q(A) exists by monotonicity. Since ¥ is generated by

such events A, the weak limit qb[l),q exists. A similar argument isvalid with
the inequality reversed when b = 0.
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The translation-invariance of the ¢>b p,q holdsin very much the same way
as in the proof of Theorem 2.11. The proof of ergodicity is deferred to
Exercises8.11 and 8.12. O

The measures ¢ , and ¢7, , are called ‘random-cluster measures’ on 1.4
with parameters p and g, and they are extremal in the following sense. We
may generate ostensibly larger families of infinite-volume random-cluster
measures by either of two routes. In the first, we consider measures ¢i’ 0.4
on E, with more general boundary conditions &, thereby constructing the
set Wp q of ‘weak-limit random-cluster measures’. The second construc-
tion uses atype of Dobrushin—Lanford—Ruelle(DLR) formalism rather than
weak limits (see [125] and [130, Chap. 4]). That is, we consider measures
w on (2, ) whose measure on any box A, conditional on the state & off
A, is the conditional random-cluster measure ¢i,p,q- Such a i is called
a'DLR random-cluster measure’, and we write R g for the set of DLR
measures. Therelationship between 'Wp g and R q isnot fully understood,
and we make one remark about this. Any element w of the closed con-
vex hull of ‘Wp q with the so-called ‘0/1-infinite-cluster property’ (that is,
w(l €{0,1}) = 1, where | isthe number of infinite open clusters) belongs
to Rp,q; see[130, Sect. 4.4]. The standard way of showing the 0/ 1-infinite-
cluster property is via the Burton—Keane argument used in the proof of
Theorem 5.14. We may show, in particular, that qbqu, ¢>F1)’q € Rp.q.

It is not difficult to see that the measures qbg,q and ‘prlxq are extremal in
the sense that

(8.14) $pq <sPpa <t bpq-  $pa € WpqURpg,

whencethere exists aunigque random-cluster measure (in either of the above
senses) if and only if ¢ 4 = ¢} 4. Itisageneral fact that such extremal
measures are invariably ergodic; see [115, 130].

A stronger inequality than (8.14) will be useful later when considering
more general boundary conditions, namely that

(8.15) ¢i, 0.q(A) isnon-decreasingin &,

for > 1 and an increasing event A.2

Turning to the question of phasetransition, and remembering percolation,
we define the percolation probabilities

(8.16) 0°(p.q) = ¢h4(0 < 00),  b=0,1,

2See Exercise 8.8.
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i p—

Figure8.1 A minimal set Sof closed edges which separatesthe origin
from the boundary of the box. Each edge in S has exactly one endpoint
connected to the boundary.

that is, the probability that O belongsto an infinite open cluster. The corre-
sponding critical values are given by

(8.17) pe(@) = sup(p: 6°(p,q) =0},  b=0,1.

Faced possibly with two (or more) distinct critical values, we present the
following result.

8.18 Theorem [9, 125] Letd > 2and q > 1. We have that:
@ ¢pq=dpqifor(p.a)=0,
(b) there exists a countable subset Dq q of [0, 1], possibly empty, such
that ¢ 4 = ¢ o if and onlyif p ¢ Dq q.

It may be shown? that
(8.19) oY (p.q) = lim ¢3 , (0« BA).
Apzd T
It is not known when the corresponding statement with b = 0 holds.

Sketch proof. The argument for (a) isasfollows. Clearly,

(8.20) 0N (p.q) = lim ¢7,(0 < dA).
Atzd "

SExercise 8.9.
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Suppose#t(p, q) = 0, and consider alarge box A with Qinitsinterior. On
building theclustersthat intersect the boundary d A, with high probability we
do not reach 0. That is, with high probability, there exists a‘ cut-surface’ S
betweenOand 3 A comprising only closed edges (see Figure 8.1). By taking
the random set S to be as close as possible to d A, the set S is measurable
on its exterior, whence the conditional measure on the interior of Sisafree
random-cluster measure. Passing to the limit as A 1 Z9, we find that the
free and wired measures are equal.

Theargument for (b) is based on aclassical method of statistical mechan-
ics using convexity. Let Zg pq be the partition function of the random-
cluster model on afinite graph G = (V, E), and set

Yopg=1-p Fzgpq= Y €@igke,
wef{0,1}E

where 7 = log[p/(1 — p)]. Itiseasily seen that logYG p,q IS aconvex
function of 7. By a standard method based on the negligibility of the
boundary of alarge box A compared with its volume (see [130, Sect. 4.5]
for the details), the limit ‘ pressure function’

. 1 £
ATy { [Eal '°gYAvp’q}
exists and is independent of the boundary configuration §¢ € Q. Since IT
is the limit of convex functions of 7, it is convex and hence differentiable
except on some countable set D of values of 7. Furthermore, for = ¢ D,
the derivative of |Il<:A|—1Iong\’p,q converges to that of T1. The former
derivativemay beinterpreted in termsof the edge-densitiesof the measures,
and therefore the limits of these edge-densities are independent of & for any
7 a which I (x, q) is differentiable. The uniqueness of random-cluster
measuresfollowsby (8.14) and stochastic ordering: if (1, 2 are probability
measures on (2, F) with w1 <g w2 and satisfying

(7, q) =

ni(eisopen) = ua(eisopen), eck,
then w1 = M2.4 ]

By Theorem 8.18, 6%(p, q) = 6(p, q) for p ¢ Dq q, whence p2(q) =
p%(q). Henceforth we refer to the critical valueas pc = pe(q). Itisabasic
fact that pc(q) isnon-trivial.

8.21 Theorem [9] Ifd > 2andqg > 1,then 0 < pc(q) < 1.

It is an open problem to find a satisfactory definition of pe(q) forq < 1,
although it may be shown by the comparison inequalities (Theorem 8.8)

4Exercise. Recall Strassen’s Theorem 4.2.
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that there is no infinite cluster for g € (0, 1) and small p, and conversely
thereisan infinite cluster for q € (0, 1) and large p.

Proof. Letq > 1. By Theorem 8.8, ¢;13/,1 < $5.q <t $p.1, Where

S

p+ad—p
We apply thisinequality to theincreasing event {0 <> 9A}, and let A 1 74
to obtain via (8.19) that

P

qpc()
(8.22) P = Pe@ = T 1oy 9=t

where 0 < p¢(1) < 1 by Theorem 3.2. O

The following is an important conjecture.

8.23 Conjecture Thereexists Q = Q(d) such that:
(@ ifg < Qd), thend*(pe, ) = 0 and Dy q = 2,
(b) if g > Q(d), then 6(pc, 0) > Oand Dy q = {pc}-

In the physical vernacular, there is conjectured to exist a critical value
of q below which the phase transition is continuous (‘ second order’) and
above which it is discontinuous (*first order’). Following work of Roman
Kotecky and Senya Shlosman [191], it was proved in [193] that there is a
first-order transition for large q; see[130, Sects 6.4, 7.5]. It isexpected that

N ifd=2,
Q()_{z if d > 6.

Following agood deal of earlier discussion (see, for example, [27, 167, 288]
and [130, Sect. 6.4]), the statement Q(2) = 4 was proved in [85, 89].

Finally, we review the relationship between the random-cluster and Potts
phase transitions. The ‘order parameter’ of the Potts model is the ‘ magne-
tization’, given by

. 1
g9 = fim {0 =0 = G}

where 7} p Is the Potts measure on A “with boundary condition 1'. We
may think of M (B, g) as a measure of the degree to which the boundary
condition ‘1" isnoticed at the origin after the infinite-volumelimit has been
taken. By an application of Theorem 8.6 to a suitable graph obtained from
A,

1
Thq@0 =1 =0 = 1= a7H9} pq(0 > 3A).
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where p = 1 — e #. By (8.19),
M(B.@) = (1= lim ¢} pq(0 < IA)

= (1—-q He'(p, ).
That is, M (8, q) and #1(p, q) differ by thefactor 1 — q~1.

8.4 Open Problems

Many questions remain at least partly unanswered for the random-cluster
model with general g > Oandd > 2, andwelist afew of these here. Further
details may be found in [130]. The case of two dimensions is featured in
Section 8.5.

I. Thecaseq < 1 Littleisknown when g < 1 owing to the failure of the
FKG inequality. A possibly optimistic conjecture is that some version of
negative association holdswhen g < 1, and this might imply the existence
of infinite-volume limits. Possibly the weakest such conjectureis that

¢p,q(eand f areopen) < ¢p q(eisopen)pp q(f isopen),

for distinct edgese and f. It has not been ruled out that ¢ o satisfies the
stronger BK inequality when q < 1. Weak limits of ¢pq asq | 0 have
a special combinatorial structure, but even here the full picture has yet to
emerge. More specificaly, it is not hard to see that

ucs if p=3,
¢pq = { UST if p— 0andq/p — O,
UF ifp=aq,

where the acronyms are the unifor m connected subgraph, uniform spanning
tree, and uniform forest measures encountered in Sections 2.1 and 2.4. See
Theorem 2.1 and Conjecture 2.14.

We may use comparison arguments to study infinite-volume random-
cluster measures for sufficiently small or large p, but there is no proof of
the existence of a unique point of phase transition.

Thecaseq < 1isof more mathematical than physical interest, although
the various limits as g — 0 are relevant to the theory of algorithms and
complexity.

Henceforth, weassumeq > 1.

I1. Exponential decay Prove that

¢p.q(0 < 3[—n, %) < en, n>1,
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for some o = a(p, q) satisfying « > 0when p < pc(q). This has been
proved for sufficiently small valuesof p, but no proof isknown (for general
g and any givend > 2) right up to the critical point.

The case g = 2 is special since this corresponds to the Ising model,
for which the random-current representation has allowed arich theory; see
[130, Sect. 9.3]. Exponential decay is proved to hold for general d when
g = 2, and aso for sufficiently large q (see 1V below).

I11. Uniquenessof random-cluster measures Proveall or part of Conjecture
8.23for general dimensionsd. That is, show that ¢ , = ¢ for p # pe(a)
and, furthermore, that uniquenessholdswhen p = pc(q) if andonly if q is
sufficiently small.

These statements are trivial when g = 1, and uniquenessis proved when
g = 2 using the theory of the Ising model alluded to above; see [10] and
[130, Sect. 9.4].

When q is sufficiently large, it is known asin |V below that there is a
unique random-cluster measurewhen p #£ pc(q) and amultiplicity of such
measureswhen p = pc(Q).

IV. First- or second-order phase transition Much of the interest in Potts
and random-cluster measures is focussed on the fact that the nature of the
phase transition depends on whether g is small or large; see for example
Conjecture 8.23. For small g, the singularity is expected to be continuous
and of power type. For largeq, thereisadiscontinuity inthe order parameter
61(-,q), and a ‘mass gap’ at the critical point (that is, when p = pc(q),
the ¢>g,q-probability of along path decays exponentially, while the ¢rln,q'
probability is bounded away from 0).

Of the possible questions, we ask for a proof of the existence of avalue
Q = Q(d) separating the second- from the first-order transition.

V. Sabcritical point 1t wasimportant for supercritical percolationin three
and more dimensions to show that percolation in 1.9 implies percolation in
asufficiently fat ‘slab’; see Theorem 5.9. A version of the corresponding
problem for the random-cluster model isasfollows. Letq > 1andd > 3,
and write S(L, n) for the‘dab’

S(L,n)=[0, L — 1] x [—n, n]9~1.
Let YL npqg= ‘f’g(L,n),p,q be the random-cluster measure on S(L, n) with
parameters p, g, and free boundary conditions. Let I1(p, L) denote the
property that®
liminf inf {¥ npq0< X} >0.

n—o00 xeS(L,n)

5This corrects an error in [130].
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Itis not hard® to seethat TT(p, L) = TI(p/, L") if p< p’and L < L/, and
it isthus natural to define

(8.24) Pc(g, L) =inf{p:TI(p,L)occurs}, Pc(q) = I_Ii_)moo Pe(q, L).

Clearly, pc(q) < Pc(q) < 1. Itis believed that equality holds in that
Pc(@) = pe(Q), and it is a major open problem to prove this. A positive
resolution would have implications for the exponential decay of truncated
cluster-sizes and for the existence of a Wulff crystal for al p > pc(q) and
g > 1. SeeFigure 5.2 and [67, 68, 69].

V1. Roughening transition While it is believed that there is a unique
random-cluster measure except possibly at the critical point, there can exist
a multitude of random-cluster-type measures with the striking property of
non-trangation-invariance. Take abox An = [—n,n]%ind > 3 dimen-
sions (thefollowing construction failsin two dimensions). We may think of
9 Ap as comprising a northern and southern hemisphere, with the * equator’
{X € dAp : Xq = 0} asinterface. Let En, p.q e the random-cluster mea-
sure on A with awired boundary condition on the northern and southern
hemispheresindividually and conditioned on the event Dy, that no open path
joins a point of the northern to a point of the southern hemisphere. By the
compactness of 2, the sequence (Eny p.g - N = 1) possesses weak limits.
Let ¢, 4 besuch aweak limit.

It isageometrical fact that, in any configuration w € Dy, there exists an
interface | (w) separating the pointsjoined to the northern hemisphere from
those joined to the southern hemisphere. This interface passes around the
equator, anditsclosest point to the originisat somedistance Hy, say. It may
beshownthat, for g > 1andsufficiently large p, thelawsof the H,, aretight,
whence the weak limit ¢,  is not translation-invariant. Such measures are
termed ‘ Dobrushin measures’ after their discovery for the Ising model in
[81].

Thereremain two important questions. Firstly, ford > 3andq > 1, does
there exist avalue P(q) such that Dobrushin measures exist for p > P(q)
and not for p < P(q)? Secondly, for what dimensions d do Dobrushin
measures exist for al p > pc(q)? A fuller account may be found in [130,

Chap. 7].

8.5 In Two Dimensions

Two-dimensional random-cluster models have been studied extensively,
both at and away fromthe critical point. In particular, the value of the criti-

8Exercise 8.10.
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cal point was established rigorously by Beffaraand Duminil-Copin [31] for
the square, triangular, and hexagonal lattices, whenever g > 1. We restrict
ourselvesto the case of the square lattice.

8.25 Theorem [31] The random-cluster model on the square lattice L2
with cluster-weighting factor g > 1 hascritical value

Va
14+.a

Thefirst proof was derived by following the strategy used for percolation;
see Section 8.6 below. A further proof may be found in [86, 87].7

Random-cluster measures on .2 have a property of self-duality that gen-
eralizes that of bond percolation. (Recall the discussion of duality after
equation (3.7).) Whereas the self-dual point for bond percolation on L2
is % it will be explained soon (see (8.30)) that the self-dual point for the
random-cluster model with cluster-weighting factor q is

Va
1+ /9

The conclusion in Theorem 8.25 was known earlier for certain values of
g. When q = 1, the statement pc(1) = % is the Harris—Kesten theorem for
bond percolation. When q = 2, it amountsto thewell known cal culation of
thecritical temperature of thelsing model. For largeq, theresult wasproved
in[193, 194]. Thereisa‘proof’ inthe physicspaper [167] forq > 4,anda
recent full proof in [33] for general isoradial graphsunder the last condition
on g. It has been known since [125, 280] that pc(q) > Ppsy(Q).

Theproof of Theorem 8.25 may be adapted (see[31]) to thetriangular and
hexagona lattices, thus complementing known inegualities of [130, Thm
6.72] for the critical points. It is an open problem to prove the conjectured
critical surfaces of inhomogeneous models on L2, T, and H for genera q,
athough this problem was solved in [33] in the context of isoradial graphs
for q > 4. See[130, Sect. 6.6].

We turn to the duality of the random-cluster model on a planar graph.
Let G = (V, E) beafinite planar graph and G4 = (Vy, Eg) itsdual graph.
Toeach w € Q = {0, 1}F there corresponds the dual configuration® wgy €
Qq = {0, 1}Ed given by

wd(&) =1—w(e), ecE.

Pc(q) =

(8.26) Psa(Q) =

"Paper [87] contains the proof of the much more general fact of exponential decay
throughout the subcritical phase, for al d > 2.

8Note that this definition of the dual configuration differs from that used in Chapter 3
for percolation.
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By drawing apicture, wemay convinceourselvesthat every faceof (V, n(w))
containsaunique component of (Vg, n(wq)), and thereforethe number f (w)
of faces (including the infinite face) of (V, n(w)) satisfies

(8.27) f(w) = k(wq).

The random-cluster measure on G satisfies

p [n(w)] K@)
oG, p,q(w) 08 (rp) q .

Using (8.27), Euler’'sformula,
(8.28) k(w) = V] = In(@)| + f(w) — 1,
and the fact that |n(w)| + |n(wg)| = |E|, we have that

1— p)\ n@al

¢G,p,q(a)) 1% (q( p p)) qk(a)d)’
which isto say that
(8.29) ?G, p,q(®) = PGy, pg.q(@d), w € 2,
where

Pd qld - p)

8.30 = .
(6.30) 1-pqg p

The unique fixed point of the mapping p — pq isgiven by p = ps(Q),
where pg(q) isthe ‘self-dual point’of (8.26).

Turning to the squarelattice, let G = A = [0, n]?, with dual graph G4 =
Aq obtained from the box [—1,n]2 + (3, 3) by identifying all boundary
vertices. By (8.29),

(8.31) $R.p.q(@) = Sy pyq(@d)

for configurationsw on A (and with asmall *fix’ on the boundary of Ag).
Letting n — oo, we obtain that

(8.32) bo.q(A) = by, q(Ad)

for al cylinder events A, where Ag = {wg : w € A}.

The duality relation (8.32) is useful, especiadly if p = pg = p«(d). In
particular, the proof that 9(%) = O for percolation (see Theorem 5.25) may
be adapted via (8.32) to obtain

(833 0°(pss, 9) = O,
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whence

Va

>

(8.34) Pc(d) = 1+ /3

The case q = 2 isvery special, because it is related to the Ising model,

for which thereis arich and exact theory going back to Onsager [235]. As

anillustration of this connection in action, weinclude a proof that the wired

random-cluster measure has no infinite cluster at the self-dual point. The

corresponding conclusion hasbeen provedrecently for 1 < q < 4; see[89].

Whereas the q = 2 case, following, holds by elementary arguments, the

moregeneral caseisbased onthework of Smirnov [268, 269] on conformal
invariance.

8.35 Theorem For d = 2, 01(px(2), 2) = 0.

Proof. Of the several proofs of this statement, we outline the recent simple
proof of Werner [283)]. Let q = 2, and write ¢° = ¢5_ ..

Let o € Q be a configuration of the random-cluster model sampled
according to ¢°. To each open cluster of w, we allocate spin +1 with
probability % and —1 otherwise. Thus, spins are constant within clusters
and independent between clusters. Let o betheresulting spin configuration,
and let 19 beits law. We do the same with  sampled from ¢!, with the
difference that any infinite cluster is allocated spin +1. It is not hard to
see that the resulting measure ! is the infinite-volume Ising measure with
boundary condition +1.° The spin-space ¥ = {—1, +1}ZZ is a partialy
ordered set, and it may be checked, using theHolley inequality® and passing
to an infinite-volume limit, that
(8:36) 1 <q .

We shall be interested in two notions of connectivity in Z2, the first of
which is the usual one, denoted «~~. If we add both diagonalsto each face
of Z?, we obtain a new graph with the so-called %-connectivity relation,
denoted «~,. A cyclein thisnew graph is called a x-cycle.

Each spin-vector o € X amountstoapartition of Z2into maximal clusters
with constant spin. A cluster labelled +1 (respectively, —1) is called a
(+)-cluster (respectively, (—)-cluster). Let N (o) (respectively, N~ (o))
be the number of infinite (4)-clusters (respectively, infinite (—)-clusters).

By (8.33), ¢°(0 <> co0) = 0, whence, by Exercise 8.17, u° is ergodic.
We may apply the Burton—Keane argument of Section 5.3 to deduce that

either KONt =1 =1 or (Nt =0 =1

q=1

9Thisisformalized in [130, Sect. 4.6]; see also Exercise 8.17.
105ee Exercise 7.3 and Theorem 4.4.
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We may now use Zhang's argument (as in the proof of (8.33) and Theorem
5.25), and the fact that N* and N~ have the same law, to deduce that

(8.37) pONt =0) =N~ =0) =1

Let A bean increasing cylinder event of X defined in terms of the states
of vertices in some box A. By (8.37), there are (1%as) no infinite
(—)-clustersintersecting A, so that A lies in the interior of some x-cycle,
labelled +1. Let Ap = [—n, n]2 with n large, and let Dy, be the event that
Ay contains a x-cycle labelled +1 with A in its interior. By the above,
u%(Dp) — 1asn — oco. The event D, is an increasing subset of %,
whence, by (8.36),

,ul(Dn)—>1 asn— oo.

On the event Dy, we find the ‘outermost’ x-cycle H of Ap labelled
+1; this cycle may be constructed explicitly via the boundaries of the
(—)-clustersintersecting d Ap. Since H is outermost, the conditional mea-
sureof ! (given Dy), restricted to A, is stochastically smaller than .°. On
letting n — oo, we obtain u1(A) < u%(A), whichisto say that u! <g u°.
By (8.36), u® = ut.

By (8.37), u}(Nt = 0) = 1, sothat 61(pg(2), 2) = Oasclaimed. O

Last, but definitely not least, we turn towards the SLE, random-cluster,
and Ising models. Stanislav Smirnov has recently proved the convergence
of re-scaled boundariesof large clusters of thecritical random-cluster model
onlL?to SLEj6/3. The corresponding critical Ising model has spin-cluster
boundaries converging to SLE3. These results are having a major impact
on our understanding of the Ising model.

This section ends with an open problem concerning the Ising model on
the triangular lattice. Each Ising spin-configuration o € {—1, +1}¥ ona
graph G = (V, E) givesriseto asubgraph G° = (V, E?) of G, where

(8.38) E° ={e=(u,v) € E:oy=0,}.

If G isplanar, the boundary of any connected component of G corresponds
toacycleinthedual graph G4, andthe unionof al such cyclesisa(random)
even subgraph of Gg; see Section 8.7.

We shall consider the Ising model on the square and triangular lattices,
with inverse temperature g satisfying 0 < 8 < B¢, where B. is the critical
value. By (8.5),

e %P =1 p(2).

We begin with the square lattice L2, for which pc(2) = v/2/(1 + +/2).
When 8 = 0, the model amounts to site percolation with density % Since
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the critical point of this percolation process satisfies p§t® > 1, each spin-
cluster of the 8 = 0 Ising model is subcritical, and in particular has an
exponentially decaying tail. More specifically, write x = y if there
exists apath of L2 from x to y with constant spin-value, let

Sx:{yev:x&y}

be the spin-cluster at x, and let S = &. By the above, there existsa > 0
such that

(8.39) r(S|>n+1) <e n>1,

where Ag denotes the infinite-volume Ising measure. It is standard (and
follows from Theorem 8.18(a)) that there is a unique Gibbs state for the
Ising model when 8 < fB¢; see[136, 283] for example.

The exponential decay of (8.39) extendsthroughout the subcritical phase
in the following sense. Yasunari Higuchi [166] proved that

(8.40) (IS =n+1) <e", n=>1,

wherea = a(B) satisfiesa > Owhen 8 < B:. Thereisamorerecent proof
of this (and more) by Rob van den Berg [39, Thm 2.4], using the sharp-
threshold theorem, Theorem 4.68. Note that (8.40) impliesthe weaker (and
known) statement that the volumes of clusters of the g = 2 random-cluster
model on L2 have exponentially decaying tails.

Inequality (8.40) fails in an interesting manner when the square lattice
is replaced by the triangular lattice T. Since p§*®(T) = 3, the p = 0
Ising model is critical. In particular, the tail of |S| is of power type and,
by Smirnov’s theorem for percolation, the scaling limit of the spin-cluster
boundaries is SLEg. Furthermore, the process is, in the following sense,
critical for al g € [0, B¢]. Sincethereis aunique Gibbs state for 8 < e,
Ag isinvariant under the interchange of spin-values—1 < +1. Let R, bea
rhombus of thelattice with side-lengthsn and axes parallel to the horizontal
and to one of the diagonal lattice directions, and let A, be the event that
R, is traversed from left to right by a + path (that is, a path v satisfying
oy = +1fordly e v). Itiseasly seen that the complement of A, isthe
event that R, is crossed from top to bottom by a — path (see Figure 5.11
for an illustration of the analogous case of bond percolation on the square
lattice). Therefore,

(8.41) Ag(An) =3,  0<p<pe
Let S; be the spin-cluster containing x as before, and define
rad(Sy) = max{8(x, z) : z € &},
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where § denotes graph-theoretic distance. By (8.41), there exists avertex x
such that Ag(rad(Sy) > n) > (2n)~1. By the trangation-invariance of Ag,

rg(rad(S) = n) > 2_1n 0<8 <8

In conclusion, the tail of rad(S) is of power typefor al g € [0, Bc).

It is believed that the SLEg cluster-boundary limit ‘propagates from
B = 0toall vaues 8 < Bc. Further evidencefor this may befoundin [24].
When 8 = B, the corresponding limit is the same as that for the square
lattice, namely SLEs; see[77].

8.6 Proof of the Critical Point in Two Dimensions

The main complicationin the proof of Theorem 8.25 beyondthecaseq = 1
stems from the interference of boundary conditions in the box-crossing
property, and thisiswhere some of the major contributions of [31] areto be
found (see aso [32)]).

Recall the self-dual point ps(q) of (8.26). The inequality pc > pg
follows from the stronger statement 6°(psg, ) = 0 for g > 1 (see (8.33)).
It suffices, therefore, to show that #1(p) > Ofor p > pgg, Sincethisimplies
Pc < ps- The proof of this follows the classic route for percolation but
with two significant twists.

Fora = (a1, ap) € Z? and b = (by, bp) € 72, therectangle Ry p isthe
subgraph induced by theverticeslyinginsidetherectangle[a, ap] x [b1, b2]
of R2. We shall consider two types of boundary condition on Ry p. These
affect thecountsof clusters, and thereforethe corresponding random-cluster
measures.

Wired (denoted ‘1'): al verticesin the boundary of the rectangle are
identified as a single vertex.

Periodic (denoted ‘ per’): each vertex (a1, y) (respectively, (x, by)) of
the boundary of R, , isidentified with thevertex (ag, y) (respectively,
(X, b2)).

Let g > 1; henceforth, we suppress reference to the parameter q. The
random-cluster measure on A, = [—m, m]2 with parameters p, q and
boundary condition b is denoted qu’m. For arectangle R, we write Ch(R)
(respectively, Cy(R)) for the event that R is crossed horizontally (respec-
tively, vertically) by an open path.

Duality plays akey role in the proof. In harnessing duality, it turns out
to be useful to consider crossings not of rectangleswith sides parallel to the
axes but of rectangles with sidesinclined at /4 to the axes. Let R be a
rectangle in R? with sides parallel to the axes and having the origin at one
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0,0

Figure8.2 Therectanglet ([0, 4] x [0, 3]) iscrossed in the north-east
direction by an open path.

corner, and let T : R2 — R? be the rotation/dilation given by
1(2) = 26742, zeC.

We write Cr(z R) (respectively, Cy(t R)) for the event that there exists an
open crossing o of TR in the north-east direction (respectively, north-west
direction). Thisisillustrated in Figure 8.2.

Themain stepsin the proof of Theorem 8.25 are collected inthefollowing
proposition. We may occasionally userealswhereintegersare required, but
alowanceis easily made for this.

8.42 Proposition Letq > 1.
(@) Thereexistsc = c(q) > 0 suchthat, for m > 6k > 0,

(8.43) Ppasm [Cn(z ([0, 3K] x [0, 2K]))] = c.
(b) Let p > p«(q). For o > 1, thereexist a, b > 0 such that

(8.44) p.20n [Cn([0, @] x [0, n])] = 1 - an~®, n>1

(0) For p > p«(q), we havethat ¢ (0 <> 00) > 0.

Once part (c) is proved, one deduces p; < ps, and Theorem 8.25 is
proved. Part (a) may be used to show the exponential decay of connection
probabilitieswhen p < pgy (see [31] for the details).

The choice of periodic boundary condition in parts (a) and (b) is signifi-
cant in that the ensuing measure is translation-invariant on the torus. Since
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Figure 8.3 Therectangle [0, yn] x [0, n] has a horizontal crossing if
each diagonal rectangle possesses a long-way crossing. The inclined
rectangles may be taken to be of size 3nv2 x inv2.

the measureisinvariant also under rotationsthrough z /2, inequalities(8.43)
and (8.44) hold with Cy, replaced by C,, and with appropriately sized boxes.

The measure ¢E,§;,m satisfies amore general box-crossing property of the
following form.

8.45 Lemma Lety > 1. Thereexistsc = c(y, q) > 0 such that

(8.46) Ppgm[Cn([0.yn] x [0,n])] = ¢, m=>yn.

Proof. This may be deduced from (8.43) using positive association (Theo-
rem 8.7) and path-intersection arguments, in a similar manner to the proof
of Theorem 5.23. The necessary construction is illustrated in Figure 8.3.

(Note that (8.46) holds for large n by positive association, and for small n
since there are only finitely many such cases.) O

Since ¢y m <s 5, m» We have by (8.46) that

(8.47) $pg.m [Cn([0. ¥n] x [0, n])] > c.
We let m — oo to abtain the infinite-volume inequality
(8.48) $p.q [Ch([0. yn] x [0,n])] > c.

Proof of Proposition 8.42(a). We follow [31, 32]. There are two steps:
firstly, one uses duality to prove inegqualities about crossings of certain re-
gions; secondly, these are used to estimate the probabilities of crossings of
rectangles.

Thedeviceof using diagonally inclined rectangleswas useful in studying
theinhomogeneous percolation model on I.2; see for example[127, p. 334].
For ease of illustration, rather than rotating the rectangle we shall rotate the
lattice to give Figure 8.4. In the current proof, we consider thisrotated and
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Figure8.4 The lattice L2 and its dual, rotated through 7 /4. Under a
reflection in the vertical line L, the primal is mapped to the dual.

re-scaled square lattice, denoted 1.2, := 1.2, In this rotated universe, a
rectangle[ay, ap] x [by, bp] € R?isidentifiedwithitsintersectionwithLZ,.
Note that the measure qb‘,)):,m is obtained by assigning periodic boundary
condition to the adapted rectangle r—l([—m, m]?).

Sep 1, duality. Let G = (V, E) beafinite, connected planar graph embed-
dedinR2, and let Gy = (Vq, Eq) beits planar dual graph. A configuration
w € {0, 1}F induces a configuration wq € {0, 1}Fd by w(€) + wq(eg) = 1
(asin Section 8.5).

Overlooking temporarily the issue of boundary condition, the dual graph
of arectangle[0, k]2 in1.Z, isarectanglein the shifted lattice, and thisleads
to an aspiration (cf. Lemmab5.22) to find a self-dual measure and a crossing
event with probability bounded away from O uniformly in k. The natural
probability measure is ¢pc, m, and the natural event is Cn([0, K]?). Since
this measure is defined on atorus, and tori are not planar, Euler’'s formula
cannot be applied directly. By aconsideration of the homotopy of the torus,
one obtains viaan amended Euler formulathat there existsc; = ¢1(q) > 0
such that

(8.49) o [ch([o, k]Z)] >c;, O<k<m

We show next aninequality similar to (8.49) but for more general domains
(thus implying (8.49) as a special case). Let y1, y» be paths as described
in the caption of Figure 8.5, and consider the random-cluster measure, de-
noted ¢, ,,, on the primal graph within the shaded region G(y1, y») of the
figure, with mixed wired/free boundary conditions obtained by identifying
al pointson y1, and similarly on y» (these two sets are not wired together
as one). For readers who prefer words to pictures: y1 (respectively, 1»)
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Figure 8.5 Under reflection p in the vertical line L, the primal lattice
is mapped to the dual. The primal path y; is on the left side with an
endpoint abutting L, and similarly y» ison theright. Also, y1 and py»
are non-intersecting with adjacent endpoints as marked.

is a path on the left (respectively, right) of the line L in the figure, with
exactly one endpoint adjacent to L ; reflectionin L isdenoted p; 31 and py»
(and hence y2 and py1 also) do not intersect, and their other endpoints are
adjacent in the sense of the figure.

Writing {y1 <> y2} for theevent that thereexistsan open pathin G(y1, y2)
from y; to y»2, we have by duality that

(8.50) b1 (v1 < ¥2) + ¢ . (py1 <" py2) = 1,

where ¢}, ., isthe random-cluster measure on the dual of the graph within

G(y1, y2) and <* denotes the existence of an open dual connection. Now,
71y, N@samixed boundary conditionin which all verticesof py1Upy2 are

identified. Since the number of clusterswith thiswired boundary condition

differsby at most 1 fromthat inwhich py1 and py» are separately wired, the

Radon-Nikodym derivative of ¢, ., withrespectto p¢,, ,, takesvaluesin

theinterval [q~1, q]. Therefore,

¢}>t1,}/2 (py1 < py2) < q2¢y1,y2(7/1 < ¥2),
which leads via (8.50) to

(8.51) By1,yo (V1 < ¥2) >

1+qg?%

Sep 2, crossing rectangles. We show next how (8.51) may be used to
prove Proposition 8.42(a). Let S = S U S, with S, = [0, 2k]? and
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S = [k, 3K] x [0, 2K], asillustrated in Figure 8.6. Let A bethe (increasing)
event that S U S contains some open cluster C which contains both a
horizontal crossing of $; and avertical crossing of S. We claim that

2

(8.52) PPom(A) > _9 _ m > 6k,
’ 21+ 92

with c; asin (8.49). The proposition follows from (8.52) since, by positive
association and (8.49),

$pos.m [Cn([0, 3K] x [0, 2K])] = $pe.m [AN Ch(S)]
> Phag.m(A)Ppg.m [Ch(S)]
cf
> —=
T 2(1+9?%
We prove (8.52) next.
Let ¢ be the line-segment [k, 2k] x {0}, and let C\‘,(Sg) be the event that

there exists an open vertical crossing of S whose only endpoint on the
x-axisliesin £. By asymmetry of the random-cluster model, and by (8.49),

(8.53) PP mlCL(S)] = 3obe mICu(S)] > 3c1.

On the event C,(S)) (respectively, C(S)) let T’y (respectively, I',) be the
highest (respectively, rightmost) crossing of the required type. The paths
i may be used to construct the large shaded regions of Figure 8.6: L isa
line in whose reflection the primal and dual lattices are interchanged, and
thereflections pT'j of theT"j frame aregion bounded by subsetsy; of I'j and
their reflections py;. The situation is generally more complicated than the
illustration in the figure since the T'; can wander around S (see [31]), but
the essential ingredients of the proof are clearest in thisillustration.
Let| = {I'y NI'2 # @}, sothat

854)  Pham(A) = dhgm[Ch(S) NCUSHNIT]
+ b m[AN Ch(S) NCYUSHNT].
On the event Cn(S1) N CH(S) N T, we have
Pher.m(A | T1,T2) = $pg m(v1 < ¥2in G(y1, v2) | T1, T2).

Since {y < y2in G(y1, y2)} is an increasing event, the right side is no
larger if we augment the conditioning with the event that all edges of §
strictly above I'1, and those of S strictly to the right of Ty, are closed. It
may then be seen that

(855)  @ham(yr < 12inG(y1, 12) | T1,T2) = dyy1, (11 < 72).
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(3k, 2k)

0,0

Figure 8.6 The path I'1 is the highest crossing of S;, and I' is the
rightmost crossing of S starting in ¢£. The large shaded regions are
framed by the I'; and their reflectionsin L. Thisis an illustration of
the geometrically simplest situation. Notethat there exist more complex
situations, depending on the I';. Further details may be found in [31,
32].

Thisfollows by (8.15), by conditioning on the configuration off G(y1, y2).
By (8.53), (8.54), (8.51), and positive association,

1
PBom(A) > rqulbg:,m(ch(sl) NCH(D))
4
~214+9%°

whichis (8.52).
We repeat the need for care in deducing (8.55) in general, since the situ-
ation can be more complicated than that indicated in Figure 8.6. a

Proof of Proposition 8.42(b). We use the box-crossing property (8.46) of
the measure ¢pe; m together with the sharp threshold Theorem 4.73. Let
Tm denote the torus obtained by considering the rectangle [—m, m]? with
periodic boundary conditions. Note that p = qb,‘ﬁn is invariant with
respect to the group Iy, of tranglations of Ty, and that Ty, acts transitively
on Tpm.

Letm=2anande = % min{psg, 1 — Psg}. Let A bethe event that there
exists some tranglation in T, of [0, 2an] x [O, %n] that is crossed hori-
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zontally by an open path. Since A is Ty, n-invariant, we have by Theorem
4.73 that there exists ¢ = c(q) > 0 such that

d
(8.56) d—pxpp(A) > cyp(A) (1= yp(A)logN, e<p<l—e,

where the number N of edges of Toqn satisfies N > (an)2.
By (8.46), there exists c; > 0 such that

(8.57) Vo (A) > Y, [ch([o, 2an] x [0, %n])] > a1,

Inequality (8.56) may beintegrated from psy to p (> Psg), Subject to (8.57)
(asin Exercise 4.11), to obtain that

(8.58) Yp(A) =1—-N7", m>1,

for somen = n(p) > 0.
The next step isgeometrical. ForO <i <3and0 < j < 8q, let

Aij = Ch((iom, $jn) + 1[0, an] x [0, n]),

where the trandlation by (ian, 1 jn) is interpreted as taking place within
the torus To,n. It may be seen that A C Ui,j A j. Therefore, by positive
association (Theorem 8.7),

Yp(A) = 1—yp(A)
<1- wp(ﬂ A—,)
i
24q
—1- {1 — wp[ch([o, an] x [0, n])]}
It follows by (8.58) that
x/fp[ch([o, an] x [0, n])] > 1 — N/,
asrequired. O
Proof of Proposition 8.42(c). Let p > pgy, and consider the annulus Ak =
Age1\ A, asillustratedin Figure8.7. Let A betheevent that Ay contains
anopencycleC with Oinitsinsideand in addition thereisan open path from

C to the boundary 0 Asx+2. We claim that there exist ¢, d > 0, independent
of k, such that

(8.59) $r1oxx (A =1—ce ™ k=1
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d A3k+2

( aAgk_ L=

Figure8.7 If thefourinner box-crossingsexist, aswell asthe outermost
box-crossing, then the event Ax occurs.
Thisisproved asfollows. Theevent Ay, occurswhenever the two rectangles
[_3k+l _3k] » [_3k+l 3k+1] [3k 3k+l] x [_3k+1 3k+1]
are crossed vertically, and in addition the three rectangles
[_3k+l 3k+l] % [_3k+1 _3k] [_3k+l 3k+l] % [3k 3k+l]
[3¢, 347 x [-3, 3
are crossed horizontally. See Figure 8.7. Each of these five rectangles has
shorter dimension 2 x 3X and longer dimension not exceeding 8 x 3.
By stochastic ordering, positive association (see Theorems 8.7 and 8.8),
and Proposition 8.42(b),
5
B2 16,3 (M0 = [9750 4 [On(10.8x 39 x [0.2x 3) |}
> (1—a37%®,

for somea, b > 0. Ineguality (8.59) is proved.

The events Ax have been defined in such away that, on the event I =
MNkek Ax, there exists an infinite open cluster. It suffices then to show that
qb[l)vq(lK) > 0 for large K. Now,

m m—-1 m
(8.60) ¢%,,q<ﬂ Ak>=¢$,,q<Am>1'[¢$,,q Acl () A -
k=K k=K
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Let 'k be the outermost open cyclearound 4y, whenever thisexists. The
conditioning on the right side of (8.60) amounts to the existence of T'ky1
together with the event {T'x11 < d A2}, in addition to some further in-
formation, | say, about the configuration outside I'x1. For any appropriate
cycley, theevent {T'k+1 = ¥} N{y < dAz2} isdefined in terms of the
states of edgesin y and outside y. On this event, Ax occursif and only if
Ax(y) = {Tk exists} N {T'k < y} occurs. Thelatter event ismeasurableon
the states of edgesinside y, and the appropriate conditional random-cluster
measure is that with wired boundary condition inherited from y, denoted
qb)%. (We have used the fact that the cluster-count inside y is not changed
by conditioning on I.) Therefore, the term in the product on the right side
of (8.60) equalsthe average over y of

bra| A | (Tker =710y < 082} 1] = oF (A,
Let A = Az2. Since
By 16xak <5t P <st ¢y
and Ax = Ax(A) C Ak(y), we have that
$5 (A(r)) = $ (A(D) = 1 16 5 (AW

In conclusion,

I=k+1

m
(861) (bé’q (Ak m AI) = ¢;16x3k(Ak)-

By (8.59)~(8.61),
m m—1

¥p. (ﬂ Ak) > ¢p.q(Am) [ [ (1= ce™®).
k=K k=K

By (8.48) and positive association, thereexistsc, > 0suchthat qb%’q(Am) >
¢y form > 1. Hence,

m 9]
Ppal) = lim ¢ (ﬂ Ak> >c [[@—ce™™),
k=K k=K

which is strictly positive for large K. Therefore 61(p, q) > 0, and the
theorem is proved. d
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8.7 Random even graphs

A subset F of the edge-set of G = (V, E) is called even if each vertex
v € V isincident to an even number of elements of F, and we write & for
the set of even subsets F. The subgraph (V, F) of G isevenif F iseven.
Itis standard that every even set F may be decomposed as an edge-disjoint
union of cycles. Let p € [0,1). The random even subgraph of G with
parameter p isthat with law

(8.62) np(F) = Zip'F'(l— p) EFL, Fee,
e

where

Ze=) pFla—p'F\Fl
Fe&

When p = 3, we talk of auniform random even subgraph.

We may express np in the following way. Let ¢p = ¢p 1 be product
measure with density p on = {0, 1}E. For w € Q, let 9w denote the set
of verticesv € V that areincident to an odd number of w-open edges. Then

¢p(wF)
Pp(dw = @)’

where w is the edge-configuration whose open set is F. In other words,
¢p describesthe random subgraph of G obtained by randomly and indepen-
dently deleting each edge with probability 1 — p, and np, isthe law of this
random subgraph conditioned on being even.

Let A g bethelsingmeasureonagraph H withinversetemperature 8 > 0,
presented in the form
(8.63)

kﬁ(d):iexp(ﬂ Z ouov), oc=(op:iveV)ex,

Zi e=(u,v)eE

with = = {—1, +1}V. See(7.19) and (7.21). A spin configuration o gives
riseto asubgraph G° = (V, E?) of G with E? givenin (8.38) as the set of
edges whose endpoints have like spin. When G is planar, the boundary of
any connected component of G° corresponds to a cycle of the dual graph
Gy, and the union of al such cycles is a (random) even subgraph of Gg.
A glance at (8.3) informs us that the law of this even graph is n,, where

np(F) = Feg,

;
—e 2,
1—r

Notethatr < % Thus, one way of generating a random even subgraph of
aplanar graph G = (V, E) with parameter r < [0, %] isto take the dual of
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the graph G° with o chosen with law (8.63), and with 8 = S(r) chosen
suitably.

The aboverecipemay becast in termsof therandom-cluster model onthe
planar graph G. First, we samplew according to therandom-cluster measure
$pgwWithp=1— e 28 and q = 2. To each open cluster of w we alocate
a random spin taken uniformly from {—1, +1}. These spins are constant
on clusters and independent between clusters. By the discussion of Section
8.1, the resulting spin-configuration o has law Ag. The boundaries of the
spin-clusters may be constructed asfollowsfrom w. Let C1, Co, ..., Cc be
the external boundaries of the open clusters of w, viewed as cycles of the
dual graph, andlet&1, &2, . . ., & beindependent Bernoulli random variables
with parameter 3. Thesum Y"; & Cj, with addition interpreted as symmetric
difference, haslaw ;.

It turns out that we can generate a random even subgraph of a graph G
from the random-cluster model on G, for an arbitrary, possibly non-planar,
graph G. We consider first the uniform case of p with p = %

Weidentify thefamily of all spanning subgraphsof G = (V, E) with the
family of all subsetsof E (theword* spanning’ indicatesthat these subgraphs
have the original vertex-set V). This family can further be identified with
Q = {0, 1})F = 75, and is thus a vector space over Zy; the operation + of
addition is componentwise addition modulo 2, which translates into taking
the symmetric differenceof edge-sets: F1+F> = F1 A Fofor g, Fo C E.

The family & of even subgraphs of G forms a subspace of the vector
space ZZE, since F1 A Frisevenif Fy and F, are even. In particular, the
number of even subgraphs of G equals 2¢(®), where ¢(G) = dim(&). The
guantity c(G) is thus the number of independent cyclesin G, and is known
as the cyclomatic number or co-rank of G. Asiswell known,

(8.64) c(G) = |E| — V| + k(G).

Compare (8.28).

8.65 Theorem [136] LetCq, Co, ..., Cc beamaximal set of independent
cyclesin G. Let &1, &2, . . ., & be independent Bernoulli random variables

with parameter % Then ) ; & C; isa uniformrandom even subgraph of G.

Proof. Since every linear combination >, ¥iCi, ¢ € {0, 1}, iseven, and
since every even graph may be expressed uniquely in thisform, the uniform
measure on {0, 1}° generates the uniform measure on &. O

One standard way of choosing such a set Cq1, Co, ..., C¢, when G is
planar, is given as above by the external boundaries of the finite faces.
Another isasfollows. Let (V, F) be aspanning subforest of G, that is, the
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union of a spanning tree from each component of G. It iswell known, and
easy to check, that each edge g € E \ F can be completed by edgesin F
to form a unique cycle C;. These cycles form a basis of &. By Theorem
8.65, we may therefore find arandom uniform subset of the C; by choosing
arandom uniform subset of E \ F.

We show next how to couple the g = 2 random-cluster model and the
random even subgraph of G. Let p € [O, %], and let w be arealization of the
random-cluster model on G with parameters2pandq = 2. LetR = (V, y)
be auniform random even subgraph of (V, n(w)).

8.66 Theorem [136] The graph R = (V, y) is a random even subgraph
of G with parameter p.

This recipe for random even subgraphs provides a neat method for their
simulation, provided that p < % We may sample from the random-cluster
measure by the method of coupling from the past (see [245]), and then
sample a uniform random even subgraph from the outcome, as above. If G
isitself even, we can further sample from »p, for p > % by first sampling
asubgraph (V, F) from 51, and then taking the complement (V, E \ F),
which has distribution 7p. We may adapt this argument to obtain a method
for sampling fromnp for p > % and general G (see[136] and Exercise8.19).
When G isplanar, thisamountsto sampling from an antiferromagnetic Ising
model on its dual graph.

There is a converse to Theorem 8.66. Take a random even subgraph
(V, F) of G = (V, E) with parameter p < % Toeache ¢ F, weassign
an independent random colour, blue with probability p/(1 — p) and red
otherwise. Let B be obtained from F by adding in all blue edges. It isleft
as an exercise to show that the graph (V, B) haslaw ¢2p .

Proof of Theorem8.66. Let g C E beeven, and let w be a sample configu-
ration of the random-cluster model on G. By the above,
279 if g € n(w),

]P) == =
=9l : 0 otherwise,

wherec(w) = c(V, n(w)) isthenumber of independent cyclesin thew-open
subgraph. Therefore,

Ply=0g)= Y. 2 ¢ys).

:g<n(w)
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By (8.64),
P(y = Q) Z (Zp)lﬂ(w)l(l _ zp)IE\n(w)lzk(a))(%)lﬂ(w)l—lVH-k(w)
:gCn(w)
o Z pl7@l (1 — 2p)lEVI@)
0 g<n(®)
= pl9(1— pEN9, gCcE.
The claim follows. 0

The above account of even subgraphswould be gravely incomplete with-
out areminder of the so-called ‘ random-current representation’ of the lsing
model. Thisis arepresentation of the Ising measure in terms of a random
field of loops and lines, and it has enabled a rigorous analysis of the Ising
model. See [3, 7, 10, 11, 93] and [130, Chap. 9]. The random-current
representation is closely related to the study of random even subgraphs.

8.8 Exercises

8.1 [146] Let ¢p,q be arandom-cluster measure on afinitegraph G = (V, E)
with parameters p and g. Prove that

d
gpfpaA) =5 [#p.a(MLa) — #p.g(M)ép.g(A)]

1-p

for any event A, where M = |n(w)| isthe number of open edges of aconfiguration
w, and 1, istheindicator function of the event A.

8.2 Show that ¢p, q is positively associated whenq > 1, inthat ¢p (AN B) >
¢p,q(A)¢p,q(B) forincreasing events A, B, but that ¢ ¢ doesnot generally have
this property whenq < 1.

8.3 For anedgeeof agraph G, wewrite G\ efor the graph obtained by deleting
e, and G.e for the graph obtained by contracting e and identifying its endpoints.
Show that the conditional random-cluster measure on G given that the edge e is
closed (respectively, open) isthat of ¢G\e, p,q (respectively, ¢G e p,q)-

8.4 Show that random-cluster measures ¢p g do not generally satisfy the BK
inequality if g > 1. That is, find afinite graph G and increasing events A, B such

8.5 (Important research problem) Prove or disprove that random-cluster mea-
sures satisfy the BK inequality if g < 1.

8.6 Let ¢p q be the random-cluster measure on a finite connected graph G =
(V, E). Show, inthe limit as p, g — 0 in such way that q/p — 0, that ¢p q
converges weakly to the uniform spanning tree measure UST on G. Identify the
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corresponding limitas p, g — Owith p = g. Explain therelevance of theselimits
to the previous exercise.

8.7 [110] Comparison inequalities. Use the Holley inequality to prove the
following ‘ comparison inequalities’ for arandom-cluster measure ¢p, q on afinite
graph:

bpyq <sdpq ifqd >q, 9 =1 p <p,

p __ P
1-p) " aqd-p°

/

¢p’,q/ > Pp,q if q’ >dq, q’ >1, T

8.8 Let q > 1, and write ¢f = ‘Pi,p,q for the random-cluster measure on
the finite subgraph A of L9 with boundary condition &. Show that ¢¢ <g ¢V if
§=<y.

8.9 [9] Show that the wired percolation probability 61(p, q) on L9 equalsthe
limit of the finite-volume probabilities, in that, for q > 1,

ol(p, q) = A"{Qd ¢}\7p’q(o < 9A).

810 Letg > 1,L > 1, and d > 3, and consider the random-cluster measure
VL,n,p,gonthedabS(L, n) = [0, L] x[—n, n]9-with free boundary conditions.
Let I1(p, L) denote the property that

Ihrggrgf erS?E,n){wL’n’p’q(o <X} >0.
Show that TT(p, L) = M(p/, L) if p< p’andL < L.
8.11 [130, 220] Mixing. A trandation t of L9 induces a translation of Q@ =

{0, 1}]Ed given by t(w)(e) = w(t~1(e)). Let r be atrandation other than the
identity, and let A and B be cylinder events of Q2. Show, forq > 1andb =0, 1,
that

¢p.q(ANT"B) > 65 4 (AP o(B)  asn— oo.

The following may help when b = 0, with asimilar argument whenb = 1.
a. Assume Aisincreasing. Let A bedefined onthebox A, andlet A bealarger
box with "B defined on A \ A. Use positive association to show that
#2 pq(ANT"B) = 6] | (AR 5 q(t"B).
b. Let A 4 z9, and thenn — oo and A 1 Z9, to obtain

liminf 60 (AN T"B) = ¢ q(A)$) 4(B).

By applying this to the complement B also, deduce that ¢>8’q(A Nz"B) —
#9 4 (B (B).
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8.12 Ergodicity. Deduce from the result of the previous exercise that the ¢g,q
are ergodic.

8.13 Usethe comparison inequalitiesto prove that the critical point pc(q) of the
random-cluster model on L9 satisfies

qpc(d)
14+@—-DpcD)’
Inparticular, 0 < pc(q) < 1ifg>1landd > 2.

8.14 Let u bethe ‘usual’ coupling of the Potts measure and the random-cluster
measureon afinitegraph G. Derivetheconditional measuresof thefirst component
given the second, and of the second given the first.

815 Letq € {2,3,...},and let G = (V, E) be afinite graph. Let W C V,
andlet o1, 02 € {1,2, ..., q}W. Starting from the random-cluster measure ¢\,
on G with members of W identified as a single point, explain how to couple the
two associated Potts measures 7 (- | ow = 0j), 1 = 1, 2, in such away that: any
vertex X not joined to W in the random-cluster configuration has the same spinin
each of the two Potts configurations.

LetBC{1,2,...,q}',whereY C V \ W. Show that

m(B|ow =01) — 7(B | ow = 02)| < $plqg(W < Y).

Pc(D) = pc(qQ) < q=1

8.16 Infinite-volume coupling. Let ¢85, be a random-cluster measure on L9
withb € {0,1} andq € {2,3,...}. If b = 0, we assign a uniformly random
edlementof Q = {1, 2, ..., q} to each open cluster, that is constant within clusters
and independent between clusters. We make a similar assignation if b = 1, with
the difference that any infinite cluster receivesspin 1. Show that the ensuing spin-
measures 7P are the infinite-volume Potts measures with free boundary condition
and 1 boundary condition, respectively.

8.17 Ising mixing and ergodicity. Using the results of the previous two ex-
ercises, or otherwise, show that the Potts measures 7P, b = 0,1, are mixing
(in that they satisfy the first equation of Exercise 8.11), and hence ergodic, if
¢B (0 <> 00) = 0.

8.18 [125] Show for the random-cluster model on L2 that pe(q) > Kkq, Where
kq = 4/0/(1+ /0) isthe self-dua point.

8.19 [136] Make aproposal for generating arandom even subgraph of the graph
G = (V, E) with parameter p satisfying p > .

You may find it useful to provethefollowing first. Let u, v be distinct vertices
in the same component of G, and let = be a path from u to v. Let # be the set of
even subsets of E, and £4-? the set of subsets F such that degg (x) isevenif and
only if X # u, v. [Here, degg (X) is the number of elements of F incident to X.]
Then # and Y-V are put in one-one correspondenceby F <> F A 7.

8.20 [136] Let (V, F) be a random even subgraph of G = (V, E) with law
np, Where p < % Each e ¢ F is coloured blue with probability p/(1 — p),
independently of all other edges. Let B be the union of F with the blue edges.
Show that (V, B) has law $2p,2-
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Quantum Ising Model

Thequantum Ising model on afinite graph G may betransformedinto
acontinuum random-cluster model on the set obtained by attaching a
copy of thereal lineto each vertex of G. The ensuing representation
of the Gibbs operator is susceptible to probabilistic analysis. One
application is to an estimate of entanglement in the one-dimensional
system.

9.1 TheModel

The quantum Ising model was introduced in [205]. Its formal definition
requires a certain amount of superficialy alien notation, and proceeds as
followson thefinitegraph G = (V, E). To eachvertex x € V isassociated
a quantum spi n—% with local Hilbert space C2. The configuration space #
for the system isthe tensor product # = &, ., C2. Asbasisfor the copy
of C2 labelled by v € V, we take the two eigenvectors, denoted as

|+>U:<é)s |_>U=(2>s
Q) _ 1 0
=5 3)

at the site v, with corresponding eigenvalues +1. The other two Pauli
matrices with respect to this basis are

0 1 0 —i
=(38). w2=()3)

In the following, |¢) denotes a vector and (¢| its adjoint (or conjugate
transpose).2

of the Pauli matrix

1Thetensor product U ® V of two vector spacesover F isthe dual space of the set of
bilinear functionalson U x V. See[120, 154].
2With apologies to mathematicians who dislike the bra-ket notation.
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Let D betheset of 2/V! basisvectors|n) for # of theform|n) = &, |£),.
Thereis anatural one—one correspondence between D and the space

¥ ={-1+1V.
Wemay speak of the membersof X asbasisvectors, and of # astheHilbert

space generated by X.

Let 1,8 € [0, oo0). The Hamiltonian of the quantum Ising model with
transversefield is the matrix (or ‘ operator’)

(9.1 H= —%k Z 053)0153) -8 Zaél).

e=(u,v)ekE veV

Here, A isthespin coupling and § isthetransverse-field intensity. Thematrix
H operates on vectors (elements of #) through the operation of each o, on
the component of the vector at v.

Let 8 € [0, c0) be the parameter known as the ‘inverse temperature’.
The Hamiltonian H generates the matrix e~ H and we are concerned with
the operation of thismatrix on elementsof #. The correct way to normalize
amatrix Aisby itstrace

tr(A) = > (nlAln).

nex

Thus, we define the so-called ‘ density matrix’ by

1
9.2 — i —/3H7
9.2 vG(B) Zg(ﬁ)e
where
(9.3) Zs(B) =tr(e P,

It turns out that the matrix elements of vg(8) may be expressed in terms
of atype of ‘path integral’ with respect to the continuum random-cluster
model on V x [0, 8] with parameters 1, 8, and q = 2. We explain thisin
the following two sections.

The Hamiltonian H has a unique pure ground state |yg) defined at zero
temperature (that is, in thelimit as 8 — o0) asthe eigenvector correspond-
ing to the lowest eigenvalue of H.
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9.2 Continuum Random-Cluster M odel

The finite graph G = (V, E) may be used as a base for afamily of proba-
bilistic modelsthat live not on the vertex-set V but onthe continuum’ space
V x R. Thesimplest of these modelsis continuum percolation; see Section
6.6. We consider here arelated model called the continuum random-cluster
model. Let 8 € (0, 00), and let A bethe‘box’ A = V x [0, 8]. In the
notation of Section 6.6, let P4 ;s denotethe probability measure associated
with the Poisson processes Dy, X € V,and Be, e = (X, y) € E. Assample
space, we take the set 2, comprising al finite sets of cuts and bridgesin
A, and we may assume without loss of generality that no cut isthe endpoint
of any bridge. For w € @4, wewrite B(w) and D (w) for the sets of bridges
and cuts, respectively, of w. The appropriate o-field #, is that generated
by the open sets in the associated Skorohod topology; see [43, 102].

For agiven configuration w € Q 4, let k(w) be the number of its clusters
under theconnectionrelation <>. Letq € (0, oo), and definethe* continuum
random-cluster’ measure ¢, 5.,5,q by

1
(9.4) dga is.q(@) = Eqk(w)dPA,x,s(w), w € Q.

for an appropriate normalizing constant Z = Zx(A,6,q) cadled the
‘partition function’. The continuum random-cluster model may be studied
in much the same way as the random-cluster model on a (discrete) graph;
see Chapter 8.

The space 2 is a partialy ordered space with order relation given by:
w1 < w2 if B(w1) € B(wp) and D(w1) 2 D(wy). A random variable
X : Qap — Riscaled increasing if X(w) < X(w') whenever o < o'.
A non-empty event A € ¥, iscalled increasing if itsindicator function 1
isincreasing. Given two probability measures 111, 2 on the measurable
pair (2, Fa), we write 1 <g w2 if u1(X) < wu2(X) for al bounded
increasing continuous random variables X : Q5 — R.

The measures ¢4 5,5, have certain properties of stochastic ordering as
the parameters vary. In rough terms, the ¢4 5 s,q inherit the properties of
stochastic ordering and positive association enjoyed by their counterparts
on discrete graphs. This will be assumed here, and the reader is referred
to [46] for further details. Of value in the forthcoming Section 9.5 is the
stochastic inequality

(9.5 da5,9 <t Pa,xs q=>1,

wherePa ; s = ¢ai.s5.1-
The underlying graph G = (V, E) has so far been finite. Singularities
emergeonly intheinfinite-volume (or ‘ thermodynamic’) limit, and thislimit
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may be taken in much the same manner as for the discrete random-cluster
model, whenever g > 1, and for certain boundary conditionst. Henceforth,
we assumethat V is afinite connected subgraph of the lattice G = L9, and
we assign to the box A = V x [0, 8] a suitable boundary condition. As
describedin [130] for thediscrete case, if the boundary condition z ischosen
in such away that the measures ¢}, , ; , aremonotonicasV + 74, then the
weak limit
b5.5.0.8 = J'T’Qd DA,

exists. We may similarly allow the limit as 8 — oo to obtain the ‘ground
state’ measure

o= lim ¢; .
¢A,5,q /3—>oo¢)"5’q”3

We shall generally work with the measure ¢ 5. with free boundary condi-
tion , written simply as ¢;. 5 q, and we notethat it is sometimes appropriate
totake B < oo.

The percolation probability is given by

0(%,8,Q) = ¢n,5,q(IC| = 00),

where C isthecluster at theorigin (0, 0), and |C| denotesthe aggregate (one-
dimensional) Lebesgue measure of the time intervals comprising C. By
re-scaling the continuum R, we see that the percolation probability depends
only ontheratio p = 1 /8, and wewrite 8(p, q) = 6(1, 8, q). Thecritica
point is defined by

pe(LY, @) = sup{p : 6(p, q) = 0}.

In the special case d = 1, the random-cluster model has a property of
self-duality which leads to the following conjecture.

9.6 Conjecture Thecontinuumrandom-cluster model onL xR with cluster-
weighting factor satisfying g > 1 hascritical value pc(LL, q) = Q.

It may be proved by standard meansthat pc(LL, q) > g. See (8.34) and
[130, Sect. 6.2] for the corresponding result on the discrete lattice L2. The
casesq = 1, 2 are special. The statement pc(LL, 1) = 1is part of Theorem
6.18(b). When q = 2, the method of so-called ‘random currents may
be adapted to the quantum model with several consequences, of which we
highlight the fact that pc(LL, 2) = 2; see[47, 48].

The continuum Potts model on V x R is given as follows. Let g be an
integer satisfying q > 2. To each cluster of the random-cluster model with
cluster-weighting factor q is assigned a uniformly chosen ‘spin’ from the
space ¥ = {1,2,...,q}, different clusters receiving independent spins.
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The outcomeisafunctiono : V x R — X, and this is the spin-vector of
a‘continuum g-state Potts model’ with parameters A and §. When g = 2,
we refer to the model as a continuum Ising model.

It is not hard to see® that the law P of the continuous Ising model on
A =V x [0, Bl isgiven by

1
dP(o) = ze)”l‘(a) dPx.s(Ds),

where D, isthe set of (x,s) € V x [0, B8] suchthat o (X, s—) # o (X, $+),
Pa s isthe law of afamily of independent Poisson processes on the time-
lines{x} x [0, B], x € V, withintensity §, and

B
Le)= > /(;l{a(x,u):a(y,u)}du

(x,y)eky

is the aggregate Lebesgue measure of those subsets of pairs of adjacent
time-lines on which the spins are equal. As usual, Z is the appropriate
normalizing constant.

9.3 Quantum Ising via Random-Cluster M odel

In this section, we describe the relationship between the quantum Ising
model on a finite graph G = (V, E) and the continuum random-cluster
model on G x [0, 8] withq = 2. We shall seethat the density matrix v (8)
may be expressed in terms of ratios of probabilities. The basisof thefollow-
ing argument lies in the work of Jean Ginibre [118], and it was developed
further by Campanino, von Dreyfus, Klein, and Perez. Thereader isreferred
to[14] for amorerecent account. Similar geometrical transformationsexist
for certain other quantum models; see[15, 233].

Let A =V x [0, 8], and let Q2,4 be the configuration space of the con-
tinuum random-cluster model on A. For given 1, §, and q = 2, let ¢ g
denote the corresponding continuum random-cluster measure on 2, (with
free boundary conditions). Thus, for economy of notation we suppress
referenceto A and .

We next introduce a coupling of edge and spin configurations asin Sec-
tion 8.1. For w € Q4, let S(w) denote the (finite) space of all functions
s:V x [0, 8] — {—1, +1} that are constant on the clusters of w, and let S
be the union of the S(w) over w € Q4. Given w, we may pick an element
of S(w) uniformly at random, and we denote this random element as o.
We shall abuse notation by using ¢g s to denote the ensuing probability

3ThisisExercise 9.3.
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measure on the coupled space 2, x S. Fors € Sand W C V, we write
sw,0 (respectively, sw,g) for the vector (s(x,0) : X € W) (respectively,
(s(x, B) : x € W)). We abbreviate sy o and sy, g to sp and sg, respectively.

9.7 Theorem [14] The elements of the density matrix vg (8) satisfy

¢ ploo=mn, og=1)

/
, n,n €X.
¢G,g(00 = 0p)

(9.8) ' lva(B)In) =

Readers familiar with quantum theory may recognize this as a type of
Feynman—K ac representation.

Proof. We use the notation of Section 9.1. By (9.1) withy = 33", ) Al
and I the identity matrix,*

9.9) e BH+Y) _ g BUV),

where
U=-§ ZO')E]'), V = —% Z k(a)gg)o)(,g) - D).
xeV e=(x,y)eE

Although these two matrices do not commute, we may use the so-called
Lie-Trotter formula (see, for example, [262]) to expresse U +VY) interms
of single-site and two-site contributions due to U and V, respectively. By
the Lie-Trotter formula,

e~ (UHVIAL _ o-UAtg-VAt | A2 asAt | 0,

S0 that
e PUHY) — |im (e UAtg—VAtyp/AL
At—0

Now expand the exponential, neglecting terms of order o(At), to obtain

9.10) e PH+Y) _ |j 1— SADT + SAtPL
(9.10) e Jim ]:[[( I+ 8ALP]

plat
<[] [(1—AAt)}1+/\AtPij]) :

e=(x.y)

where P} = o'(])'() +Iand Px3,y _ %(0)53)0;/3) 4.

As noted earlier, & = {—1, +1}Y may be considered as a basis for #.
The product (9.10) contains a collection of operators acting on sites x and

“Note that (' |e?+|n) = eS(i’|e?|n), o the introduction of y into the exponent is
harmless.
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on neighbouring pairs (x, y). We partition the time interval [0, 8] into N
time segmentslabelled Atg, Aty, ..., Atn, each of length At = 8/N. On
neglecting terms of order o(At), we may see that each given time segment
arising in (9.10) contains exactly one of the following: the identity matrix
I, amatrix of theform Py, and amatrix of theform P?, . Each such matrix
occurs within the given time-segment with a certain weight.

Let us consider the actions of these matrices on the states |5) for each
timesegment Ati,i € {1, 2, ..., N}. Thematrix elements of the single-site
operator at x are given by
(9.12) ('Y +1pm) = 1.

This is easily checked by exhaustion. When this matrix occurs in some
time-segment At;, we place amark in the interval {x} x At;j, and we call
thismark a cut. Such acut has a corresponding weight § At + o(At).

The matrix element involving the neighbouring pair (x, y) yields, as
above,

1 ifnx=mny=mny=nj,
©12)  lo®o® +1in) = { e & el
When this occursin sometime segment At;, we place abridge between the
intervals {x} x At; and {y} x At;j. Such abridge hasacorresponding weight
AAL + O(AL).

Inthe limit At — 0, the spin operators generate thus a Poisson process
with intensity é of cutsin each time-line {x} x [0, 8], and a Poisson process
withintensity A of bridgesbetween eachpair {x} x [0, 8], {y} x[0, B] of time-
lines, for neighbouring x and y. These Poisson processes are independent
of oneanother. Wewrite Dy for the set of cutsat thesite x and Be for the set
of bridges corresponding to an edge e = (X, y). The configuration spaceis
theset 2, containing all finite sets of cutsand bridges, and we may assume
without loss of generality that no cut is the endpoint of any bridge.

For two points (X, s), (y,t) € A, we write as before (X, S) < (y,t)
if there exists a cut-free path from the first to the second that traverses
time-lines and bridges. A cluster is a maximal subset C of A such that
(X,8) < (y,t) for dl (x,s), (y,t) € C. Thus the connection relation
<> generates a continuum percolation process on A, and we write Py ; s
for the probability measure corresponding to the weight function on the
configuration space 2. That is, Px » s is the measure governing afamily
of independent Poisson processes of cuts (with intensity §) and of bridges
(with intensity A). The ensuing percolation process has appeared in Section
6.6.

Equations (9.11) and (9.12) are to be interpreted in the following way.
In calculating the operator e #(H+7) we average over contributions from



196 Quantum Ising Model

realizations of the Poisson processes, on the basis that the quantum spins
are constant on every cluster of the corresponding percolation process, and
each such spin-function is equiprobable.

More explicitly,
(9.13)

e ) = / dm,x,m)(v‘ [T o ] Pf,y(t’>),
(x,t)eD (x,y),t)eB

where 7~ denotes the time-ordering of the termsin the products, and B (re-
spectively, D) istheset of all bridges (respectively, cuts) of the configuration
(ONS] QA.

Let w € Q4. Let u, be the counting measure on the space S(w) of
functionss : V x [0, 8] — {—1, +1} that are constant on the clusters of
w. Let K(w) be the time-ordered product of operatorsin (9.13). We may
evaluate the matrix elements of K (w) by inserting the ‘resolution of the
identity’

(9.14) > il =1

nex
between any two factors in the product, obtaining by (9.11) and (9.12) that
(9.15) K@l = Y Ls=nl=ry 1.7 €.

seS(w)

Thisisthe number of spin-allocationsto the clusters of w with given spin-
vectorsat times0 and 8.
The matrix elements of vg (B) are therefore given by

1
(9.16)  (n'|va(B)In) = mfl{sozn}l{sﬂzn/}duw(s) dPx 3.s(w),

forn, n’ € T, where
(9.17) Zgp = tr(e PHI),

Forn,n" € X, let I, ,y bethe indicator function of the event (in Q,) that,
foral x,y eV,

if (X,0) < (y,0), thenny = ny,
if (x, ) < (v, B). then n, = 11},
if (x,0) < (y, B),thenny = 77;-

This is the event that the pair (n, n’) of initial and final spin-vectors is
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Figure9.1 An example of a space-time configuration contributing to
the Poisson integral (9.18). The cutsare shown ascirclesand the distinct
connected clusters are indicated with different line-types.

‘compatible’ with the random-cluster configuration. We have that

1
©18) 0/ e (Bl = 7 — [ dPr1s@) 3 Lanlisy)
G.A seS(w)

1 .
=-— / K@, AP 5(@)
G.8

= Zi(pG,ﬂ(O’O =n,0p=1n). 10 €I,
G.p
where k(w) is the number of clusters of » containing no point of the form
(v, 0)or (v, B),forv € V. SeeFigure9.1for anillustration of aspace-time
configuration contributing to the Poisson integral (9.18).
On setting n = 1" in (9.18) and summing over n € X, we find that

(9.19) Zc,p = ¢g,p(00 = 0p),
asrequired. O

Thissection closeswith an alternative expressionfor thetrace formulafor
Zgp = tr(e”PH+7)) We consider ‘periodic’ boundary conditions on A
obtained by, for each x € V, identifying thepair (x, 0) and (x, 8) of points.
Let kP®(w) be the number of open clusters of o with periodic boundary
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conditions, and gbg% be the corresponding random-cluster measure. By
setting n” = 5 in (9.18) and summing,

1 — _
(920) 1= (nlva(B)ln) = m/ KOIF @K Ay ; (),
nex ’

whence Zg g equals the normalizing constant for the periodic random-
cluster measure ¢g .

9.4 Long-Range Order

The density matrix has been expressed in terms of the continuous random-
cluster model. This representation incorporates a relationship between the
phase transitions of the two models. The so-called ‘order parameter’ of
the random-cluster model is of course its percolation probability 6, and the
phase transition takes place at the point of singularity of 6. Another way of
expressing thisis to say that the two-point connectivity function

606 Y) = dgs((X. 0 < (¥,0), X yeV,

is a natural measure of long-range order in the random-cluster model. It
isless clear how best to summarize the concept of long-range order in the
guantum Ising model, and, for reasons that are about to become clear, we
use the quantity

tr(vG(,B)cr)Eg’)af)), X,yeV.

9.21 Theorem[14] LetG = (V, E) beafinitegraphand 8 > 0. Wehave
that

16,8(X, y) = tr(vG(ﬁ)af)a)(f)), X,y eV.

Proof. The argument leading to (9.18) is easily adapted to obtain
1 _
tr(v 16®6® +1)) = —/Zk(w)< I )dIP’ ).
(va(B)3(ox7ay” +1)) Zos 'F;ny | APA s (@)

Now, . .
S = { ZEW““’:E(‘”)_ 16,0 > (y.0),
W=y 2 @K@= if (x, 0) 4 (y, 0),
whence, by the remark at the end of the last section,
tr(b6 (B3P0l + 1) = 165X, y) + (L - 16.5(x, V),

and the claim follows. O
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Theinfinite-volumelimits of the quantum Ising model on G are obtained
in the ‘ground state’ as 8 — oo and in the spatial limit as|V| — oco. The
paraphernalia of the discrete random-cluster model may be adapted to the
current continuous setting in order to understand the issues of the existence
and uniqueness of these limits. Thisis not investigated here. Instead, we
point out that the behaviour of the two-point connectivity function, after
taking thelimits 8 — oo, |V| — o0, depends pivotally on the existence or
not of an unbounded cluster in the infinite-volume random-cluster model.
Let ¢, 5.2 be the infinite-volume measure, and let

O(x, 8) = ¢.5.2(Cp is unbounded)

be the percolation probability. Then 7; s(X,y) — 0as|x — y| — oo,
when 6 (4, §) = 0. On the other hand, by the FKG inequality and the (a.s.)
uniqueness of the unbounded cluster,

75X, Y) = 6(%, 8)?,

implying that 7, s(X,y) is bounded uniformly away from O when
0(x,8) > 0. Thus the critical point of the random-cluster model is also
apoint of phase transition for the quantum model.

A more detailed investigation of the infinite-volume limits and their
implicationsfor the quantum Ising model may befoundin[14]. As pointed
out there, the situation is more interesting in the * disordered’ setting, when
the Ae and 8y are themselves random variables.

A principal technique for the study of the classical Ising model is the
so-called random-current method. Thismay be adapted to a‘ random-parity
representation’ for the continuum Ising model that correspondsto the con-
tinuous random-cluster model of Section 9.3; see [48, 79]. Many results
follow for the quantum Ising model in ageneral number of dimensions; see
[47, 48].

9.5 Entanglement in One Dimension

It is shown next how the random-cluster analysis of the last section enables
progress with the problem of so-called ‘quantum entanglement’ in one
dimension. The principle reference for the work of this section is[145].

Let G = (V, E) beafinitegraph, andlet W C V. A considerable effort
has been spent on understanding the so-called ‘ entanglement’ of the spins
in W relativeto those of V \ W, in the (ground state) limitas 8 — oo. This
isaready ahard problemwhen G isafinite subgraph of thelinelL. Various
methods have been used in this case, and avariety of results, somerigorous,
obtained.
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The first step in the definition of entanglement is to define the reduced
density matrix
vg (B) = try\w (v (B)),
where the trace is taken over the Hilbert space #y\w = Qycv\w C? of
spinsof verticesof V \ W. Ananalysis(omitted here) exactly parallel tothat

leading to Theorem 9.7 alows the following representation of the matrix
elementsof v (B).

9.22 Theorem [145] The elements of the reduced density matrix vg" B)
satisfy
(9.23)
W ¢c.plowo=1n, owpg=n"|F)
vg (B)In) =
(n'lvg (B)Im) 9650 =05 | F)

where F isthe event that ov\w,0 = ov\w,s-

: n.n € Zw,

Let Dw be the set of 2'WI vectors [n) of the form [7) = @, cw 1) w,
and write Fyy for the Hilbert space generated by Dyy. Just as before, there
is a natural one-one correspondence between Dy and the space Xw =
{—1, +1}W, and we shall thusregard #yy asthe Hilbert space generated by
2w

We may write

vg = lim vg(B) = [Yc)(Yal
B—00
for the density matrix corresponding to the ground state of the system, and
similarly
(9-24) ve = tvw(ive)(Yel) = lim vg'(h).
The entanglement of the spinsin W may be defined as follows.

9.25 Definition The entanglement of the spins of W relative to its com-
plement V \ W is defined as the entropy

(9.26) S = —tr(wd logy vd).

The behaviour of S, for general G and W, is not understood at present.
We specialize hereto the case of afinite subset of the one-dimensional lattice
L. Letm, L >0andtakeV =[-m,m+ L] and W = [0, L], viewed as
subsets of Z. We obtain the graph G from V by adding edges between
each pair x, y € V with |[x — y| = 1. We write vm(8) for vg(8) and S
(respectively, vk) for SY (respectively, vY). A key step in the study of Sk
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for large mis abound on the norm of the difference vk — vt . The operator
norm of a Hermitian matrix A is given by®

IAIl = sup [(y|Aly)
=1

’

where the supremum is over all vectors y with L2-norm 1.

9.27 Theorem[48,145] Let, § € (0, oo) andwrite p = A /8. Thereexist
constants C, «, y depending on p and satisfying y > 0 when p < 2 such
that

9.28) [[vt — vl < min{2, CLYe™ Y™, 2<m<n<oo, L>1
m n

Thiswas provedin[145] for p < 1, and the stronger result follows from
the identification of the critical point pc = 2 in [48]. The constant y is,
apart from a constant factor, the reciprocal of the correlation length of the
associated random-cluster model.

Inequality (9.28) is proved by the following route. Consider the con-
tinuum random-cluster model with g = 2 on the space-time graph A =
V x [0, B] with *partial periodic top—bottom boundary conditions'; that is,
for each x € V \ W, weidentify thetwo points (x, 0) and (x, B). Let ¢y, 4
denote the associated random-cluster measure on 2,. To each cluster of
w € Q2 weassign arandom spin from {—1, +1} in the usual manner, and
we abuse notation by using qbﬁl 10 denote the measure governing both the
random-cluster configuration and the spin configuration. Let

am,pg = ¢>£Lﬁ(ﬁw,o =ow,p),

noting that
am,p = dmp(oo =op | F)

asin (9.23).
By Theorem 9.22,
(9.29) (¥ [vh(B) — vk (B)IY)
_ Phnp(Clowo)Clowp))  ¢n s(Clowo)Clow.p)
a am,p an.p ’

wherec: {—-1, +1}W — C and

Y=Y cne Hw.

neETw

5A matrix is called Hermitian if it equalsits conjugate transpose.
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The property of ratio weak-mixing (for a random-cluster measure ¢) is
used in the derivation of (9.28) from (9.29). This may be stated roughly
asfollows. Let A and B be eventsin the continuum random-cluster model
that are defined on regions Ra and Rg of space, respectively. What can
be said about the difference ¢ (A N B) — ¢(A)¢(B) when the distance
d(Ra, Rg) between Ra and Rg islarge? It is not hard to show that this
difference is exponentially small in the distance, so long as the random-
cluster model has exponentially decaying connectivities; such a property is
called ‘weak mixing’. Itisharder to show asimilar bound for the difference
¢(A| B) — ¢(A), and such a bound is termed ‘ratio weak-mixing’. The
ratio weak-mixing property of random-cluster measureswas investigatedin
[20, 21] for the discrete case and in [145] for the continuum model.

In the final step of the proof of Theorem 9.27, the random-cluster model
is compared via (9.5) with the continuum percolation model of Section
6.6, and the exponential decay of Theorem 9.27 follows by Theorem 6.18.
A logarithmic bound on the entanglement entropy follows for sufficiently
small A /3.

9.30 Theorem [145] Let A, § € (0, oo) and write p = A/8. There exists
po € (0, 2] suchthat: for p < po, thereexists K = K (p) < oo such that

St <Klog, L, m=>0, L>2

Hereistheideaof the proof. Theorem 9.27 implies, by aclassic theorem
of Weyl, that the spectra (and hence the entropies) of v\ and v+ are close
to one another. It isan easy calculationthat Sk < clogL form < ¢’logL,
and the conclusion follows.

A stronger result is known to physicists, namely that the entanglement
Sl.a is bounded above, uniformly in L, whenever p is sufficiently small, and
perhaps for al p < pc, where pc = 2 is the critical point. It is not clear
whether thisis provable by the methods of this chapter. See Conjecture 9.6
above and the referencesin [145].

There is no rigorous picture known of the behaviour of Sk for large p,
or of the corresponding quantity in dimensionsd > 2, although Theorem
9.27 has a counterpart in these settings. Theorem 9.30 may be extended to
a disordered system in which the intensities A, § are independent random
variablesindexed by the vertices and edges of the underlying graph, subject
to certain conditions on these variables (cf. Theorem 6.19 and the preceding
discussion).



9.6 Exercises 203

9.6 Exercises

9.1 Explainin what manner the continuum random-cluster measure ¢, s,q on
L x Ris‘self-dua’ when p = 1/ satisfiesp = Q.

9.2 (continuation) Show that the critical value pc of p satisfies pc > g when
g=>1

9.3 Let ¢y, s,q bethe continuum random-cluster measureon G x [0, g], where
Gisafinitegraph, 8 < co,andqg € {2, 3, ...}. Toeach cluster isassigned aspin
chosen uniformly at random fromthe set {1, 2, ..., q}, these spins being constant
within clusters and independent between them. Find an expression for the law of
the ensuing (Potts) spin processon V x [0, B].
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| nter acting Particle Systems

The contact, voter, and exclusion models are Markov processes in
continuous time with state space {0, 1}V for some countable set V.
In the voter model, each element of V may bein either of two states,
anditsstateflipsat aratethat isaweighted average of the states of the
other elements. Its analysis hinges on the recurrence or transience
of an associated Markov chain. When V = 72 and the model is
generated by a symmetric random walk, the only invariant measures
are the two point masses on the (two) states representing unanimity.
The picture is more complicated when d > 3. In the exclusion
model, a set of particles moves about V' according to a ‘ symmetric’
Markov chain, subject to exclusion. When V = z9 and the Markov
chain is trandation-invariant, the product measures are invariant for
this process, and furthermore these are exactly the extremal invariant
measures. The chapter closes with a brief account of the stochastic
Ising model.

10.1 Introductory Remarks

There are many beautiful problems of a physical type that may be modelled
as Markov processes on the compact state space ¥ = {0, 1}V for some
countable set V. Amongst the most studied to date by probabilists are the
contact, voter, and exclusion models, and the stochastic Ising model. This
significant branch of modern probability theory had its nascence around
1970 in the work of Roland Dobrushin, Frank Spitzer, and others, and has
been brought to maturity through the work of Thomas Liggett and col-
leagues. The basic references are Liggett's two volumes [206, 208]; see
also [209].

The general theory of Markov processes, with its intrinsic complexities,
isavoided here. Thefirst three processesin this chapter may be constructed
via‘graphical representations’ involving independent random walks. There
isageneral approach to suchimportant mattersasthe existence of processes,
for anaccount of whichthereader isreferredto[206]. Thetwo observations
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of note are that the state space X is compact and that the Markov processes
(nt : t > 0) of this section are Feller processes, which is to say that the
transition measures are weakly continuous functions of theinitial state.

For a given Markov process, the two main questions are to identify the
set of invariant measures and to identify the ‘basin of attraction’ of a given
invariant measure. The processes of this chapter will possess a non-empty
set 4 of invariant measures, althoughit isnot yet always possible to describe
all members of this set explicitly. Since 4 is a convex set of measures, it
suffices to describe its extremal elements. We shall see that, in certain
circumstances, |{| = 1, and this may beinterpreted as the absence of long-
range order.

SinceV isinfinite, ¥ isuncountable. We normally specify the transition
operators of aMarkov chain on such a ¥ by specifying its generator. This
is an operator £ acting on an appropriate dense subset of C(X), the space
of continuous functions on ~ endowed with the product topology and the
supremum norm. Itisdetermined by itsvaluesonthespace C(X) of cylinder
functions, that is, the set of functions that depend on only finitely many
coordinatesin X. For f € C(X), wewrite £ f intheform

(10.1) L@ =Y co.f@)—-fm]l. nex,
nex
for some function ¢ sometimes called the *speed (or rate) function’. For
n # 1, wethink of c(n, n) asbeing the rate at which the process, whenin
state n, jumpsto state n’.
The processes it possess a transition semigroup (S : t > 0) acting on
C(X) and given by

(10.2) S f(n) =E"(f(nr)), nex,

where E" denotes expectation under the assumption no = n. Under certain
conditionson the process, thetransition semigroup isrelated to the generator
by the formula

(10.3) S = exp(tL),

suitably interpreted according to the Hille-Yosida theorem; see [206, Sect.
1.2]. The semigroup acts on probability measures by

(10.4) M$N=LWW&ANMW

1L et C(=) denote the space of continuous functions on X endowed with the product
topology and the supremum norm. The process nt is called Feller if, for f € C(X),
ft(n) = E7(f (nt)) definesafunction belongingto C(X). Here, E" denotes expectation
with initial state 7.
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A probability measure © on X is caled invariant for the process n; if
uS = p for dl t. Under suitable conditions, u isinvariant if and only if

(10.5) /xnm=o foral f € C(Z).

Intheremainder of thischapter weshall encounter certain constructionsof
Markov processeson X, and all such constructionswill satisfy the conditions
alluded to above.

10.2 Contact M odel

Let G = (V, E) be a connected graph with bounded vertex-degrees. The
statespaceis T = {0, 1}V, wherethelocal state 1 (respectively, 0) represents
“ill" (respectively, ‘healthy’). Il vertices recover at arate 8, and healthy
vertices become ill at arate that is linear in the number of ill neighbours.
See Chapter 6.

We proceed more formally as follows. Forn € ¥ and x € V, let nx
denote the state obtained from » by flipping the local state of x. That is,

1-n(x) ify=x,
10.6 =
(100) () { n(y) otherwise.
We let the function ¢ of (10.1) be given by
) if n(x) =1,
c(n, nx) ={ _ . 1)
My ~xin(y) =1} ifn(x) =0,

where ) and § are strictly positive constants. If " = nyx fornox € V, and
inaddition n’ # n, wesetc(n, n’) = 0.

We saw in Chapter 6 that the point mass on the empty set, v = §4, isthe
minimal invariant measure of the process, and that there exists a maximal
invariant measure v obtained as the weak limit of the process with initial
state V. Asremarked at the end of Section 6.3, when G = 1.9, the set
of extremal invariant measuresis exactly e = {84, v}, and 65 = v if and
only if thereisno percolationin the associated oriented percolationmodel in
continuoustime. Of especial usein proving these facts was the coupling of
contact modelsin terms of Poisson processes of cuts and (directed) bridges.

We revisit duality briefly; see Theorem 6.1. Forn € X and AC V, let

{ 1 ifn(x)=0foralxe A,

(10.7) Hm, A = l—[[l_ n(x)] = 0 otherwise.

xXeA

The conclusion of Theorem 6.1 may be expressed more generally as
EAH (A, B) =EP(H(A, BY),
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where A; (respectively, Bt) denotes the contact model with initial state
Ao = A (respectively, Bp = B). This may seem a strange way to express
the duality relation, but its significance may become clearer soon.

10.3 Voter Model

Let V beacountable set, and let P = (py,y : X, y € V) be the transition
matrix of a Markov chain on V. The associated voter model is given by
choosing

(10.8) c(n, nx) = Z Px,y
y:in(Y)#n(X)

in (10.1). The meaning of this is as follows. Each member of V is an
individual in apopulation, and may have either of two opinionsat any given
time. Let x € V. At thetimes of arate-1 Poisson process, x selects a
random y according to the measure px,y and adopts the opinion of y. It
turns out that the behaviour of thismodel is closely related to the transience
or recurrence of the chain with transition matrix matrix P and to properties
of its harmonic functions.

The voter model has two absorbing states, namely all Os and all 1s, and
we denote by §p and 81 the point masses on these states. Any convex
combination of 8o and 81 is invariant also, and thus we ask for conditions
under which every invariant measureis of thisform. A duality relation will
enable usto answer this question.

Itishelpful to draw the so-called graphical representation of the process.
With each x € V isassociated a‘time-line’ [0, co), and on each such time-
line is marked the set of epochs of a Poisson process Poy with intensity
1. Different time-lines possess independent Poisson processes. Associ ated
with each epoch of the Poisson process at x isavertex y chosen at random
according to the transition matrix P. The choice of y hasthe interpretation
given above.

Consider the state of vertex x at timet. We imagine a particle that is at
position x at timet, and wewrite X« (0) = x. Whenwefollow thetime-line
X x [0, t] backwardsin time, that is, from the point (x, t) towards the point
(x, 0), we encounter a first point (first in this reversed ordering of time)
belonging to Poy. At thistime, the particle jumpsto the selected neighbour
of x. Continuing likewise, the particle performs a symmetric random walk
about V. Writing Xx(t) for its position at time 0, the (voter) state of x at
timet isprecisely that of X(t) at timeO.

Suppose we proceed likewise starting from two vertices x and y at time
t. Tracing the states of x and y backwards, each follows a Markov chain
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with transition matrix P, denoted Xy and Xy respectively. Thesechainsare
independent until the first time (if ever) they meet. When they meet, they
‘coalesce’: if they ever occupy the same vertex at any given time, then they
follow the same trajectory subsequently.

We state thisasfollows. The presentation hereis somewhat informal and

may be made more completeasin[206]. Wewrite (n; : t > 0) for the voter
processand 4§ for the set of finite subsets of V.

10.9 Theorem Let A € 8, n € ¥, and let (A; : t > 0) be a system of
coalescing random walks beginning on the set Ag = A. Then,

P'(pr =1onA) =P A(n=1onA), t>0.

This may be expressed in the form
E"(H (e, A) = EAH (0, A),
with
Ho, A =[] n00.

XeA

Proof. Each side of the equation is the probability of the complement of
the event that, in the graphical representation, thereis a path from (x, 0) to
(a, t) for some x with n(x) = 0 and somea € A. O

For simplicity, we restrict ourselves henceforth to a case of special inter-
est, namely that with V the vertex-set Z9 of the d-dimensional lattice L4
withd > 1 and with px y = p(x —y) for some function p. In the special
case of asymmetric random walk, where

1
(10.10) p(2) = a4 forz~ 0,

we have that n(x) flips at a rate equal to the proportion of neighbours of x
whose states disagree with the current value n(x). The case of genera P is
treated in [206].

Let X; and Y; beindependent randomwalkson Z9withrate-1 exponential
holding timesandjumpdistribution pyx y = p(y—x). Thedifference X; —V;
isaMarkov chain also. If X; — Y; isrecurrent, we say that we are in the
recurrent case, otherwisethetransient case. Theanalysisof thevoter model
isfairly simplein the recurrent case.
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10.11 Theorem Assumewe arein therecurrent case.

(a') ‘le = {607 61}'

(b) If u is a probability measure on X with u(n(x) = 1) = « for all
x €79, then uS = (1— @)dp + ad1 ast — oo.

The situation is quite different in the transient case. We may construct a
family of distinct invariant measures v, indexed by « € [0, 1], and we do
thisasfollows. Let ¢, be product measure on X with density «. We shall
show the existence of the weak limits v, = limi_, o ¢ &, and it turns out
that the v, are exactly the extremal invariant measures. A partial proof of
the next theorem is provided below.

10.12 Theorem Assumewe arein thetransient case.
(@ Theweak limits v, = limi_ o ¢ S €XiSt.
(b) The v, aretranslation-invariant and ergodic,? with density
(X)) =1 =a,  xeZ
(© de={vy :a€]0,1]}.
Wereturn briefly to the voter model corresponding to asymmetric random

walk onL9; see(10.10). Itisan elementary consequenceof Polya’stheorem,
Theorem 1.32, that we are in the recurrent case if and only d < 2.

Proof of Theorem 10.11. By assumption, we are in the recurrent case. Let
x, y € 79, By duality and recurrence,

(10.13)  P(m(x) # ni(y)) < P(Xx(u) # Xy(u) for0 <u <t)
-0 ast — oo.
ForAe $, A+ o,
P(n; isnon-constant on A) < PA(|A| > 1),
and, by (10.13),
(10.14) PA(Al > 1) = D P(Xx(u) # Xy(u) for0 <u <t)

X,yeA
-0 ast — oo.

It follows that, for any invariant measure u, the w-measure of the set of
constant configurations is 1. Only the convex combinations of §o and §1
have this property.

2 probability measure u on T isergodic if any shift-invariant event has 1.-probability
either 0 or 1. It is standard that the ergodic measures are extremal within the class of
trand ation-invariant measures; see [115] for example.
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Let 1 be aprobability measure with density «, asin the statement of the
theorem, and let A € 8, A # . By Theorem 10.9,

LS(n:n=1onAj) = /P”(nt — 1on A) u(d)
_ /IP’A(n — 1on A) u(d)

_ /IP’A(nE Lon A, Al > 1) u(dn)

+ 3 PAA = yDr(i(y) = ),

yezd
whence
uS({n:n=10nA}) —a| < 2PA(A| > 1).
By (10.14), uS = (1 — a)ép + a1 asclaimed. O

Partial proof of Theorem 10.12. For A € §, A # @, we have by Theorem
10.9 that

(1015  ¢aS(n=1onA) = f P(ne = 1.0n A) g (dn)

_ / PA( = 10n Ay) g (dy)

= EA @A),

The quantity |A¢| is non-increasing in t, whence the last expectation con-
verges ast — oo, by the monotone convergence theorem. Using the
inclusion—exclusion principle (asin Exercises 2.2 and 2.3), we deduce that
the u S-measure of any cylinder event has a limit, and therefore the weak
limit v, exists (see the discussion of weak convergence in Section 2.3).
Sincetheinitia state ¢, istrandation-invariant, soisv,. We omit the proof
of ergodicity, which may be found in [206, 209]. By (10.15) with A = {x},
PaS(n(X) =1) =« fordlt, sothat vy (n(xX) = 1) = .

It may be shown that the set { of invariant measuresis exactly the convex
hull of the set {vy, : o € [0, 1]}. The proof of this is omitted, and may be
found in [206, 209]. Sincethe v, are ergodic, they are extremal within the
class of translation-invariant measures, whence fe = {v, : @ € [0, 1]}. O
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10.4 Exclusion M odel

In this model for a lattice gas, particles jump around the countable set V,
subject to theexcluded-volume constraint that no morethan one particlemay
occupy any given vertex at any given time. The state spaceis ¥ = {0, 1}V,
wherethelocal state 1 representsoccupancy by aparticle. Thedynamicsare
assumed to proceed asfollows. Let P = (px,y : X, y € V) bethetransition
matrix of aMarkov chainon V. In order to guarantee the existence of the
corresponding exclusion process, we shall assume that

sup ) pxy < oo
yev xeV
If the current stateisn € Z, and n(x) = 1, the particle at x waits a
timethat is exponentially distributed with parameter 1 before it attempts to
jump. At the end of this holding time, it chooses a vertex y according to
the probabilities py y. If, at thisinstant, y is empty, then this particle jumps
toy. If yisoccupied, the jJump is suppressed and the particle remains at x.
Particles are deemed to be indistinguishable.
The generator £ of the Markov processis given by

Lfm =Y pxylflxy — fl,

X,yeV:
n(x)=1, n(y)=0
for cylinder functions f, where 1y y is the state obtained from » by inter-
changing the local states of x and y, that is,

nx) ifz=y,
(10.16) nxy(2) =1 nly) ifz=x,
n(z) otherwise.

We may construct the processviaagraphical representation, asin Section
10.3. For each x € V, we let Poy be a Poisson process with rate 1; this
gives the times at which a particle at x (if, indeed, x is occupied at the
relevant time) attempts to move away from x. With each ‘time’ T € Poy,
we associate avertex Y chosen according to the massfunction pyy, y € V.
If x isoccupied by aparticleat time T, this particle attemptsto jump at this
instant of time to the new position Y. The jump is successful if Y is empty
at time T, otherwise the moveis suppressed.

It is immediate that the two Dirac measures §g and §1 are invariant. We
shall seebelow that thefamily of invariant measuresisgenerally muchricher
thanthis. Thetheory issubstantially simpler in the symmetric case, and thus
we assume henceforth that

(1017) pxyy == py’x, X, y € V
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See[206, Chap. VII1] and [209] for bibliographiesfor the asymmetric case.
If V isthe vertex-set of agraph G = (V, E), and P isthe transition matrix
of symmetric random walk on G, then (10.17) amounts to the assumption
that G is regular.

Mention is made next of the totally asymmetric simple exclusion process
(TASEP), namely the exclusion process on the line L in which particles
may moveonly inagivendirection, say to theright. Thisapparently smple
model has attracted a great deal of attention, and the reader is referred to
[105] and the references therein.

We shall see that the exclusion process is self-dual, in the sense of the
forthcoming Theorem 10.18. Note first that the graphical representation of
a symmetric model may be expressed in a slightly simplified manner. For
each unordered pair x, y € V, let Poy y be a Poisson process with intensity
Px,y (= Py,x). Foreach T e Poyy, we interchange the states of x and
y a time T. That is, any particle at x movesto y, and vice versa. It is
easily seen that the corresponding particle system is the exclusion model.
For every x € V, aparticle at x at time 0 would pursue atrajectory through
V that is determined by the graphical representation, and we denote this
tragjectory by Ry(t), t > 0, noting that Rx(0) = X. The processes Rx(-),
X € V, are of course dependent.

The family (Rx(-) : x € V) istime-reversible in the following ‘ strong’
sense. Lett > O begiven. For each y € V, we may trace the trgjec-
tory arriving at (y, t) backwards in time, and we denote the resulting path
by Byt(s), 0 < s < t, with By(0) = y. Itisclear by the properties
of a Poisson process that the families (Rx(u) : u € [0,t], x € V) and
(Byt(s) :s€[0,t], y € V) have the same laws.

Let (n : t > 0) denote the exclusion model. We distinguish the general
model from one possessing only finitely many particles. Let § be the set
of finite subsets of V, and write (A; : t > 0) for an exclusion process with
initial state Ag € 4. We think of ny asarandom 0/1 vector, and of A; asa
random subset of the vertex-set V.

10.18 Theorem Consider a symmetric exclusion model on V. For every
neXandAe 4,

(10.19) P'(qp =1onA) =PAn=10nA), t=>0.

Proof. The left side of (10.19) equals the probability that, in the graphical
representation: for every y € A, there exists x € V with n(x) = 1 such
that Rx(t) = y. By the remarks above, this equals the probability that
n(Ry(t)) =1foreveryy e A O



10.4 Exclusion Model 213

10.20 Corollary Consider a symmetric exclusion model on V. For each
a € [0, 1], the product measure ¢, on X isinvariant.

Proof. Let n be sampled from ¥ according to the product measure ¢,,. We
have that
PA(n = 1on A) = B = oA,

since | A;| = | A|. By Theorem 10.18, if ng has law ¢, then so does n; for
alt. Thatis, ¢, isaninvariant measure. O

The question thus arises of determining the circumstances under which
the set of invariant extremal measuresis exactly the set of product measures.
Assume for simplicity that
(i) V=129,
(i) thetransition probabilities are symmetric and tranglation-invariant, in
that
Px,y = Py.x = Py — X), x,yeZd,

for some function p, and
(iii) the Markov chain with transition matrix P = (py,y) isirreducible.
It can be shown in this case (see [206, 209]) that Je = {¢¢ : @ € [0, 1]},
and that
US = ¢y ast — oo,

for any trandation-invariant and spatially ergodic probability measure
with u(n(0) = 1) = a.

In the more general symmetric non-translation-invariant case on an arbi-
trary countableset V, the constants o are replaced by the set # of functions
a 'V — [0, 1] satisfying

(10.21) a(X) =) pryaly),  XeV,
yeV

that is, the bounded harmonicfunctions, re-scaled if necessary to take values
in[O0, 1].3 Let uy bethe product measureon X with py (n(X) = 1) = a(X).
It turns out that the weak limit

Ve = M pe S
t—o0

exists, and that Je = {vy : @ € F}. It may be shown that v, is a product
measure if and only if « isaconstant function. See [206, 209].

3Anirreducible symmetric translation-invariant Markov chain on Z9 hasonly constant
bounded harmonic functions. Exercise: Provethis statement. It isan easy consequence of
the optional stopping theorem for bounded martingales whenever the chain is recurrent.
See[206, pp. 67—70] for adiscussion of the general case.
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We may find examples for which the set # islarge. Let P = (pyx,y) be
the transition matrix of a symmetric random walk on abinary tree T (each
of whose vertices has degree 3; see Figure 6.3). Let 0 be a given vertex
of the tree, and think of O as the root of three digjoint sub-treesof T. Any
solution (a : n > 0) to the difference equation

(10.22) 2any1 —3apn+ap-1 =0, n>1,

defines a harmonic function « on a given such sub-tree, by «(x) = ap,
where n is the distance between 0 and x. The general solution to (10.22) is

an = A+ B@A)",

where Aand B arearbitrary constants. Thethreepairs (A, B) corresponding
to the three sub-trees at 0 may be chosen in an arbitrary manner, subject to
the condition that ag = A + B is constant across sub-trees. Furthermore,
the composite harmonic function on T takes valuesin [0, 1] if and only if
each pair (A, B) satisfies A, A+ B € [0, 1]. Thusthere existsacontinuum
of admissible non-constant solutions to (10.21), and therefore a continuum
of extremal invariant measures of the associated exclusion model.

10.5 Stochastic Ising M odel

The Ising model is designed as a model of the ‘local’ interactions of a
ferromagnet: each neighbouringpair X, y of verticeshave spinscontributing
—oxoy totheenergy of the spin-configurationo . Themodel isstaticintime.
Physical systems tend to evolve as time passes, however, and we are thus
led to the study of stochastic processes having the Ising model as invariant
measure. Itisnormal to consider Markovian modelsfor time evolution, and
this section contains avery brief summary of some of these. The theory of
the dynamics of spin modelsisvery rich, and the reader is referred to [206]
and [217, 225, 257] for further introductory accounts.

Let G = (V, E) be a finite connected graph (infinite graphs are not
considered here). As explained in Section 10.1, a Markov chainon ¥ =
{—1, 1}V isspecified by way of its generator .£, acting on suitable functions
f by

(10.23) LT(o)= Z c(o, a)[f (o)) — f(o)], o€,

o'ex
for some function ¢ sometimes called the ‘rate (or speed) function’. For
o # o', wethink of c(o, 0’) as being the rate at which the process jumps
to state o’ when currently in state o. Equation (10.23) places no restriction
on the diagonal terms c(o, o), and we choose these such that

Zc(a,a/)zo, oex.

o'ex
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The state space ¥ is finite, and thus there is a minimum of technical
complication. The probability measure n isinvariant for the processif and
only if u£ = 0, whichisto say that

(10.24) > uo)c(o.0) =0, o' ex.
gEL
Theprocessisreversiblewith respectto u if and only if the* detailed balance
equations
(10.25) u(o)e(o, o) = u(oHe(o’, o), 0,0/ € X,

hold, in which case u is automatically invariant.
Let 7 bethe Ising measure on the spin-space X satisfying

(10.26) (o) x e PR cEY,
where 8 > 0,
H(U) = —hZO'X — Zo'xo'y,
xeV X~y

and the second summation is over unordered pairs of neighbours. We shall
consider Markov processes having i asreversibleinvariant measure. Many
possible choices for the speed function ¢ are possible in (10.25), of which
we mention four below.

First, some notation: for o € T and x, y € V, the configuration oy is
obtained from o by replacing the state o (x) of x by —o (x) (see (10.6)),
and oy y is obtained by swapping the states of x and y (see (10.16)). The
process is said to proceed by spin-flipsif c(o, ') = 0 except possibly for
pairs o, o’ that differ on at most one vertex; it proceeds by spin-swaps if
(foro # 0’) c(0, 0') = O except when o’ = oy y for somex, y € V.

Here are four rate functionsthat have attracted much attention, presented
in a manner that emphasizes their applicability to other Gibbs systems. It
is easily checked that each is reversible with respect to .4

1. Metropolisdynamics. A spin-flip process with

c(o, ox) = min {1, exp(—B[H(ox) — H(0)])}.
2. Heat-bath dynamics/Gibbs sampler. A spin-flip process with

c(o, ox) = [1+ exp(B[H (o) — H(o)])] .

This arises as follows. At the times of a rate-1 Poisson process, the
state at x is replaced by a state chosen at random with the conditional
law given o (y), Yy # X.

4Thisis Exercise 10.3.
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3. Simple spin-flip dynamics. A spin-flip processwith
c(0, 0x) = exp(—3B[H (ox) — H(0)]).

4, Kawasaki dynamics. A spin-swap process with speed function satis-
fying

c(o, ox,y) = exp(—3B[H(oxy) — H@)]),  x~V.

The first three have much in common. In the fourth, Kawasaki dynamics,
the ‘total magnetization' M = ", o(X) is conserved. This conservation
law causes complicationsin the analysis.

Examples 1-3 are of so-called Glauber type, after Glauber’swork on the
one-dimensional Ising model, [119]. The term * Glauber dynamics' is used
in several waysin the literature, but it may be taken to be a spin-flip process
with positive, trandation-invariant, finite-range rate function satisfying the
detailed balance condition (10.25).

The above dynamics are ‘local’ in that a transition affects the states
of singletons or of neighbouring pairs. There is another process called
‘ Swendsen—Wang dynamics', [273], in which transitions are more exten-
sive. Let  denote the Ising measure (10.26) with h = 0. The random-
cluster model corresponding to the Ising model with h = 0 has state
space @ = {0, 1}F and parameters p = 1 — e %#, q = 1. Each step
of the Swendsen—\Wang evol ution actually comprises two steps. sampling a
random-cluster state, followed by resampling a spin configuration. Thisis
made more explicit asfollows. Supposethat, at time n, we have obtained a
configuration o, € X. We construct o1 as follows.

I. Let wn € Q2 begivenby, foral e= (x,y) € E,

if on(x) # on(y), letwn(e) =0,
1 with probability p,

if o1 =on(y), | n(e) = .
It on(X) = on(y), letwn(e) {o otherwise,

different edges receiving independent states. The edge-configuration
wn is carried forward to the next stage.

I1. To each cluster C of the graph (V, n(wn)) we assign an integer cho-
sen uniformly at random from the set {1, 2, ..., q}, different clusters
receiving independent labels. Let on4-1(X) be the value thus assigned
to the cluster containing the vertex x.

It may be shown that the unique invariant measure of the Markov chain
(on 1 n > 1) isindeed the Ising measure . See[130, Sect. 8.5]. Transi-
tions in the Swendsen—Wang algorithm move from a configuration o to a
configuration o’ which is usually very different from o. Thus, in general,
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we expect the Swendsen—Wang process to converge faster to equilibrium
than the local dynamics given above.

The basic questionsfor stochastic 1sing models concern therate at which
a process converges to its invariant measure, and the manner in which this
depends on: (i) the size and topology of G; (ii) any boundary condition
that is imposed; and (iii) the values of the external field h and the inverse
temperature 8. Two ways of quantifying the rate of convergenceareviathe
so-called ‘mixing time' and via the ‘relaxation time’ of the process. The
following discussion is based in part on [19, 204].

Consider a continuous-time Markov process with unique invariant mea-
sure . Themixing timeis given as

— inf{t : sup dv (P, PY?) < e‘l},

01,02€%
where
drv(pa, u2) = 5 ) |[ra(0) — (o))
oey

isthetotal variation distance between two probability measureson X, and
P{ denotesthe law of the processat timet having started in state o at time
0.

Write the eigenvalues of the negative generator — £ as

O=A<A2=<---<AN.

The relaxation time o of the process is defined as the reciprocal of the
‘spectral gap’ Ao. It isagenera result that

=7 < w2 (1+logl/[minu(@)]).

sothat 72 < 71 < O(|E|) 2 for the stochastic Ising model on the connected
graph G = (V, E). That is, mixing and relaxation times have equivalent
orders of magnitude, up to the factor O(|E|).

No attempt is made here to summarize the very substantial literature on
the convergence of Ising models to their equilibria, for which the reader
is directed to [225, 257] and more recent works including [217]. Of cur-
rent interest is the so-called ‘cut-off’ phenomenon, as follows. It has
been observed for certain families of Markov chain that the total variation
d(t) = drv(Pt, u) has a threshold behaviour: there is a sharp threshold
between values of t for whichd(t) ~ 1 and valuesfor whichd(t) ~ 0. The
relationship between mixing/relaxation times and the cut-off phenomenon
is not yet fully understood, but it has been studied successfully by Lubet-
zky and Sly [218, 219] for Glauber dynamics of the high-temperature lsing
model in al dimensions.
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10.6 Exercises

10.1 [285] Biased voter model. Each point of the square lattice is occupied,
at each time t, by either a benign or amalignant cell. Benign cells invade their
neighbours, each neighbour being invaded at rate 8, and similarly malignant cells
invade their neighbours at rate . Suppose there is exactly one malignant cell
attimeO, and let « = /B > 1. Show that the malignant cells die out with
probability « 1.

More generally, what happens on L9 withd > 2?

10.2 Exchangeability. A probability measure i on {0, 1}Z is called exchange-
ableif the quantity «({n : n = 1 on A}), as A ranges over the set of finite subsets
of Z, depends only on the cardinality of A. Show that every exchangeable measure
w isinvariant for asymmetric exclusion model on Z.

10.3 Sochasticlsingmodel. Let = = {—1, +1}V bethestate spaceof aMarkov
process on the finite graph G = (V, E) which proceeds by spin-flips. The state at
X € V changes value at rate c(x, o) when the state overall iso. Show that each
of the rate functions

c1(X, o) = min{l, @(p(—Zﬂ > axay) }

yeax
C2(X, 0) .
2(X,0) = s
1+ @(p(Z,B Zyeax UX‘TY)
c3(X,0) = exp(—,B Z Uxay)
yeax

gives rise to reversible dynamics with respect to the Ising measure with zero ex-
ternal field. Here, dx denotes the set of neighbours of the vertex x.
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Random Graphs

In the Erdés-Rényi random graph Gp, p, each pair of verticesis con-
nected by an edge with probability p. We describe the emergence of
the giant component when pn ~ 1, and identify the density of this
component asthe survival probability of aPoisson branching process.
The Hoeffding inequality may be used to show that, for constant p,
the chromatic number of Gp, p is asymptotic to %n /1og, n, where
7 =1/(1- p).

11.1 Erd6és-Rényi Graphs

LetV = {1,2,...,n},andlet (Xj; : 1 <i < j < n) beindependent
Bernoulli random variables with parameter p. For each pairi < j, we
place an edge (i, j) between verticesi and j if and only if Xj ; = 1. The
resulting random graph is named after Erdés and Rényi [101],1 and it is
commonly denoted Gy, p. The density p of edgesis permitted to vary with
n (for example, p = A/n with A constant), and one commonly considers
the structure of G p inthelimit n — oco.

The original motivation for studying Gn, p was to understand the prop-
erties of ‘typical’ graphs. Thisisin contrast with the study of ‘extremal’
graphs, althoughit may be noted that random graphs have on occasion man-
ifested properties more extreme than graphs obtained by more constructive
means.

Random graphshave proved animportant tool inthe study of the*typical’
run-time of algorithms. Consider acomputational problem associated with
graphs, such as the travelling salesman problem. In assessing the speed
of an algorithm for this problem we may find that, in the worst situation,
the algorithm is very slow. On the other hand, the typical run-time may be
much less than the worst-case run-time. The measurement of ‘typical’ run-
time requires a probability measure on the space of graphs, and it isin this
regard that Gy, p has risen to prominence within this subfield of theoretical

1seealso [117].
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computer science. While Gy, p is, in asense, the obvious candidate for such
aprobability measure, it suffers from the weakness that the * mother graph’
Ky has alarge automorphism group; it is a poor candidate in situationsin
which pairs of vertices may have differing relationships to one another.

Therandom graph Gy, p hasreceived avery great deal of attention, largely
within the community working on probabilistic combinatorics. The theory
is based on a mix of combinatorial and probabilistic techniques and has
become very refined.

We may think of Gy, p asapercolation mode! on the complete graph Kp,.
The parallel with percolation is weak in the sense that the theory of G, p is
largely combinatorial rather than geometrical. There is however asensein
which random graph theory has enriched percolation. The major difficulty
in the study of physical systemsarises out of the geometry of RY; pointsare
related to one another in waysthat depend greatly on their relative positions
in RY. In a so-called ‘mean-field theory’, the geometrical component is
removed through the assumption that points interact with al other points
equally. Mean-field theory leads to an approximate picture of the model
in question, and this approximation improvesin the limit d — oo. The
Erdés—Rényi random graph may be seen as a mean-field approximation to
percolation. Mean-field models based on Gp, , have proved of value for
Ising and Potts models also; see[52, 288].

This chapter contains brief introductions to two areas of random-graph
theory, each of which uses probability theory in a special way. The first
is an analysis of the emergence of the so-called giant component in Gy, p,
with p = A/n, as the parameter A passes through the value A = 1. Of
the several possible ways of doing this, we emphasize here the rel evance of
arguments from branching processes. The second area considered hereisa
study of the chromatic number of Gp, p, asn — oo with constant p. This
classical problem was solved by Bollobas[49] using Hoeffding'sinequality
for the tail of amartingale, Theorem 4.21.

The two principal references for the theory of Gy,  are the earlier book
[51] by Bollobas, and the more recent work [176] of Janson, t.uzcak and
Rucifski. We say nothing here about recent developmentsin random-graph
theory involving models for the so-called small world; see [98, 169] for
example.
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11.2 Giant Component

Consider the random graph G p with p = A/n, where A € (0, 00) isa
constant. We build the component at a given vertex v as follows. The
vertex v is adjacent to a certain number N of vertices, where N has the
bin(n — 1, A/n) distribution. Each of these verticesisin turn joined to a
random number of vertices, distributed approximately as N ; with probability
1—0(1), these new vertex-setsare digjoint. Since the binomial distribution
bin(n — 1, A/n) is ‘nearly’ the Poisson distribution Po(i), the component
at v grows very much like abranching process with family-size distribution
Po(1). The branching-process approximation becomes less good as the
component grows, and in particular when its size becomes of order n. The
mean family-size equals A, and thusthe processwith A < lisvery different
fromthat with 2 > 1.

Supposethat A < 1. Inthiscase, the branching processis (almost surely)
extinct, and possesses afinite number of vertices. With high probability, the
size of the growing cluster at v is sufficiently small (in the limit n — o0)
to be well approximated by a Po()) branching process. Having built the
component at v, we pick another vertex w and act similarly. By iteration, we
obtain that G, p is the union of clusters each with exponentially decaying
tail. The largest component has order logn.

When A > 1, thebranching processgrowsto infinity with strictly positive
probability. This corresponds to the existence in Gp p of a component
having size of order n. We makethismoreformal asfollows. Let X, bethe
number of verticesin alargest component of G p. We write Zn = 0p(yn)
if Z,/yn — 0 in probability asn — oco. An event A, is said to occur
asymptotically almost surely (abbreviated as a.as.) if P(A,) — lasnh —
Q.

11.1 Theorem [101] We have that

}X _{op(l) ifA <1,
n |l e @ +opd) ifa> 1,

where o (1) isthe survival probability of a branching processwith a single
progenitor and family-size distribution Po().).

Itisstandard (see [148, Sect. 5.4], for example) that the extinction prob-
ability n(0) = 1 — (1) of such a branching process is the smallest non-
negative root of the equation s = G(s), where G(s) = €S, Itisleftas
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an exercise? to check that
0 k-1 »
nA) = X kE_l B (re )"

Proof. By acoupling argument, the distribution of X, isnon-decreasingin
A. Sincea (1) = O, it suffices to consider the case A > 1, and we assume
this henceforth. We follow [176, Sect. 5.2], and use a branching-process
argument. (See also [22].) Choose a vertex v. At the first step, we find
al neighbours of v, say v1, v, ..., vy, and we mark v as dead. At the
second step, we generateall neighboursof vy inV \ {v, vy, v2, ..., v}, and
we mark v1 asdead. This processis iterated until the entire component of
Gn,p containing v has been generated. Any vertex thus discovered in the
component of v, but not yet dead, is said to be live. Step i is said to be
complete when there are exactly i dead vertices. The process terminates
when there are no live vertices remaining.

Conditional on the history of the processup to and including the (i — 1)th
step, thenumber N; of verticesadded at stepi isdistributed asbin(n—m, p),
where m is the number of vertices already generated.

et 162
= —— _logn, =n?/3,
G102 Ky

Inthissection, al logarithmsare natural. Consider the aboveprocessstarted
at v, and let A, be the event that: either the process terminates after fewer
than k_ steps or, for every k satisfying k- < k < ki, there are at least
%(A — Dk live vertices after step k. If A, does not occur, there exists
k € [k—, ky] such that: step k takes place and, after its completion, fewer
in total than

m=k+30.— Dk =30.+ Dk

vertices have been discovered. For simplicity of notation, we assume that
3. + Dk isaninteger.
On the event A,, and with such achoice for k,

(Nl’ N27 A k4 Nk) 23 (Yl’ Y2’ A Yk)’

2Hereis one method that resonates with random graphs. Let py bethe probability that
vertex 1 liesin acomponent that is atree of size k. By enumerating the possibilities,

n=1) ez (2 k-1 L k(n—k)+(§) —k+1
w= et () (-3) -

Simplify and sum over k.
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where the Yj are independent random variables with the binomial distribu-
tion® bin(n — (1 + Dk, p). Therefore,

Ky
1-PA) < > m,
k=k_

where
k

(11.2) nk=P<ZYi < %(A-;—l)k).
i=1

Now, Y1+ Y2+ - -+ Y hasthebin(k(n— 3 (A +1)k), p) distribution. By the
Chernoff bound* for the tail of the binomial distribution, for k_ < k < k.
and largen,

A — 1)2k2 A —1)2
e =on( -0 ) <o)

= 0(n~1%9),
Therefore, 1 — P(A,) < k. O(n~1/%) = o(n~1), and this proves that

P(ﬂ Av) >1->[1-P(A))>1 asn— oo

veV veV

In particular, aa.s., no component of G /n has size between k_ and k.

We show next that, a.a.s., there do not exist more than two components
with size exceeding k. Assume that the event (1), A, occurs, and let v/,
v be distinct vertices lying in componentswith size exceeding k.. We run
the above process beginning at v’ for thefirst k. steps, and wefinish with a
set L’ containing at least %(A — Dk, live vertices. We do the same for the
processfrom v”. Either the growing component at v intersects the current
component v' by step ki, or it does not. If the latter, then we finish with
aset L” containing at least %(k — 1)k, live vertices and disjoint from L’.
The chance (conditional on arriving at this stage) that there exists no edge
between L" and L” is bounded above by

(1— PR < exp(~1200 — 1?nY3) = o(n7?).

Therefore, the probability that there exist two distinct vertices belonging to
distinct components of size exceeding k. is no greater than

1— P(ﬂ Av> +n2o(n~?) = o(1).

veV

SHere and later, we occasionally use fractions where integers are required.
4See Exercise 11.3.
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In summary, aas., every component is either ‘small’ (smaller than k_)
or ‘large’ (larger than k), and there can be no more than one large com-
ponent. In order to estimate the size of any such large component, we use
Chebyshev’sinequality to estimate the aggregate sizes of the small compo-
nents. Let v € V. Thechanceo = o (n, p) that v isin asmall component
satisfies
(11.3) n-—0ol) <o <ny,
wheren, (respectively, n_) isthe extinction probability of abranching pro-
cess with family-size distribution bin(n — k_, p) (respectively, bin(n, p)),
and the o(1) term bounds the probability that the latter branching process
terminates after k_ or more steps. It is an easy exercise® to show that
n—,n+ — nasn — oo, wheren(i) = 1 — a (1) isthe extinction probabil -
ity of aPo(A) branching process.

The number S of verticesin small components satisfies

E(S) =on = (1+0(1))nn.
Furthermore, by an argument similar to that above,
E(S(S—1) < no[ko +no(n—k_, p] = (1+0(1)([ES)?,

whence, by Chebyshev’sinequality, Gn, p possesses (1 4 0p(1))n vertices
in small components. This leavesjust n — (n + 0p(1))N = (a + 0p(1))N
vertices remaining for the large component, and the theorem is proved. [

A further analysisyieldsthe size X, of the largest subcritical component
and the size Y,, of the second largest supercritical component.

11.4 Theorem
(& Wheni <1, I
ogn
Xn=(@1 H)————.
n =0+ Togn
(b) When a > 1,
logn
Ya=(1 H)————
n= At o) g o

where)’ = A(1— a())).

If L > 1, andweremovethelargest component, we areleft with arandom
graphonn — X, ~ n(1 — a())) vertices. The mean vertex-degree of this
subgraph is approximately

%xna—aanzxa—aanzxﬁ

5See Exercise 11.2.
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It may be checked that this is strictly smaller than 1, implying that the
remaining subgraph behaves as a subcritical random graph on n — X,
vertices. Theorem 11.4(b) now follows from part (a).

The picture is more interesting when A ~ 1, for which there is a de-
tailed combinatorial study in [175]. Rather than describing this here, we
deviate to the work of David Aldous[17], who demonstrated alink, viathe
multiplicative coalescent, to Brownian motion. We set

1 t
p= ﬁ + m,
wheret € R, and we write C! (1) > CL(2) > --- for the component sizes
of Gp, p in decreasing order. We shall explore the weak limit (asn — o0)
of the sequence n=%/3(CL (1), CL(2), ...).
Let W = (W(s) : s > 0) be astandard Brownian motion, and

WH(s) = W(s) + ts — 1%, s>0,
aBrownian motion with driftt — s at time s. Write
Bl(s) = Wi(s) — inf W(s)
0<s'<s
for areflecting inhomogenous Brownian motion with drift.

11.5 Theorem [17] Asn — oo,
n~3(CL(D), CH(2), ...) = (C'(D), C'D), ...),
where C!(j) isthe length of the jth largest excursion of B!.

We think of the sequences of Theorem 11.5 as being chosen at random
from the space of decreasing non-negative sequences X = (X1, X2, ...),

with metric
dx.y)= (D> 6 — ¥

As t increases, two components of sizes x;, xj ‘coalesce’ at a rate pro-
portional to the product x;x;. Theorem 11.5 identifies the scaling limit of
this process as that of the evolving excursion lengths of W! reflected at
zero. This observation has contributed to the construction of the so-called
“multiplicative coalescent’.

In summary, thelargest component of the subcritical random graph (when
A < 1) has order logn, and that of the supercritical graph (when A > 1)
has order n. When 1 = 1, the largest component has order n?3, with
a multiplicative constant that is a random variable. The discontinuity at
A = lissometimesreferred to asthe ‘ Erdés—Rényi double jump’.
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11.3 Independence and Colouring

Our second random-graph study is concerned with the chromatic number of
G, p for constant p. The theory of graph colouringsis a significant part of
graph theory. The chromatic number yx (G) of agraph G istheleast number
of colours with the property that there exists an alocation of colours to
vertices such that no two neighbours have the same colour. Let p € (0, 1),
and write xn, p for the chromatic number of Gy, p.

A subset W of V iscalledindependent if notwo verticesin W are adjacent,
thet is, if Xjj = Oforali, j € W. Any colouring of G p partitions V
into independent sets each with a given colour, and therefore the chromatic
number isrelated to the size I, p of the largest independent set of G, p.

11.6 Theorem [143] We have that
In,p = (1+0p(1))2log, N,
where the base = of thelogarithmisz = 1/(1 — p).

The proof follows a standard route: the upper bound follows by an esti-
mate of an expectation, and the lower by an estimate of a second moment.
When performed with greater care, such cal culationsyield much more accu-
rateestimatesof I, p than those presented here; see, for example, [51], [176,
Sect. 7.1], and [226, Sect. 2]. Specifically, there exists an integer-valued
functionr = r (n, p) such that

(11.7) Pr—1<lyp<ry—1 asn — oo.

Proof. Let Nk be the number of independent subsets of V with cardinality
k. Then

(11.8) P(lnp = k) =P(Nk = 1) < E(N).
Now,
(11.9) E(Ny) = (D(l_ 0,

Withe > 0, setk = 2(1 4+ €) log,, n, and use the fact that
k

n n K
(k) <3S (ne/k)",
to obtain
log, E(Nk) < —(1+ o(1))kelog, n - —oo asn — oo.

By (11.8), P(ln,p = k) — 0 asn — oco. Thisisan example of the use of
the so-called *first-moment method’.
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A lower bound for I p is obtained by the ‘second-moment method’, as
follows. By Chebyshev’sinequality,

var(Ng)
P(Nk =0) < P(INk — ENk| > ENk) < E(l(\lk)Z’
whence, since Nk takes valuesin the non-negative integers,
(11.10) P(Nk>1)>2-— E(N"z) )
E(Nk)?
Lete > Oandk = 2(1 — ¢) log,, n. By (11.10), it suffices to show that
(11.11) ]E(Nkz) -1 asn — oo.
E(Nk)?

By the Cauchy—Schwarz inequality, theleft sideisat least 1. By an elemen-
tary counting argument,

k .
E(N?) = (E) (1- p)(g) Z (II() (rll : II() (1-— p)('ﬁ)—('z)_
i=0
After a minor analysis using (11.9) and (11.11), we may conclude that

P(In,p > k) = 1asn — oo. Thetheoremis proved. O

We turn now to the chromatic number yn p. Since the size of any set of
vertices of agiven colour isno larger than I, p, we have immediately that

n
11.12 p>—=(1+0y2) .
( ) Xn.p In,p P 2log, n

The sharpness of this inequality was proved by Béla Bollobéas [49] in a
striking application of Hoeffding’s inequality for the tail of a martingale,
Theorem 4.21.

11.13 Theorem [49] We have that

n
xnp = (1+0p(1) 2109, n’

wherer =1/(1— p).

Theterm op(1) may be estimated quite precisely by amore detailed anal-
ysisthan that presented here; see[49, 227] and [176, Sect. 7.3]. Specificaly,
we have, aas., that

n

- 2log, n — 2log, log, n + Op(1)’

Xn,p

where Z, = Op(yn) meansP(|Zn/yn| > M) < g(M) - 0as M — oo.
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Proof. The lower bound follows as in (11.12), and so we concentrate on
finding an upper bound for xn p. Let0 < € < %, and write
k=2(1—e¢)log, n], m = |n/(log, n)?.

We claim that, with probability 1 — o(1), every subset of V with cardinality
at least m possesses an independent subset of size at least k. The required
bound on xn, p results from this claim, as follows. We find an independent
set of size k, and we colour its vertices with colour 1. From the remaining
set of n — k vertices we find an independent set of size k, and we colour
it with colour 2. This process may be iterated until there remains aset S
of size smaller than [n/(log, n)?]. We colour the vertices of S greedily’,
using |S| further colours. The total number of colours used in the above
algorithm is no greater than

n n

k " (og, n?"

which, for large n, is smaller than %(1+ 2¢)n/log,, n. Therequired claim
is a consequence of the following lemma.

11.14 Lemma Wththeabovenotation, the probability that G, p contains
no independent set of sizek isless than exp(—n%—2€+°(1>/m2).

There are (1) (< 2") subsets of {1, 2, ..., n} with cardinality m. The
probability that some such subset fails to contain an independent set of size
k is, by the lemma, no larger than

2N exp(—n%‘ze“’(l)/mz) = o(1).

Weturn to the proof of Lemma 11.14, for which we shall use the Hoeffding
inequality, Theorem 4.21.
For M > Kk, let

(11.15) F(M, k) = (’::I)(l— 0)®.

We shall require M to be such that F (M, k) grows as a power of n, and to
that end we set

(11.16) M = | (Ck/e)n'¢],

where
3

| - °
°9:C =81 o

has been chosen in such away that

(11.17) F(M, k) = ni—¢tod_
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Let £(r) betheset of independent subsetsof {1, 2, .. ., r } with cardinality
k. We write Nk = [£(m)|, and N, for the number of elements | of £(m)
with the property that || N'17] < 1forall I’ € 4(m), I’ # |. Note that

(11.18) N > N/

We shall estimate P(Nx = 0) by applying Hoeffding's inequality to a
martingale constructed in a standard manner from the random variable Ny .
First, we order as (e1, e, .. ., e(r;)) the edges of the complete graph on the
vertex-set {1, 2, ..., m}. Let Fs be the o-field generated by the states of
the edges er, €, ..., &, and let Ys = E(N; | F5). It is elementary that
the sequence (Ys, ¥s), 0 < s < (7), isamartingale; see [148, Example
7.9.24]. The quantity N, has been defined in such away that the addition
or removal of an edge causes its value to change by at most 1. Therefore,
the martingale differences satisfy |Ys1 — Ys| < 1. Since Yo = E(N;) and
Yy = Ne

(11.19) P(Nk = 0) < P(Ny, = 0)
=P(Ng — E(Np) < —E(Np))

e b5 3
< exp(—E(Ny)?/nm)

by (11.18) and Theorem 4.21. We now require alower bound for E(Ny).

Let M beasin (11.16). Let Mk = [£(M)], and let M, be the number of
elements| € {(M) suchthat || N 1’| <1forall’ € (M), 1’ # |. Since
m> M,

(11.20) Ny > My,
and we shall bound E(M;) from below. Let K = {1,2,...,k}, and let A

bethe event that K isan independent set. Let Z be the number of elements
of £(M), other than K, that intersect K in two or more vertices. Then

(11.21) E(M) = (I\:)]P’(Am (Z=0}

M
= (k)P(A)]P’(Z=O| A
= F(M,KP(Z =0] A).
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WeboundP(Z =0 | A) by
(11.22) P(Z=0|A=1-P(Z=>1|A

>1-E(Z| A
k-1
1 (k)<M - k)(l_ 0 ®-6)
t k—t
t=2
k-1
:1—25, Say
t=2
Fort > 2,
(11.23)
(M —2k+2)! k—2\? 2 “Litn—2)
R = M2k ((k—t)!) “ut P
) CLgapt2
_|[a-—p 2@
= M — 2k

For2 <t < 3k,
log, [(1— p) 2] < 2k+2) < F+ 11— e)log, n,
0 (1— p)~3t+D — on3(1-9). By (11.23),
> FR=(1+01)F.

2<t<1k

Similarly,

K\ (M =K\ (1— p)2ktt-2k-t-D)
t)<k—t) k(M — k)

< [kn(1 — pyzHt-2]K

Ft/Fko1 = (

For 3k <t <k — 1, we have as above that

1-p*Y <@-pik<ni,
whence

> R=1+o0@)F1.
Sk<t<k-1
In summary,
k—

(11.24) Y R =(1+0D)(F2+ Fe).

=

—
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By (11.15) and (11.17),
k4
F F(M, Kk
2= 2a-pm—kz Y

— p-aterod) _ o(1),

and similarly
Fke1 = k(M —k) (1 — p)*~1 = 0(2).

By (11.21), (11.22), and (11.24),
E(Mp) = (1+0(1)F (M, k) = nf—<+od,
Returning to the martingale bound (11.19), it follows by (11.20) that
P(Nk = 0) < exp(—nz~ 200 /m)

asrequired. d

11.4 Exercises

11.1 Letn()) betheextinction probability of abranching processwhose family-
sizes have the Poisson distribution Po()). Show that

LKtk
”(A):Xk; ek,

11.2 Consider a branching process whose family-sizes have the binomial dis-
tribution bin(n, »/n). Show that the extinction probability convergesto n(1) as
n — oo, where n(1) is the extinction probability of a branching process with
family-sizes distributed as Po()).

11.3 Chernoff bounds. Let X have the binomial distribution bin(n, p), and let
A = np. Obtain exponentially decaying bounds for the probabilities of
upper and lower deviations of X from its mean A, such as those to be found in
[176, Sect. 2.1]:

2
P(X > A+1) < e*U/D < exp (—m> . t>0,

2
P(X <i—1) <e YD <exp (—tﬁ) t>0,

where

d(X) = { i+X)|Og(1+X) —x ifx>-1,

if x < —1.
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11.4 [51] Show that the size of the largest independent set of G p is, aas,
eitherr — 1 orr, for some deterministic functionr =r (n, p).

11.5 Consider a branching process with a single progenitor and family-sizes
distributed as the random variable X. Let

T=minin>1: X1+ Xo+ -4+ Xn=n-1},

wherethe X; are independent copies of X. Show that T hasthe same distribution
asthe total number of individuals in the branching process. (The minimum of the
empty set is defined to be co.)

11.6 (continuation) Intherandom graph Gn, p with p = 1/n, wherei € (0, 1),
show that the size My, of the largest cluster satisfies P(Mp > alogn) — 0 as
n— ooforanya>A—1—1logh.

11.7 (continuation) Prove the complementary fact that P(M, < alogn) — 0
ash— ooforanya < i —1—loga.
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Lorentz Gas

A small particle is fired through an environment of large particles,
and is subjected to reflections on impact. Little is known about the
trajectory of the small particle when the larger ones are distributed at
random. The notorious problem on the square lattice is summarized,
and open questions are posed for the case of a continuum of needle-
like mirrorsin the plane.

12.1 Lorentz M odel

In afamous sequence [215] of papers of 1906, Hendrik Lorentz introduced
aversion of the following problem. Large (heavy) particles are distributed
about RY9. A small (light) particle is fired through RY, with a trajectory
comprising straight-line segments between the points of interaction with
the heavy particles. When the small particle hits a heavy particle, the small
particleisreflected at its surface, and the large particle remains motionless.
See Figure 12.1 for an illustration.

We may think of the heavy particles as objects bounded by reflecting sur-
faces, and the light particle as a photon. The problem is to say something
non-trivial about how the trgjectory of the photon depends on the ‘envi-
ronment’ of heavy particles. Conditional on the environment, the photon
pursues a deterministic path about which the natural questionsinclude:

1. Isthe path unbounded?

2. How distant is the photon from its starting point after timet?

For simplicity, we assume henceforth that the large particlesareidentical to
one another and that the small particle has negligible volume.

Probability may beinjected naturally into thismodel through the assump-
tion that the heavy particles are distributed at random around RY according
to some probability measure .. The questionsabove may berephrased, and
made more precise, in the language of probability theory. Let X; denote
the position of the photon at time t, assuming it has constant speed. Under
what conditionson p:
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(0

Nl

Figure 12.1 The trgjectory of the photon comprises straight-line seg-
ments between the points of reflection.

I. Istherestrictly positive probability that the function X; isunbounded?
I1. Does X; convergeto a Brownian motion, after suitable re-scaling?
For awide choice of measures i, these questions are currently unanswered.

TheL orentz gasisvery challenging to mathematicians, andlittleisknown
rigorously in reply to the questions above. The reason isthat, as the photon
moves around space, it gathersinformation about the random environment,
and it carries this information with it forever.

The Lorentz gas was developed by Paul Ehrenfest [100]. For relevant
referencesin the mathematics and physicsjournals, the reader isreferred to
[127, 128]. Many references may be found in [274].

12.2 The Square Lorentz Gas

Probably the most provocative version of the Lorentz gas for probabilists
ariseswhen the light ray is confined to the square lattice 1.2. At each vertex
v of .2, we place a ‘reflector’ with probability p, and nothing otherwise
(the occupancies of different vertices are independent). Reflectors comein
two types: ‘NW' and ‘NE’. A NW reflector deflectsincoming rays heading
northwards (respectively, southwards) to the west (respectively, east), and
viceversa. NE reflectors behave similarly with east and west interchanged.
See Figure 12.2. We think of areflector as being a two-sided mirror placed
at 45° to the axes, so that an incoming light ray is reflected along an axis
perpendicular to its direction of arrival. If areflector is placed at v, then we
specify that it isequally likely to be NW as NE.

We shine a torch northwards from the origin. The light is reflected by
the mirrors, and it is easy to see that either the light ray is unbounded or it
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NW NE

| |

Figure12.2 Anillustration of the effects of NW and NE reflectors on
alight ray.

traverses a closed loop of L2 (generally with self-crossings). Let
n(p) = Pp(thelight ray returnsto the origin).

Very little is known about the function . It seems reasonableto conjecture
that n isnon-decreasingin p, but this has not been proved. If n(p) = 1, the
light follows (almost surely) a closed loop, and we ask: for which p does
n(p) = 1? Certainly, n(0) = 0, and it iswell known that n(1) = 1.1

12.1 Theorem Wehavethat n(1) = 1.

We invite the reader to consider whether n(p) = 1 for some p € (0, 1).
A variety of related conjectures, not entirely self-consistent, may be found
in the physics literature. There are almost no mathematical results about
this process beyond Theorem 12.1. We mention the paper [246], where it
is proved that the number N(p) of unbounded light rays on Z? is almost
surely constant, and is equal to one of 0, 1, co. Furthermore, if there
exist unbounded light trajectories, then they self-intersect infinitely often.
If N(p) = oo, the position X, of the photon at time n, when following
an unbounded trajectory, is superdiffusive in the sense that E(|Xn|2)/n is
unbounded asn — oo. The principal method of [246] is to observe the
environment of mirrors as viewed from the moving photon.

Inavariant of the standard random walk, termed the ‘ burn-your-bridges
random walk by Omer Angel, an edge is destroyed immediately after it is
traversed for thefirst time. Thereaderisinvitedto reflect ontherelationship

between the burn-your-bridges randomwal k and the square L orentz gaswith
-1
=3

1see the historical remark in [126].
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Figure12.3 (@) Thebold linesform the lattice .£, and the central point
istheoriginof 2. (b) Anopencyclein £ constitutesabarrier of mirrors
through which no light may penetrate.

Proof. We construct an ancillary lattice £ asfollows. Let
A={m+3n+3 :m+niseven).

Let~ betheadjacency relationon Agivenby(m-+3, n+3) ~ (r +3, S+3)
ifandonly if Im—r| = |[n —s| = 1. Weobtainthusagraph .£ on Athat is
isomorphic to 2. See Figure 12.3.

We declarethe edge of £ joining (m— 2, n—3)to(m+ 3, n+ 1) tobe
open if thereisaNE mirror at (m, n); similarly, we declare the edgejoining
m—3,n+2)tom+3,n—2)tobeopenif thereis a NW mirror at
(m, n). Edgesthat are not open are designated closed. This definesabond
percolation processin which north-east and north-west edges are open with
probability 3. Since pc(L?) = 3, the processis critical, and the percolation
probability ¢ satisfies0(3) = 0. See Sections 5.5 and 5.6.

Let N bethe number of open cyclesin £ withtheoriginintheir interiors.
Sincethereis (a.s.) noinfinite cluster in the percolation process on the dual
lattice, we have that P(N > 1) = 1. Such an open cycle corresponds to a
barrier of mirrors surrounding the origin (see Figure 12.3), from which no
light can escape. Thereforen(1) = 1. d

The problem above may be stated for other lattices such asL9; see[126]
for example. It is much simplified if we allow the photon to ‘flip its own
coin’ as it proceeds through the disordered medium of mirrors. Two such
models have been explored. In the first, there is a positive probability that
the photon will misbehave when it hitsamirror; see[279]. Inthe second, a
small density of verticesis allowed at which the photon acts in the manner
of arandom walk; see [44, 144].
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12.3 In the Plane

Hereisacontinuum version of the Lorentz gas. Let I be a Poisson process
in R? with intensity 1. For each x e TI, we place a needle (that is, a
closed rectilinear line-segment) of given length | with its centre at x. The
orientations of the needles are taken to be independent random variables
with acommon law p on [0, 7). We call u degenerateif it has support on
asingleton, that is, if all needles are (almost surely) parallel.

Each needleisinterpreted as a (two-sided) reflector of light. Needlesare
permitted to overlap. Light is projected from the origin northwards, and
deflected by the needles. Sincethelight strikes the endpoint of some needle
with probability O, we shall overlook this possibility.

Inarelated problem, wemay study theunion M of the needles, viewed as
subsetsof R?, and ask whether either (or both) of thesets M, R2\ M contains
an unbounded component. This problem is known as ‘ needle percolation’,
and it has received some attention (see, for example, [228, Sect. 8.5], and
also [163]). Of concern to us in the present setting is the following. Let
A(l) = 1, (1) betheprobability that there existsan unbounded path of R2\ M
with the origin 0 asendpoint. Itisclear that A(l) isnon-increasinginl. The
following is afairly straightforward exercise of percolation type.

12.2 Theorem [163] Thereexistslc = lc(w) € (0, oco] such that

>0 ifl <lg,
Adl ,
=0 ifl >l
and furthermorel; < oo if and only if 1 is non-degenerate.

The phase transition is defined here in terms of the existence of an un-
bounded ‘ vacant path’ from the origin. When no such path exists, the origin
isalmost surely surrounded by acycleof pairwise-intersecting needles. That
is,

<1 ifl <lg,
=1 ifl >l

where E is the event that there exists a component C of needles such that
the origin of R? lies in a bounded component of R? \ C, and P,, | denotes
the probability measure governing the configuration of mirrors.

Theneedl e percolation problemisatype of continuum percolation model;
cf. the space-time percolation process of Section 6.6. Continuum perco-
lation, and in particular the needle (or ‘stick’) model, was summarized in
[228, Sect. 8.5].

We return to the above Lorentz problem. Suppose that the photon is
projected from the origin at angle 6 to the x-axis, for givené € [0, 2r). Let
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©® bethe set of al 6 such that the trajectory of the photon is unbounded. It
is clear from Theorem 12.2that P, | (® = @) = 1if | > lc. The strength
of the following theorem of Matthew Harris lies in the converse statement.

12.4 Theorem [163] Let u be non-degenerate, with support a subset of the
rational angles 7 Q.

@ Ifl >l¢, thenP, |(© =2) =1

(b) Ifl <lg¢, then

P..,1 (® hasLebesgue measure 2r) = 1 — P, | (E) > 0.

That is to say, almost surely on the complement of E, the set ® differs
from the entire interval [0, 2r) by a null set. The proof uses a type of
dimension-reduction method and utilizes a theorem concerning so-called
‘interval-exchange transformations’ taken from ergodic theory; see [183].
It is a key assumption for this argument that © be supported within the
rational angles.

Let n(l) = n, (1) bethe probability that the light ray is bounded, having
started by heading northwards from the origin. Asabove, 1, (1) = 1 when
| > lc(n). Incontrast, it is not known for general 1 whether n,,(I) < 1 for
sufficiently small positivel. It seemsreasonableto conjecturethefollowing.
For any probability measure i on [0, ), there exists |y € (0, I¢] such that
n.(1) < 1 whenever| < I;. This conjecture is open even for the arguably
most natural case when p isuniformon [0, 7).

12.5 Conjecture Let u bethe uniform probability measureon [0, ), and
let|. denotethecritical length for the associated needl e percolation problem
(asin Theorem 12.2).

(@) Thereexistsl, € (0, I¢] such that

(I){ <1 ifl <y,
Tl =1 i1 =1,
(b) Wehavethat I, = I.
Asafirst step, we seek aproof that n(I) < 1for sufficiently small positive

valuesof |. Itistypical of such mirror problems that we lack even a proof
that (1) ismonotonein|.

12.4 Exercises

12.1 There are two ways of putting in the barriers in the percolation proof of
Theorem 12.1, depending on whether one uses the odd or the even vertices. Use
thisfact to establish boundsfor thetail of the size of thetrajectory when the density
of mirrorsis1.
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12.2 Inavariant of the square Lorentz lattice gas, NE mirrors occur with prob-
ability n € (0, 1) and NW mirrors otherwise. Show that the photon’strajectory is
almost surely bounded.

12.3 Needles are dropped onto the plane in the manner of a Poisson process
with intensity 1 (in the manner of Buffon’s needle). They have length |, and their
angles to the horizontal are independent random variables with law . Show that
there existslc = Ic(u) € (0, oo] such that: the probability that the origin liesin
an unbounded path of R? intersecting no needle is strictly positive when| < I,
and equals zerowhen| > Ic.

12.4 (continuation) Show that I¢ < oo if and only if u is non-degenerate.
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continuum |. m. 193
quantum |. m. 189
spin cluster 170, 172
stochastic |. m. 214



isoradial graph 116, 168

k-fuzz 20
Kirchhoff 6
laws 4

theorem 6

L P space 83
lace expansion 90
large deviations
Chernoff bound 223
lattice 14, 17
logarithmic asymptotics 101
loop
|.-erased random walk 23, 35
|.-erasure 23
Lorentz gas 233

magnetization 164
Markov chain 1, 205

generator 205

reversible M. c. 1, 215
Markov random field 148
Markov property 149
maximum principle 19
mean-field theory 220, 102
mixing

m. measure 187, 188

m. time 217
monotone measure 84
multiplicative coalescent 225
multiscale analysis 145

n-vector model 153
needle percolation 237
negative association 21, 22, 159

O(n) model 153
Ohm's law 4
open

o. cluster 40

0. edge 39
oriented percolation 53
origin 17
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parafermionic observable 47
paralel and series laws 9
partial order 152
path 17
Peierls argument 41
percolation
model 39
of words 57
p. probability 40, 54, 136, 161,
199
phase transition 99
first and second order p. t. 164
photon 233
pivotal element/edge 80
planar duality 41
Polya's Theorem 14
portmanteau theorem 31
positive association 62
potential function 4, 149
Potts model 153, 152
continuum P. m. 192
ergodicity and mixing 188
magnetization 164
two-point correlation function 158
probability measure
A-invariant p. m. 81
positive p. m. 60
product o -algebra 30

guantum entanglement 200
quantum Ising model 189

radius 127, 143
exponential decay of r. 87
random even graph 183
random graph 219
chromatic number 226
double jump 225
giant component 221
independent set 226
random-cluster measure 156
comparison inequalities 159
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conditional measures 159
critical point 162
DLR measure 161
ergodicity 160, 188
limit measure 160
mixing 187
ratio weak-mixing 202
relationship to Potts model 158
uniqueness 162
random-cluster model 154
continuum r.-c. m. 191
r-c. m. in two dimensions 167
random-current representation 186
random-parity representation 199
random walk 1, 208
ratio weak-mixing 202
Rayleigh principle 10, 22, 29
Reimer inequality 64
relaxation time 217
renormalized lattice 128
root 24
roughening transition 167
RSW theorem 105
Russo’'s formula 80

scaling relations 101
Schramm—L 6wner evolution 32, 99
chordal, radial SLE 34
trace of SLE 34
second-moment method 227
second-order phase transition 164
self-avoiding walk (SAW) 40, 42
self-dual
s.-d. graph 41
s.-d. point 107, 169, 192
semigroup 205
Feller s. 205
series and parallel laws 9
sharp threshold theorem 81
shift-invariance 29
sink 5
dlab critical point 91
SLE, see Schramm-L dwner
evolution
source 5

Index

S set 3
space-time percolation 142, 191
Spanning

s. arborescence 24

S. tree 6, 17
spectral gap 217
speed function 205, 214
square lattice 18, 14
star—triangle transformation 9, 19
stochastic Ising model 214

stochastic Lowner evolution, see
Schramm—L dwner evolution

stochastic ordering 59
Strassen theorem 60
strong survival 140
subadditive inequality 43
subcritical phase 86
subgraph 17
supercritical phase 90
superposition principle 5
support, of measure 29
supremum norm 101

TASEP 212
thermodynamic limit 160
Thomson principle 9
time constant 69
total variation distance 217
trace

t. of matrix 190

t. of SLE 34
transitive action 81
tree 17
triangle condition 103
triangular lattice 18, 34, 104
trifurcation 97
turning angle 46

uniform
connected subgraph (UCS) 32, 165
spanning tree (UST) 21, 165
(spanning) forest (USF) 32, 165
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unigueness
u. of harmonic functions 20 weak convergence 30
u. of infinite open cluster 96 weak survival 140
u. of random-cluster measure 162  Wilson's algorithm 23
universality 102 wired boundary condition 30, 38
upper critical dimension 101 word percolation 57
vertex degree 17 zero/one infinite-cluster property 161

Voronoi percolation 69
voter model 207



