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2 J. van den Berg, G. R. Grimmett, R. B. Schinazi1! 2 at rate �n2(x),2! 0 at rate � (taken to equal 1),0! 1 at rate �,where 0 < � < 1, 0 � � � 1, and n2(x) is the number of ill neighbours of x in �t.We allow the value � =1, in which case the state of any vertex passes instantaneouslythrough the value 0; i.e., recovery is immediate. We omit a formal de�nition of theMarkov process � on the state space f0; 1; 2gZd, referring the reader to Chapter 1 ofLiggett (1985).There is some di�culty in achieving a useful de�nition of critical values for the process� when 0 < � < 1, owing to a lack of (provable) monotonicity. The following route isappealing but problematic. Writing P�;� for the appropriate probability measure whenthe initial distribution is given by�0(u) = � 2 if u = 01 if u 6= 0,we let(1:1) �(�; �) = P�;��jCj =1�;where C is the set of vertices which are in state 2 at some time. We may think of �(�; �)as the probability that the infection continues forever. We let(1:2) �c(�) = supf� : �(�; �) = 0g:It may be proved that �(�; �) is a non-decreasing function of � when � 2 f0;1g,whence (1.2) provides a useful de�nition of the critical point in these two extreme cases.Unfortunately, we do not know whether or not �(�; �) is monotonic in � when 0 <� < 1, and therefore we have insu�cient information to describe the associated phasetransitions.When � =1, this model is (e�ectively) the well known contact process with possiblestates 1 and 2, and �c(1) is the critical infection rate. For the basic properties of thecontact model, see Liggett (1985, Chap. 6) and Bezuidenhout and Grimmett (1990).The other extreme case � = 0 has been considered by Kuulasmaa (1982). This is an`epidemic without recovery'. Kuulasmaa showed that �(�; 0) is non-decreasing in �, andthat 0 < �c(0) <1 when d � 2; it is easy to see that �c(0) =1 when d = 1.It may be proved that �c(1) � �c(0), and one of our results is the strict inequality�c(1) < �c(0), valid in any dimension. We prove this at Corollary 4.3 below, using acoupling of P�;0 and P�;1.It is apparently di�cult to study the above epidemic model for general �, � sat-isfying 0 < �; � < 1, owing to the possibility of non-monotonicity. Therefore, wedescribe here certain approaches designed to understand the relevance of the criticalvalues �c(0), �c(1). In particular, we are interested in whether the parameter-pair
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�c(1)

(AS) coexistence�(�; �) > 0
no coexistence�(�; �) = 0 �c(0)

(DN) d = 2:coexistence�(�; �) = 0no coexistence �(�; �)> 0
�Fig. 1. A sketch of the phase diagram of the epidemic model with parameters � and �.The letters AS refer to Andjel{Schinazi (1996), and DN to Durrett{Neuhauser (1991). Thedashed line indicates a critical curve separating the two phases characterised by `coexistence'and `no coexistence', but the existence of such a curve has not been proved. This sketch is validfor all dimensions d � 1, except where noted otherwise; we point out that �c(0) = 1 whend = 1.(�; �) = (�c(0); 0) lies on a (hypothetical) critical surface of the general model. Since wedo not know whether there exists a unique critical curve, we restrict ourselves to a lesserquestion, namely whether arbitrarily small perturbations of (�; �), in the neighbourhoodof (�c(0); 0), may take the process into either of two phases, these phases being charac-terised by the occurrence or not of `coexistence'. The property of coexistence has beenstudied fairly widely in the theory of in�nite particle systems. In the present context,we say that `coexistence occurs' if there exists an invariant measure � for the process �such that � is concentrated on con�gurations which include at least one vertex in eachof the states 0, 1, and 2.In Section 2, we introduce a class of locally dependent percolation models in which(directed) edges of the lattice have random states with a certain dependence structure.We present exponential-decay results for such systems, and note that these results gen-eralise the corresponding statements for independent percolation. See Theorems 2.1 and2.2 below; the corresponding results for independent percolation may be found in Grim-mett (1989). In Section 3, we apply these result to a locally dependent random grapharising from the special case � = 0 of the epidemic model described above. In this way,we obtain exponential-decay theorems for epidemics without recovery.In Section 4, we combine the above observations with certain continuity and re-scalingarguments in order to obtain a new result for the epidemic model with 0 < � < 1,namely the following. Durrett and Neuhauser (1991) showed that, if � > �c(0) and� > 0, coexistence occurs when d = 2. On the other hand, Andjel and Schinazi (1996)have proved that � > �c(1) if and only if there exists � such that coexistence occurs.



4 J. van den Berg, G. R. Grimmett, R. B. Schinazi(In this case, coexistence occurs for all su�ciently large values of �.) One of our maincurrent results is that, if �c(1) < � < �c(0), then coexistence is not possible for �less than a certain non-trivial threshold (whose value depends on �); see Theorem 4.4below. This identi�es �c(0) as a genuine critical value for the general epidemic modelwith recovery, thereby proving the existence of two distinct critical values, the other onebeing �c(1). Proofs of our results are given in Sections 5{8. See Figure 1 for a sketchof the phase diagram of the model.We �nish this section with a little notation. As usual, Ld denotes the cubic latticein d dimensions, where d � 1. For a vertex u = (u1; u2; : : : ; ud), we de�nejuj = dXi=1 juij:An edge from u to v in Ld is denoted by hu; vi. When it is directed from u to v, wewrite [u; vi. The surface of a set A of vertices (i.e., the set of vertices in A which areadjacent to some vertex outside A) is denoted by @A. We write �n = [�n; n]d, the boxof Zd having side length 2n.2. Exponential decay for locally dependent random graphsIn the usual bond percolation process on Ld, the states of di�erent edges are independentrandom variables. One of the main results for subcritical percolation is the exponentialdecay of the connectivity function (Aizenman and Barsky (1987), Menshikov (1986); seealso Chapter 3 of Grimmett (1989)). We will state analogous results for a percolation-type model in which certain dependencies are introduced between the states of di�erentedges. Such systems were studied by Kuulasmaa (1982) under the name `locally depen-dent random graphs'.We shall work on directed graphs rather than undirected graphs, and we begin bywriting !Ld for the directed graph obtained from Ld by replacing each edge by a pair ofoppositely directed edges (i.e., the edge hu; vi is replaced by an edge [u; vi, together withan edge [v; ui.Next we introduce probabilities, in order to construct a random subgraph of !Ld. Lete1; e2; : : : ; ed be the positive unit vectors of Zd, and write E = f
ei : 
 = �; 1 � i � dg.We may think of E as the set of neighbours of the origin of Ld, or equivalently as theset of possible endpoints of edges directed out of the origin. Let P be the set of allprobability measures on the set 2E of subsets of E . That is, P contains all functions� : 2E ! [0; 1] satisfying XA�E �(A) = 1:For A � 2E , we write �(A) = XA2A�(A);



Dependent Random Graphs and Spatial Epidemics 5and we call A increasing ifA0 2 A, whenever A � A0 and A 2 A:For �; � 2 P, we say that � is (stochastically) dominated by � (written � � �) if�(A) � �(A) for all increasing subsets A of 2E . If �(A) < �(A) for all increasing A � 2Ewith A 6= ;, A 6= 2E , then we say that � is strictly dominated by �.Let � 2 P. We now de�ne a random subgraph of !Ld as follows. Let fNu : u 2 Zdgbe a collection of independent random subsets of E , each being chosen according to theprobability measure �. Our random subgraph has vertex set Zd, and its edge set isprecisely the set of all directed edges [u; vi for which v�u 2 Nu. We denote the ensuingdirected random graph by �, and write P� for the associated probability measure.Let u0; u1; : : : ; um be the (distinct) vertices of a path in Ld. We call this sequence anopen (directed) path if [ui; ui+1i lies in � for 0 � i < m. We write u! v if there existsan open path from u to v, and u!1 if there exists an in�nite open path from u.The Nu have a natural interpretation in terms of a very general and simple epidemicmodel in which infected individuals eventually die (and are not replaced) and in whichthe notion of time is ignored (that is, we record only which individuals ever become ill,but not at which times this will happen): when an individual u becomes infected, he inturn sends germs to exactly those individuals in the set u+Nu (consequently, he infectsexactly those individuals in this set which have not been infected previously). With thisinterpretation, the event fu! vg is the set of con�gurations of the lattice such that, ifinitially only u is infected, then the infection will eventually reach v.As a special case, assume for the moment that � is product measure on E withdensity p. It is not di�cult to see that P�(u! v) = Pp(u$ v), where Pp is the measureassociated with bond percolation (having density p), and fu$ vg is the event that thereexists an (undirected) open path from u to v.Returning to the general case, we de�ne the percolation and connectivity functionsin the usual way: �(�) = P�(0!1); ��(u; v) = P�(u! v):Next follows our main result for the above locally dependent percolation model.Theorem 2.1. Let �; � 2 P and assume that � is strictly dominated by �. If �(�) = 0,then there exists a strictly positive constant 
 = 
(�; �) such that��(u; v) � e�
jv�uj for u; v 2 Zd:As observed above, this conclusion generalises the exponential decay theorem for`independent' percolation; see Theorem 3.4 of Grimmett (1989). We have presented thetheorem for the lattice Ld, but this is not essential.



6 J. van den Berg, G. R. Grimmett, R. B. SchinaziOur proof of Theorem 2.1 is based upon Menshikov's proof for `independent' percola-tion (see Grimmett (1989)). However, there are some key di�erences, of which the mostsigni�cant lies in the use of a `disjoint occurrence' inequality. Whereas the standard BKinequality su�ces when the edge-states are independent, the more general version, con-jectured by van den Berg and Kesten (1985) and proved by Reimer (1997), is necessaryhere.Theorem 2.1 has an implication for the tail of the cluster-size distribution.Theorem 2.2. Let �; � 2 P, and assume that � is strictly dominated by �. If �(�) = 0,then there exists a strictly positive constant � = �(�; �) such that the set C = fv : 0! vgsatis�es P�(jCj � n) � e��n for all n � 0:3. Application to the epidemic model without recoveryTheorems 2.1 and 2.2 may be applied to the epidemic model with � = 0, i.e., the modelin which individuals are removed forever from the system once their period of illness iscompleted. We take as initial con�guration(3:1) �0(u) = � 2 if u = 01 if u 6= 0,which is to say that illness is introduced at the origin into an ocean of susceptibles.Kuulasmaa (1982) made the interesting observation that the set C of individuals whichare ever infected may be represented as the cluster at 0 in a certain locally dependentpercolation model. He proved also that �(�; 0) = P�;0(jCj =1) is strictly positive andnon-decreasing in � (> 0), and furthermore that, if d � 2, then the critical value�c(0) = sup�� : �(�; 0) = 0	satis�es 0 < �c(0) < 1; cf. (1.1). We will show that Theorem 2.1, combined withKuulasmaa's observations, yields the following result. We recall that �n = [�n; n]d.Theorem 3.1. If � < �c(0), there exist 
 = 
(�) and � = �(�) satisfying 
; � > 0 suchthat, for all n, P�;0(C \ @�n 6= ;) � e�
n;P�;0(jCj � n) � e��n:Next we present an exponential decay theorem for the total time of the epidemic.Let T denote the supremum of the set of times at which the state of some vertex changesfrom 2 to 0.Theorem 3.2. There exists � = �(�), satisfying � > 0 when � < �c(0), such thatP�;0(T > t) � e��t for all t � 0:



Dependent Random Graphs and Spatial Epidemics 74. The intermediate phase of epidemics with recoveryWe now turn to the epidemic with recovery (or re-birth), i.e., the case � > 0. As wewrote in the introduction, it is known that coexistence occurs:for every positive � if � > �c(0) and d = 2,for no � if � < �c(1),for su�ciently large � if �c(1) < � < �c(0).See Figure 1. Our understanding of the `intermediate region', described in the thirdcase, is far from complete, and this is the region in which we are interested here. Our�rst step is to show that the intermediate region exists, i.e., that �c(1) < �c(0).Consider the model with parameters �; �, and suppose we start as in (3.1) withone vertex ill (in state 2) and all others susceptible (in state 1). Let �(�; �) be theprobability that in�nitely many vertices become infected, as in (1.1). It is likely, at leastfor `decent' graphs, that �(�; �) is non-decreasing in � and �, but no proof is known(except for the particular cases � = 0 and � = 1, when monotonicity in � is easy toprove). This absence of monotonicity greatly complicates the proofs, since we have nonatural or useful generic coupling of two models with di�erent (general) �, �. Indeed itis the absence of such a coupling which adds much interest to the problem. In place ofa coupling, we have the following useful comparison result. The proof may be found inSection 7.Theorem 4.1. Let d � 1. For each �; � > 0, there exists � = �(�; �; d) > 0 such that�(�; �) � �(�+ �; 0):Moreover, for �xed d, we have that � is bounded away from 0 when: � is bounded awayfrom 0 and from 1, and � is bounded away from 0.Corollary 4.2. Let d � 2. If 0 < � � 1, there exists � satisfying � < �c(0) such that�(�; �) > 0.Proof. Kuulasmaa (1982) has shown that �c(0) < 1 if d � 2. We may choose �su�ciently close to (but strictly smaller than) �c(0) such that � = �(�; �; d), given inTheorem 4.1, satis�es �+ � > �c(0). Then �(�; �) > 0, which yields the result.Corollary 4.3 For every d � 1, we have that �c(1) < �c(0).Proof. This is well-known when d = 1, in which case �c(1) <1 and �c(0) =1. Whend � 2, it follows immediately from the case � =1 of Corollary 4.2.



8 J. van den Berg, G. R. Grimmett, R. B. SchinaziRemarks.(i) Corollary 4.3 may be proved directly using the method of Menshikov (1986) andAizenman{Grimmett (1991). It is not straightforward to achieve this, but the compli-cations may be overcome. The basic idea is to �nd a family of processes indexed by aparameter 
 taking values in [0; 1], such that (a) the case 
 = 0 (resp. 
 = 1) correspondsto � = 0 (resp. � = 1), and (b) the processes may be coupled in such a way that theyare monotonic in 
. We do not know how to prove Corollary 4.2 (which is interesting inits own right) by that method.(ii) It is somewhat annoying that we have not been able to prove the followingnatural `counterpart' of Corollary 4.2: for every �nite � > 0, there exists an � satisfying� > �c(1) such that �(�; �) = 0. This problem is related to the phase diagram inFigure 1, and particularly to the behaviour of the process in a neighbourhood of thepoint (�c(1);1).(iii) Another open question is whether we can, in Corollary 4.2, replace the statement�(�; �) > 0 by the statement `coexistence occurs'. More generally: is survival (in thesense that �(�; �) > 0) equivalent to coexistence? (We would allow some `occasional'cases when this is false, such as when � = 0.) The paper by Durrett and Neuhauser(1991) gives a partial answer, and indicates that a complete answer may be far fromobvious.We are now ready to state a converse to the results mentioned at the beginning ofthis section. Recall that �c(0) =1 when d = 1.Theorem 4.4. Let d � 1. If � 2 (�c(1); �c(0)), there exists �c(�) > 0 such that,when � < �c(�), then �(�; �) = 0 and coexistence does not occur. More precisely, underthese conditions, for any �nite set A of vertices there exists, with probability one, a�nite (random) time TA after which there will never appear a 2 within A. Moreover, thequantities TA may be chosen uniformly in the initial con�guration �0.The proof of Theorem 4.4 is based on a block construction together with Theorems3.1 and 3.2. It is presented in Section 8, and is related to a block argument of Durrettand Schinazi (1993).5. Proofs of Theorems 2.1 and 2.2We �rst present a version of the generalised BK inequality. Let X1; X2; : : : ; Xn beindependent random variables each taking values in some �nite set S. Let A and B beevents which are de�ned in terms of the Xi. We say that A and B are perpendicular(written A ? B) if they are de�ned in terms of disjoint subcollections of the Xi; that isto say, if there exist J;K � f1; 2; : : : ; ng with K \L = ; such that the indicator function1A of A (resp. 1B of B) is a function of (Xi : i 2 J) (resp. (Xi : i 2 K)) alone. Thefollowing theorem is equivalent to the general BK inequality proved by Reimer (1997)(see also van den Berg (1997)).



Dependent Random Graphs and Spatial Epidemics 9Theorem 5.1. Let L and M be �nite sets, and let Al and Bm be events de�ned in termsof the Xi, for l 2 L and m 2M . ThenP 0@ [l;m:Al?BmfAl \ Bmg1A � P  [l Al!P  [m Bm! :This inequality will be applied to a locally dependent random graph in the followingsetting. Let V;W; V 0;W 0 be sets of vertices of a �nite region � in Zd. We write V !Wfor the event that there exists a directed open path (of �) joining some vertex of V tosome vertex ofW . We say that two directed paths having vertex sequences x0; x1; : : : ; xmand y0; y1; : : : ; yn are vertex-disjoint if xi 6= yj for all pairs (i; j) except possibly the pair(i; j) = (m;n). That is, we do not require that the �nal vertices of the two paths bedistinct. We write fV !Wg�fV 0 !W 0g for the event that there are two vertex-disjointdirected open paths, one of which joins a vertex of V to a vertex of W , and the other ofwhich joins a vertex of V 0 to a vertex of W 0.Let L be an index set for the set of all directed paths (in �) of !Ld from V to W (andsimilarly M indexes such paths from V 0 to W 0). For l 2 L (resp. m 2 M) let Al (resp.Bm) be the event that the directed path indexed by l (resp. m) lies in �. It follows byTheorem 5.1 that(5:1) P��fV !Wg � fV 0 !W 0g� � P�(V !W )P�(V 0 !W 0):Note here that the symbol � requires vertex-disjoint paths, whereas in bond percolationit normally requires edge-disjoint paths.Proof of Theorem 2.1 . We introduce an auxiliary parameter p as follows. Let � 2 P, andlet � be a graph sampled according to the measure P� . We colour each vertex u of Zdblack with probability p, otherwise we colour it white. Vertex colours are independentof one another and of the graph �. From � we obtain another graph �p according to thefollowing rule. The graph �p has vertex set Zd, and the directed edge [u; vi lies in �p ifand only if: [u; vi lies in � and u is black. Thus, �p is obtained from � by deleting alledges emanating from white vertices. It is clear that �p is a locally dependent percolationmodel distributed according to the measure P�p , where �p 2 P is given byfor A 2 E ; �p(A) = � p�(A) if A 6= ;1� p(1� �(;)) if A = ;.Let B be an increasing event, i.e., a set of directed subgraphs of !Ld which is closedunder the operation of increasing the edge-set. A vertex u of Zd is called pivotal for B ifB occurs when u is black, but B does not occur when u is white. We write N(B) for the(random) number of pivotal vertices for B. The usual Russo formula is easily adaptedto obtain that, if B is increasing and �nite-dimensional, thenddp P�p(B) = ddp E�P�p(B j �)� = E�E�N(B) j ���= 1p E�E�N(B)1B j ��� = 1p E�N(B) j B�P�p(B);



10 J. van den Berg, G. R. Grimmett, R. B. Schinaziwhere E is the expectation operator of P�p . Therefore(5:2) ddp �logP�p(B)	 = 1p E�N(B) j B�:We shall use this formula in the following way. Assume that �(�) = 0. We shall showthat (5.2) implies the existence of a constant 
 = 
(p; �), satisfying 
 > 0 if p < 1, suchthat(5:3) P�p(0! @�n) � e�
n for n � 1;where �n = fu 2 Zd : juj � ng as usual. This implies the claim of the theorem, asfollows. If � is strictly dominated by � then, by an argument using the continuity of�p(A) for A � E , and the fact that �1 = �, we may �nd p (< 1) such that � � �p. Forthis value of p, we have thatP�(0! u) � P�p(0! u) � e�
jujas required.We turn now to the proof of (5.3). Let An = f0 ! @�ng. Assume that �(�) = 0,and further that P�(An) > 0 and p > 0 (the claim is trivial otherwise). We shall followthe proof of Theorem 3.4 of Grimmett (1989), and we shall refer to the notation as wellas the equation and lemma numbers of the last reference. Let N(An) be the numberof pivotal vertices for An. The idea is to �nd a lower bound for E(N(An) j An), tosubstitute this into (5.2) with B = An, and to integrate. The lower bound is obtainedin very much the same way as in Grimmett (1989) but with some di�erences.The crucial lemma is Lemma 3.12 of Grimmett (1989). Let y0; y1; : : : be the pivotalvertices for An, taken in their natural order from 0 to @�n. We have that y0 = 0. Let�i = jyi � yi�1j. As at the bottom of page 49, and by (5.1) above,P�p(f�1 > r1g \An) � P�p(f0! @�ng � f�0! @�r1+1g)� P�p(An)fp(r1 + 1);where �S denotes the external boundary of a set S of vertices (i.e., the set of verticesy of Zd n S such that y is adjacent in Ld to some vertex in S), and where fp(m) =P�p(�0! @�m). ThereforeP�p(�1 > r1 j An) � fp(r1 + 1); r1 � 0:Next we turn to a proof of a version of (3.13) of Grimmett (1989). The proof giventhere has a minor imperfection which has been corrected in Grimmett (1996). Fix avertex u of �n, and de�ne Du to be the set of all vertices attainable from 0 along pathsof �p not using edges emanating from u; we turn Du into a graph by adding all edgesof �p emanating from Du n fug. Fix positive integers k (� 2), r1; r2; : : : rk, such thatPki=1 ri � n, and let Bu be the event that the following statements hold:



Dependent Random Graphs and Spatial Epidemics 11(a) u lies in Du, and u is black,(b) Du contains no vertex of @�n,(c) the pivotal vertices for the event f0 ! ug are, taken in order, y0; y1; : : : ; yk�2,where jyi�1 � yij = ri for 1 � i < k � 1, and furthermore jyk�2 � uj = rk�1.We now de�ne the event B = SuBu. If An \ B occurs, then there exists a unique(random) u such that Bu occurs. Now, arguing as in Grimmett (1989, 1996), but usingTheorem 5.1 in place of the usual BK inequality, we obtain that for each positive integerk, and all positive integers r1; : : : ; rk with Pki=1 ri � n,P�p��k > rk; �i = ri for 1 � i < k ���An� � fp(rk + 1)P�p��i = ri for 1 � i < k ���An�:This leads as before to the inequality(5:4) E�N(An) j An� � n1 +Pni=1 fp(i) � 1:Now(5:5) fp(m) � 2dP�p(Am�1) for m � 1:We substitute (5.5) into (5.4) and (5.2) to �nd that gp(n) = P�p(An) satis�esddp flog gp(n)g � n1 + 2dPni=0 gp(i) � 1:The proof now proceeds as before, and (5.3) follows.Proof of Theorem 2.2 . The proof is a straightforward adaptation to this setting of the�rst part of Theorem 1 of Kesten (1981). We omit all details. The overall argument isroughly as follows. We have from Theorem 2.1 that the radius of C has an exponen-tially decaying tail. This implies that the chance of an `easy-way crossing' of the box[0; 3N ]d�1 � [0; N ] may be made as close to zero as desired by choosing N su�cientlylarge. We call the point 0 good if one of the boxes [0; 3N ]i � [0; N ] � [0; 3N ]d�i�1,0 � i � d � 1, has an `easy-way crossing'. This de�nition of `good' may be extended,by translation, to any point of the form (k1N; k2N; : : : ; kdN) for integers k1; k2; : : : ; kd.Now, if jCj � n, then there exists a connected cluster of `good points on a renormalisedlattice', where the scale of the renormalisation is N , this latter cluster having size at leastAn for some constant A. The number of possible renormalised clusters of cardinalitym is less than Bm for some B. Combining these estimates, and choosing N su�cientlylarge, we obtain an exponential estimate for the tail of C. For the details, see Kesten(1981).



12 J. van den Berg, G. R. Grimmett, R. B. Schinazi6. Proofs of Theorems 3.1 and 3.2Let � = 0. Following Kuulasmaa (1982) we may construct the epidemic process asfollows. Let (Tu : u 2 Zd) be a family of independent exponentially distributed randomvariables with parameter 1; Tu may be taken as the length of the period of infectionat u, given that infection ever reaches u. After infection, a vertex u attempts to infectits neighbours. Let (Iu;v : u 2 Zd; v 2 E) be independent random variables having theexponential distribution with parameter �. We say that u infects its neighbour u + v(where v 2 E) if Iu;v < Tu. For each u there is a set u + Nu of neighbours of u whichare infected by u. The sets (Nu : u 2 Zd) are independent and identically distributedaccording to some probability measure on E , and we denote this measure by ��.Consider the random subgraph � of !Ld given by: [u; vi is an edge of � if and only ifu infects v. Then the set C of all vertices which may be reached from 0 along directedpaths of � has the same distribution as the set of vertices which are ultimately infectedin the epidemic system with parameter � and � = 0.Proof of Theorem 3.1 . Let � < �c(0) and pick �0 such that � < �0 < �c(0). ThenP�0;0(0!1) = 0. Also, �� is strictly dominated by ��0 , whence the claims follow fromTheorems 2.1 and 2.2.Proof of Theorem 3.2 . We have that T � Xu2C Tuwhere the Tu are given above. Now,P�;0(T > t) = 1Xm=1 XG:jGj=mP�;0(T > t; C = G)� Xm�M XG:jGj=mP�;0 mXi=1 Ti > t!+ P�;0(jCj �M)where T1; T2; : : : are independent exponentially distributed random variables with pa-rameter 1. Therefore P�;0(T > t) � DMP�;0 MXi=1 Ti > t!+ e��Mwhere � is given in Theorem 3.1, and D (> 1) is a constant depending on the dimensiond. Using Markov's inequality,P�;0 MXi=1 Ti > t! � e��t(1� �)M for � < 1:We may take � = 12 , and we set M = btrc where r < 1=(2 log(2D)), thereby obtainingthe required exponential estimate.



Dependent Random Graphs and Spatial Epidemics 137. Proof of Theorem 4.1This proof was inspired by ideas in Menshikov and Pelikh (1990) and van den Berg andErmakov (1996). We do not present all details, but we hope that the following broadaccount will satisfy most readers. Let 0 < �; � < 1. In a manner similar to the �rstpart of Section 6, we set out to assign random variables to each vertex u in order todescribe the evolution of the process. In fact, our variables will only partially describethe process, but this appears to be su�cient for our purpose. To each vertex u, we assigna random element !u which, roughly speaking, describes the `actions' of u between themoment it is infected for the �rst time (if u is ever infected) up to the end of its secondinfectious period. More precisely, !u consists of the following three components. The�rst component is a marked Poisson point process �u(1) on the positive half-line, wherethe possible marks are the elements v 2 E (each of which occurs with intensity �) and thespecial mark 0, which occurs with intensity 1 (the set E was de�ned at the beginning ofSection 2). This point process, up to the time of the �rst occurrence of a point with mark0, describes the infection attempts by u during its �rst infectious period. The secondcomponent of !u is an exponentially distributed random variable Ru (with parameter�), denoting the �rst removal period of u (i.e., the length of the time-interval subsequentto its �rst infection, during which u is in state 0). Finally, the third component is apoint process �u(2) with the same distribution as �u(1). This point process �u(2), attimes up to the �rst occurrence of a point with mark 0, describes the infection attemptsby u during its second infectious period.The !u, u 2 Zd, are independent and identically distributed, and for each u wespecify that Ru, �u(1), and �u(2) are independent of each other. We continue to writeP�;� for the appropriate probability measure, and we let ! = (!u : u 2 Zd). Any pointmarked m in a point process is called an m-point.The realizations of the point processes after the occurrence of the �rst 0 are withoutmeaning for the time being, but later they (or at least part of them) will be useful inthe construction of a certain mapping.In the following, Tu(1) and Tu(2) will denote the length of the �rst and secondinfectious periods of u respectively (i.e., Tu(1) is the position of the �rst 0 in �u(1) andTu(2) that of the �rst 0 in �u(2)). For v 2 E , we say that u tries to infect u + v in its�rst (resp. second) infectious period if �u(1) (resp. �u(2)) has a v-point in the interval(0; Tu(1)) (resp. (0; Tu(2))).Suppose we start with only the origin 0 ill, and all others susceptible. In orderto describe the evolution completely, we need of course much more than the aboveinformation, but this limited information allows us to construct an appropriate directedgraph � such that: if there is a path from 0 to a vertex v in this graph, then v is ill atsome time.We perform this construction step by step as follows. First, suppose we are providedwith some �xed total order on Zd. We shall construct a directed graph by means of asequence of iterations. Let �0 be the directed graph which comprises the single vertex0 only; we speak of 0 as having been selected . At Step 1, we draw an arrow from 0 to



14 J. van den Berg, G. R. Grimmett, R. B. Schinaziall v 2 E for which 0 tries to infect v during its �rst infectious period, and we call thesevertices children of 0 (and 0 their parent); the consequent directed graph is denoted �1.Note that, although we cannot conclude that each such v is infected directly by 0, wemay conclude that they are infected by some vertex (this is similar to the case � = 0).Some children v are special: if �0(1) has two v-points in the interval (0; T0(1)) at distancelarger than Tv(1)+Rv from each other, (i.e., if the period between the �rst and the lasttime during its �rst period of illness that 0 tries to infect v is larger than the �rst illnessand recovery cycle of v), then a few moments of re
ection reveal that v is infected atleast twice (although not necessarily by 0). We then call v a good child of 0.More generally, in the construction of �k+1 at Step k + 1, we do the following. Weselect the smallest vertex u (with respect to the pre-de�ned order) which has not beenselected during the contruction of �0;�1; : : : ;�k, and which can be reached from 0 alongdirected paths of �k. Let v 2 E be such that u+v is not a vertex of �k. If u tries to infectu+v during its �rst infectious period we can, as in the �rst step, conclude that u+v willbe infected at some time. There is another situation in which u+v is infected, namely ifu is a good child of its parent, and u tries to infect v during its second infectious period.In either case, we say that u+ v is a child of u, and we draw an arrow from u to u+ v.We denote by �k+1 the directed graph obtained by augmenting �k with all such arrowsand all incident vertices. Finally, as in Step 1, if �u(1) has two v-points in the interval(0; Tu(1)) at distance larger than Tu+v(1) +Ru+v from each other, then we call u+ v agood child of u (and conclude that it is infected at least twice).In this way, we construct an increasing sequence �k = �k(!) of directed graphs, andit is not di�cult to show (by induction) that every vertex of every �k is infected at sometime. For later purposes, we note the following. Conditional on a vertex u being selectedat some given stage, then !u is independent of the !x for vertices x selected earlier. Inparticular, Tu(1), Tu(2), and Ru may be regarded as `fresh', independent exponentiallydistributed random variables having parameters 1, 1, and � respectively. Also note thatif, in the construction above, we were to decide to draw an edge from u to its neighbourv only when u tries to infect u+v during its �rst infectious period, then we would obtainexactly the model without recovery of Sections 3 and 6. In order to prove our theorem,we have to show that, at each step, with u denoting the vertex selected at that step, thesetXu = �v : (u tries to infect u+ v during its �rst infectious period), or(u is good and u tries to infect u+ v during its second infectious period)	is `uniformly stochastically strictly larger' than the corresponding set we would have inthe case (�; 0), i.e., the setYu = �v : u tries to infect u+ v during its �rst infectious period	;this will imply (by continuity) that there exists 
 > 0 such that Xu is uniformly stochas-tically larger than Yu with � replaced by �+ 
. This implies the claim of the theorem.In order to achieve this, suppose we observe the evolution of the sequence (�k),but that we do not know the underlying `�ne-structure' !. Suppose, at Step K, we



Dependent Random Graphs and Spatial Epidemics 15have obtained that ���K = (�0;�1; : : : ;�K�1) is given by ���K = 


K , where 


K =(
0; 
1; : : : ; 
K�1) is a speci�ed sequence of directed graphs 
i. Suppose further thatu = u(���K) is the selected vertex. Write A = f! : ���K(!) = 


Kg.Let p denote the parent of u, and let w = u� p. Write B be for the event that �p(1)has, in the interval (0; Tp(1)), two w-points at distance larger than 1 from each other.Also, let E1 = fTu(1) < 12g, and E2 = fRu < 12g. Let A � 2E be increasing and A 6= 2E ,A 6= ;. Finally, letY 0u = �v : u tries to infect u+ v during its second infectious period	(compare with Xu and Yu de�ned above). Clearly, if B \E1 \E2 holds, then u is good.Therefore, dropping the subscripts �; � of P for a moment, we have thatP �Xu 2 A ��A�= P (B \E1 \E2 ��A�P �Yu [ Y 0u 2 A ��A \B \E1 \E2�+ P �(B \E1 \E2)c ��A�P �Yu 2 A ��A \ (B \ E1 \ E2)c�� P �B \E1 \E2 ��A��hP �Yu 2 A ��A \B \ E1 \E2�+ P �Yu 62 A; Y 0u 2 A j A;B;E1; E2�i+ P �(B \E1 \E2)c ��A�P �Yu 2 A ��A \ (B \ E1 \ E2)c�= P �Yu 2 A ��A�+ P �B \ E1 \ E2 ��A�P �Yu 62 A; Y 0u 2 A ��A \ B \E1 \ E2�:It is clear that the occurrence of A (resp. B) is completely determined by the set of!x for which the vertex x was selected before step K, while, as noted before, !u isindependent of the family of such !x. Therefore, the �rst term in the �nal expressionequals P�;�(Yu 2 A), and the second term equalsP�;�(B j A)P�;�(E1)P�;�(E2)P�;�(Y 0u 2 A)P�;�(Yu 62 A j E1);which in turn equalsP�;��B ��A�P�;��E2�P�;��Y 0u 2 A�P�;��Yu 62 A; E1�:Since the last three factors are strictly positive and do not depend on A, it su�ces toprove that P�;�(B j A) is uniformly (over all events A of the form given above) boundedaway from 0. This �nal statement is proved using the following `modi�cation' argument.Let Aw be the subset of A containing all ! which satisfy the following four properties.(i) �p(1) has a w-point in the interval (Tp(1); Tp(1) + 1) and in the interval (Tp(1) +2; Tp(1) + 3).(ii) If p is not a good child (for the con�guration !), then �p(1) has no points in theinterval (Tp(1); Tp(1) + 3) with marks other than w.(iii) If p is a good child, then: for each y 2 E nfwg such that �p(2) has a y-point in theinterval (0; Tp(2)) and �p(1) has no y-point in the interval (0; Tp(1)), then �p(1)



16 J. van den Berg, G. R. Grimmett, R. B. Schinazihas exactly one y-point in the interval (Tp(1); Tp(1)+ 3), and besides w these arethe only marks in �p(1) occurring in the interval (Tp(1); Tp(1) + 3).(iv) �p(1) has no point at position Tp(1) + 3, and its only point at position Tp(1) isthe one with mark 0.Remark : The fourth property may appear super
uous since it has probability 1, but weinclude it in order to make precise our argument involving the map H below. Note that(ii){(iv) imply that �p(1) has no 0-point in the interval (Tp(1); Tp(1) + 3].It may be seen that P�;�(Aw) � gP�;�(A), where g = g(�) is given byg = (1� e��)2e�3 min0�k�2d�1ne�3k��e�3�3��2d�1�ko:[The �rst factor comes from (i), the second from the required absence of 0-points in theinterval (Tp(1); Tp(1) + 3], and the third factor from (ii) and (iii).]Now, let H be the mapping which assigns to each ! 2 Aw the element H(!) obtainedby shifting the �rst 0-point in �p(1) distance 3 to the right. Using the note in the remarkabove, this map H : Aw ! H(Aw) is one{one and measure-preserving, in the sense thatP�;�(H(Aw)) = P�;�(Aw). Therefore we have thatP�;�(H(Aw)) = P�;�(Aw) � gP�;�(A):Moreover, it may be checked that the properties (i){(iv) of Aw guarantee that H(Aw) �A (in particular, property (iii) guarantees that, although the possible goodness of p maybe disturbed by the map, this has no serious consequences), and that H(Aw) � B. Itfollows that P�;��B ��A� � P�;��H(Aw) ��A� = P�;�(H(Aw))P�;�(A) � g(�);which completes the proof.8. Proof of Theorem 4.4Throughout this section, we think of the epidemic process as being generated by itsgraphical representation. That is to say, we are given appropriate families of Poissonprocesses which may be used to couple together the di�erent epidemic processes corre-sponding to di�erent initial conditions. Such constructions are standard, and may befound in Bezuidenhout and Grimmett (1990), Gri�eath (1979), Harris (1974), Liggett(1985), and elsewhere. We shall continue to use the notation P�;� to denote the rel-evant probability measure; this notation is not entirely appropriate, since the initialcon�guration (3.1) is not germane to the following discussion.Let A be a �nite subset of Zd. We shall show that the following holds for smallpositive �. There exists an a.s. �nite (random) time TA such that the space{time regionA � [TA;1) (� Zd � [0;1)) contains no 2's. This statement implies the claim of



Dependent Random Graphs and Spatial Epidemics 17the theorem. We prove this under the assumption that d = 2, in order to avoid morecumbersome notation; the case d = 1 is simpler, and no essentially new di�culty emergeswhen d � 3.We de�ne two space{time regions:A = [�2L; 2L]2 � [0; 2T ]; B = [�L;L]2 � [T; 2T ]where L and T are integers to be chosen later. De�ne C to be the part of the `boundary'of the box A: C = n(m;n; t) 2 A : jmj = 2L or jnj = 2L or t = 0oWe will compare the process �t to a certain dependent percolation process on the setL = Z2�Z+, where Z+ = f0; 1; 2; : : :g. We say that the site (k;m; n) in L is wet if thereexist no 2's in the box (kL;mL; nT )+B regardless of the states of sites in the boundary(kL;mL; nT ) + C. Note that the event f(k;m; n) is wetg depends only on the existence(or not) of paths of infection within A. We shall require this uniformity on the states ofthe boundary in order to ensure that the percolation process in L, although dependent,has an interaction with only �nite range. Sites which are not wet are called dry .Let �c(1) < � < �c(0), and � > 0. We will now show that there exist L, T , and�c > 0 (depending on �; �) such that:P�;��(k;m; n) is dry� � � if � < �c:We start by showing the above property when � = 0. Then, using a continuity argument,we shall deduce that the inequality remains true for small positive �. By translation-invariance, it su�ces to consider the site (0; 0; 0) 2 L.Suppose that (x; y; t) 2 B is such that �t(x; y) = 2. Then there must exist some point(x0; y0; t0) 2 C such that (a) �t0(x0; y0) = 2, and (b) there exists a `chain' of infectionfrom (x0; y0; t0) to (x; y; t) lying entirely within A. Such (x0; y0; t0) must lie either on the`bottom' of C (i.e., have t0 = 0) or on one of its `sides' (i.e., have t0 6= 0). In the formercase, the infection originating at (x0; y0; t0) must have survived at least time T before itreaches B, whilst in the latter case it must have radius at least L. We propose to useTheorems 3.1 and 3.2 to control the probabilities of these possibilities. However, thesetheorems were proved under the assumption that infection originated in a single vertexhaving state 2, surrounded by an ocean of 1's. The e�ect of augmenting the originalcon�guration by adding extra infected vertices is to diminish the set of the points inspace{time reached by the infection starting at (x0; y0; t0); this holds when � = 0 sinceany extra initial infections may cause the subsequent removal of points which mightotherwise have assisted the spread of infection from (x0; y0; t0).We may therefore apply Theorems 3.1 and 3.2 to deduce that there exist 
; � > 0such that P�;0�(0; 0; 0) is dry� � 8T (4L+ 1)e�
L + (4L+ 1)2e��T :



18 J. van den Berg, G. R. Grimmett, R. B. SchinaziWe may take L = T su�ciently large such thatP�;0�(0; 0; 0) is dry� � 12�:As observed above, the state of any site in L depends only on the graphical representationwithin the appropriate copy of A. Since this region is bounded, the density of wet sitesis a continuous function of � and �. Therefore there exists �c = �c(�; �) > 0 such that(8:1) P�;��(0; 0; 0) is dry� � � if � < �c:We choose �c accordingly, noting that we may take �c(�; �) to be a strictly positive andcontinuous function of � on (0; �c(0)).We now position oriented edges between sites in L in order to obtain a percolationmodel. Let A(k;m; n) = (kL;mL; nT ) + A. For each pair (k;m; n); (x; y; z) 2 L, wedraw an oriented edge from (k;m; n) to (x; y; z) if and only if n � z and A(k;m; n) \A(x; y; z) 6= ;. The wet sites on the ensuing directed graph constitute a (dependent)percolation model. There exists an absolute constant K, depending only on the numberd of dimensions (here, d = 2), such that any set of sites of L have independent stateswhenever the graph-theoretic distance between any pair of such sites exceeds K (thisdistance is to be measured on the undirected graph obtained from L by removing theorientations). Furthermore, there exist positive �nite constants �, � such that followingtwo statements hold. First, the number of self-avoiding oriented paths on L, havinglength r and any given endpoint, is no larger than �r. Secondly, any self-avoiding pathof length r contains at least �r sites, the distance between any pair of which exceeds K.Let x 2 Z2 and let Tx be the supremum of all times t such that �t(x) = 2. Weclaim that Tx is a.s. �nite if � is su�ciently small. The theorem will follow from thisstatement, since the TA given there satisfy TA = maxfTx : x 2 Ag. It will su�ce toprove that T0 is a.s. �nite, since the argument is `translation-invariant'.Suppose that T0 > TM . Then there exists m (� M � 1) with the property that(0; 0;m) is the endpoint of an oriented dry path of L whose other endpoint has the form(x; y; 0) for some x; y 2 Z2. By the above remarks,(8:2) P�;�(T0 > TM) � Xm�M�1 Xr�m �r��r;where � = P�;��(0; 0; 0) is dry�. By (8.1), we may choose �c = �c(�) such that the rightside of (8.2) is �nite whenever � < �c and M � 2. When this holds, the right sideapproaches 0 as M !1, implying that T0 is a.s. �nite as required.Since the estimates presented above depend only on the graphical representation,and not on the initial con�guration, we may deduce also that �(�; �) = 0 under theconditions of the theorem.The above proof is related in part to Theorem 2 of Durrett and Schinazi (1993).Using further arguments based on the shape theorem for oriented percolation, one may
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