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Abstract

We consider a type of long-range percolation problem on the positive integers,
motivated by earlier work of others on the appearance of (in)finite words within a
site percolation model. The main issue is whether a given infinite binary word ap-
pears within an iid Bernoulli sequence at locations that satisfy certain constraints.
We settle the issue in some cases, and provide partial results in others.

1 Introduction

Let W = (w1, w2, . . . ) ∈ {0, 1}N be an infinite binary word, and X = (X1, X2, . . . ) and
Y = (Y1, Y2, . . . ) be independent Bernoulli sequences (i.e., iid sequences of Bernoulli
random variables) with parameters pX = P (Xi = 1), pY = P (Yj = 1) ∈ (0, 1). Let M
be a positive integer. An admissible (M-)embedding of W in Y is a sequence (mi : i ≥ 1)
of integers such that Ymi

= wi and 1 ≤ mi −mi−1 ≤M for each i ≥ 1. (By default, we
take m0 = 0.) We say that W is M-seen in Y if there exists an M -admissible embedding
of W in Y . In this paper, we ask whether or not the events {W is M -seen in Y } and
{X is M -seen in Y } can have strictly positive probability.

This question is motivated by analogous questions considered in [2, 6, 7] concerning
percolation of words on graphs such as Zd. These questions were partially answered for
large d in [2], and on a modified version of Z2 in [7]. A version of the above question
has been answered in the affirmative in [5, 8] for large M and d = 2. Our problem may
be set in the context of long-range percolation, through a consideration of the oriented
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graph with vertices {1, 2, . . . } in which there is an edge from i to j if 1 ≤ j − i ≤ M .
In this setting, our problem corresponds to ordinary site percolation when W is the
constant word wi ≡ 1, and to so-called AB site percolation when W is the alternating
word with w2i ≡ 0, w2i−1 ≡ 1 (or vice versa).

The following formulation of the problem appears to be similar in spirit to the
famous problem of the clairvoyant demon posed by Peter Winkler. As above, let X
and Y be independent Bernoulli sequences with parameters pX , pY ; for simplicity we
assume pX = pY = 1

2
. We color the point (i, j) of the first orthant of the square lattice

Z2 red if Xi = Yj. Let the origin (0, 0) be red also. For M ≥ 1, we define an M -
admissible path to be an infinite sequence m = (m0,m1,m2, . . . ) satisfying m0 = 0 and
1 ≤ mi+1 −mi ≤ M for all i, such that every point (i,mi), i ≥ 0, is red. There exists
an M -admissible path if and only if X is M -seen in Y . See [5] for an account of the
clairvoyant demon problem, and [1, 9] for solutions to a related problem in which the
admissible paths for that problem are undirected.

Since Y contains arbitrarily long sequences of 0’s and arbitrarily long sequences of
1’s, it is easy to see that P (W is M -seen in Y ) = 0 when W is periodic. However,
the situation for general words is not so clear. In Section 5, we will show that the
truth of the statements “for every M , P (X is M -seen in Y ) = 0” and “for every M ,
P (W is M -seen in Y ) = 0” (for an arbitrary infinite word W ) is independent of the
parameters pX , pY of the Bernoulli sequences X, Y ; see Theorem 13. Therefore, except
in that section, we will assume that

pX = pY = 1
2
.

In order to gain some insight into our problem, we consider the probability of M -
seeing finite words W , and particularly how this probability depends on W . Let

α = 1− 2−M , β = 2−M .

It is easy to check (as we will do in Section 3) that the probability of M -seeing a given
word of length n is minimized by the constant word W = (1, 1, . . . , 1) of length n,
and that in this case, this probability equals αn. In the other direction, we consider
the alternating word An = (1, 0, 1, 0, . . . ) of length n; we could equally consider the
alternating word beginning with 0. Since the infinite alternating word is periodic, the
probability

vn = P (An is M -seen in Y ) (1)

tends to zero as n → ∞. In Section 2, we will show how to compute vn exactly, and
hence determine the exponential rate at which this probability tends to zero. If M = 2,
for example, vn ∼ c(0.85 . . . )n. We will prove that the alternating word is most likely
to be seen in two cases:

Theorem 1. (a) Let M = 2 and n ≥ 1. For any word W of length n,

P (W is M -seen in Y ) ≤ vn.

2



(b) Let M ≥ 2, and let Wp,q be the word (1, 1, 1, . . . , 0, 0, 0) comprising p 1’s followed by
q 0’s. Then

P (Wp,q is M -seen in Y ) ≤ vp+q.

The first part of this theorem will be proved in Section 2, and the second in Section 4.
As a consequence of Theorem 1(a), we have the following solution to our main problem
in case M = 2:

Corollary 2. If M = 2, P (W is M -seen in Y ) = 0 for every infinite word W , and thus
P (X is M -seen in Y ) = 0.

A useful tool in our analysis is the following sequence of ‘spacing’ random variables.
Given a finite or infinite word W , define T0 = 0 and, recursively,

Tk+1 = min{i > Tk : Yi = wk+1}, τk+1 = Tk+1 − Tk.

Note that, while the values of τ1, τ2, . . . depend on the choice of W , for any W they
are iid random variables with the geometric distribution with parameter 1

2
. The values

of τ1, τ2, . . . , τn do not in general determine whether or not the word (w1, w2, . . . , wn) is
M -seen. (An example illustrating this is given in Section 3.) However, they do so for
the constant and alternating words.

Theorem 3. (a) The constant word of length n is M-seen in Y if and only if τk ≤ M
for all 1 ≤ k ≤ n.
(b) The alternating word An of length n is M-seen in Y if and only if

Tk ≤ kM for all 1 ≤ k ≤ n and Tk − Tj < (k − j + 1)M for all 0 ≤ j < k ≤ n.

This theorem will be proved in Section 3.
Let W be a word of length n, and let Nn = Nn(W ) be the number of M -admissible

embeddings of W in Y . It is easy to see that

E(Nn) = (M/2)n.

The second moment of Nn can be expressed in the following way. Let J = (J0.J1, J2, . . . )
and K = (K0, K1, K2, . . . ) be independent random walks on Z starting at J0 = K0 = 0
with, as step-size distribution, the uniform distribution on the finite set {1, 2, . . . ,M}.

Theorem 4. (a) For any word W of length n, and any M ≥ 1,

E(N2
n) = E(Nn)2E

 ∏
(r,s):Jr=Ks

2 · 1(wr = ws)

 , (2)

where the product is over r, s ∈ {1, 2, . . . , n}, and 1(A) denotes the indicator function of
A.
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(b) Let X be the random word of length n, comprising random letters with the Bernoulli
(1

2
) distribution. Then

E(Nn(X)2) = E(Nn(X))2E(2Zn),

where Zn is the number of visits to zero between times 1 and n made by the random walk
J −K.

This theorem will be proved in Section 6. We will also see there that E(2Zn) is
asymptotic to a constant multiple of cnM for some cM > 1. In the case M = 2, we
have c2 = 4

3
. By part (a) of this theorem, the constant word maximizes the variance of

Nn(W ).

2 Recursions for vn

Let An = (1, 0, 1, 0, . . . ) be the alternating word of length n starting with 1. (By
symmetry, probabilities for alternating words starting with 0 are the same as for An.)
In this section, we first compute the vn given in (1), and then we prove Theorem 1(a).
The computation of vn is done recursively; the recursions satisfied by vn will be used in
Section 4 in the proof of Theorem 1(b).

If an admissible embedding of An in Y exists, we define the standard embedding to
be that whose sequence of positions (mi : i ≥ 1) is earliest in the usual lexicographic
order. We will use the following notation:

• vn,k := the probability that An possesses an admissible embedding, and its stan-
dard embedding starts at position k.

• vn :=
∑M

k=1 vn,k = the probability that An possesses an admissible embedding.

• v′n := vn,M .

Proposition 5. The sequences vn and v′n satisfy the following recursions:

vn = αvn−1 + (α−Mβ)v′n−1 and v′n = βvn−1 + (M − 1)βv′n−1 (3)

for n ≥ 1, with initial conditions v0 = 1 and v′0 = 0, and

vn+1 = (α + (M − 1)β)vn − β(M − 2α)vn−1 (4)

for n ≥ 1, with initial conditions v0 = 1 and v1 = α.

Note that in (3), unlike (4), all the coefficients are nonnegative. This will enable us
to compare solutions to recursive inequalities.

It is easy to solve the recursion (4) explicitly. The characteristic polynomial is

f(λ) = λ2 − (α + (M − 1)β)λ+ β(M − 2α).
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Note that, for M ≥ 2,

f(0) = β(M − 2α) > 0, f(Mβ) = 2β(Mβ − α) < 0,

f(α) = β(Mβ − α) < 0, f(1) = 2β2 > 0.

Therefore, the two roots of f lie in the disjoint intervals (0,Mβ) and (α, 1), respectively.
This implies that vn → 0 exponentially fast as n → ∞, and is a quantification of the
observation that Y contains no admissible embedding of An if there appears, sufficiently
early in Y , a consecutive subsequence of 2M letters all of which are 0 (respectively 1). A
word of caution: while vn tends to zero exponentially rapidly, the convergence can still
in a sense be quite slow. The larger root of f is of the order 1− 2β2, and, for example,
is .9978 . . . when M = 5.

Proof. A Bernoulli sequence Y contributing to vn,k must satisfy Yk = 1, and the preced-
ing sequence (Y1, . . . , Yk−1) cannot contain 1 and 0 in that order, since if it did, there
would be an admissible embedding starting before position k. Therefore, (Y1, . . . , Yk−1)
must be of the form (0, . . . , 0, 1, . . . , 1). We distinguish two cases for the starting se-
quence: all 0’s (Case 1) and at least one 1 (Case 2). In Case 1, the only condition
on (Yk+1, . . . ) is that it must contain an admissible embedding of the remainder of An.
In Case 2, (Yk+1, . . . ) must contain an admissible embedding of the remainder whose
standard embedding starts at (relative) position M . (If it started earlier, then the 1 at
position k − 1 would initiate an earlier embedding.) This yields the recursion

vn,k =
1

2k
vn−1 +

k − 1

2k
vn−1,M for 1 ≤ k ≤M, n ≥ 1, (5)

with initial condition v1,k = 2−k for 1 ≤ k ≤M .
The first relation in (3) is obtained by summing (5) over k, and the second by setting

k = M . Finally, one can eliminate v′n from (3) to obtain (4).

Proof of Theorem 1(a). Let M = 2 and let W ∈ {0, 1}n be a word of length n. For
1 ≤ m ≤ n, let Wm be the word comprising the last m digits of W . We will use notation
similar to that at the beginning of this section.

• wm,k := the probability that Wm possesses an admissible embedding, and its stan-
dard embedding starts at position k ∈ {1, 2}.

• wm := wm,1 + wm,2 = the probability that Wm has an admissible embedding.

• w′m := wm,2

We follow the same procedure as we did for the alternating word An. Unlike that case,
we shall obtain only a recursive estimate from above.

Denote the first digit of Wm by a ∈ {0, 1}, and let b = 1− a be the complementary
digit. A Bernoulli sequence Y contributing to wm,1 must contain a at position 1 and
the word Wm−1 following. This gives

wm,1 = 1
2
wm−1. (6)
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If Y contributes to wm,2, there are two cases. If Y starts with a, then the second digit
must also be a, and subsequently the Y must contain Wm−1, but not starting at the
next digit. (Otherwise there would be a standard embedding starting at position 1.) If
Y starts with b, then the second digit has to be a, and subsequently Y must contain
Wm−1. This gives

wm,2 ≤ 1
4
wm−1,2 + 1

4
wm−1. (7)

Note that equality need not hold in (7). Suppose that both Y and Wm begin with
the letters aa, and that (Y3, Y4, . . . ) contains an admissible embedding of both Wm−2

and Wm−1. In this case, Y does not contribute to the left side of (7) but it does to the
first term on the right side.

From (6)–(7), we deduce the recursive inequalities

wm ≤ 3
4
wm−1 + 1

4
w′m−1 and w′m ≤ 1

4
wm−1 + 1

4
w′m−1, where w1 = 3

4
, w′1 = 1

4
.

By comparison with the recursion formula (3) with M = 2,

vm = 3
4
vm−1 + 1

4
v′m−1 and v′m = 1

4
vm−1 + 1

4
v′m−1, where v1 = 3

4
, v′1 = 1

4
, (8)

we obtain by induction on m and the positivity of the coefficients in (8) that wm ≤ vm
for 1 ≤ m ≤ n. In particular, wn ≤ vn as claimed.

Remark. The above method does not work for M ≥ 3, since in this case the coefficients
of the recursive inequalities for wn, w′n do not match the coefficients of the recursion for
vn, v′n.

3 Relations to the spacing random variables

In this section, we prove several results relating M -seen finite words to inequalities
satisfied by the spacing variables τk and their partial sums. When the word is either
constant or alternating, these are equivalences, and were stated as Theorem 3 in the
Introduction. For general words, we only have one direction — if the word is seen, then
the spacing variables satisfy certain inequalities. We will say that W = (w1, w2, . . . ) is
seen at (m1,m2, . . . ) if m1 < m2 < · · · and Ymi

= wi for each i.
First, we give an example to show that seeing a word W of length n is not in general

determined by the values of τ1, . . . , τn. Suppose n = 4, M = 2, W = (1, 1, 0, 0), and the
Bernoulli sequence starts with 110110 · · · . Then τ1 = 1, τ2 = 1, τ3 = 1, τ4 = 3. If W is
to be seen, then it must be seen at locations m1 = 2, m2 = 4, m3 = 6, and m4 = 7 or
8. Thus, it is seen if and only if one of the next two digits in the Bernoulli sequence is
a 0, but this cannot be determined from the first four τk.

Proposition 6. Let W = (w1, . . . , wn). If W is seen at (m1, . . . ,mn), then Tk ≤ mk

for 1 ≤ k ≤ n. In particular, if W is M-seen, then Tk ≤ kM for all 1 ≤ k ≤ n.
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Proof. Let m0 := T0 = 0. We will prove Tk ≤ mk by induction on k. For the induction
step we assume Tk ≤ mk. Let a = wk+1. By definition Tk+1 is the first location of an
a after location Tk, and mk+1 is some location of an a after location mk ≥ Tk, which
immediately implies Tk+1 ≤ mk+1. Finally, if W is M -seen, then

Tk ≤ mk =
k∑
i=1

(mi −mi−1) ≤ kM.

The next result implies that the probability of M -seeing a word of length n is mini-
mized by the constant word, and in that case, this probability is αn.

Proposition 7. (a) If W is a word of length n and τ1 ≤ M , . . . , τn ≤ M , then W is
M-seen.
(b) If a constant word of length n is M-seen, then τ1 ≤M , . . . , τn ≤M .

Proof. For part (a), note that if τi ≤ M for each i ≤ n, then W is M -seen at
(T1, . . . , Tn). For part (b), suppose that the constant word (a, a, . . . , a) of length n
is seen at (m1, . . . ,mn) where 1 ≤ mi − mi−1 ≤ M for each i, i.e. up to location mn

there is no block of M consecutive non a’s. As Tn ≤ mn by Proposition 6, this implies
τi ≤M for all i ≤ n.

Proposition 8. Let W = (w1, . . . , wn). Suppose that W is seen at (m1, . . . ,mn) and
that 0 < mi+1 −mi ≤M for each i. If wk 6= wk+1 = · · · = wl for some k + 1 ≤ l and if
τl > M , then Tl ≤ mk+1.

Proof. Let a = wl. In between locations Tl−1 and Tl there is a block of at least M
consecutive non a’s. As there have to be a’s at locations mk+1 < · · · < ml and we have
mi+1 − mi ≤ M , this block has to be before location mk+1 or after location ml, i.e.
Tl ≤ mk+1 or ml ≤ Tl−1. By Proposition 6 we have Tl ≤ ml, so the second alternative
is not possible.

Proposition 9. Let An be an alternating word of length n. Then An is M-seen if and
only if

Tk ≤ kM for all 1 ≤ k ≤ n and Tk−Tj < (k−j+1)M for all 0 ≤ j < k ≤ n. (9)

Proof. A special property of an alternating word is that

Yi = wk for Tk ≤ i < Tk+1. (10)

Define
Sk = min{Tk+1 − 1, Sk−1 +M}, S0 = 0, σk = Sk − Sk−1.
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Note that Sk < Tk+1 and σk ≤M . Since Tk is strictly increasing in k, we see inductively
that Sk is strictly increasing in k also. Therefore σk ≥ 1 for all k ≥ 1. Consider the
statement

Tk ≤ Sk for all 1 ≤ k ≤ n. (11)

We will prove the following implications:

(11)⇒ An is M -seen⇒ (9)⇒ (11).

First suppose that (11) holds. Then Tk ≤ Sk < Tk+1, so that YSk
= wk by (10).

Since σk ≤M , it follows that An is M -seen, since it is seen at (S1, . . . , Sn).
Next assume that An is seen at (m1, . . . ,mn) where mi−mi−1 ≤M for all i. The first

part of (9) follows from Proposition 6. To prove the second part, let 0 ≤ j < k ≤ n. As
(Yi : Tj ≤ i < Tk) consists of k− j constant blocks, the interval [Tj, Tk) contains at most
k−j consecutive elements from m1, . . . ,mn, i.e. ml < Tj ≤ ml+1 ≤ ml+r < Tk ≤ ml+r+1

for some l and r ≤ k − j. So Tk − Tj < ml+r+1 −ml =
∑l+r

i=l (mi+1 −mi) ≤ (r + 1)M .
Finally, assume that (9) holds. To prove (11), we will prove the statement

Tk ≤ Si + (k − i)M (12)

by induction on i (for fixed k). When i = 0, (12) becomes Tk ≤ kM , which is part of
assumption (9). When i = k, (12) is Tk ≤ Sk, which is the desired conclusion in (11).
For the induction step, suppose (12) holds for i with 0 ≤ i < k. To prove it for i + 1,
we need to check that

Tk ≤ min{Ti+2 − 1, Si +M}+ (k − i− 1)M. (13)

The fact that Tk ≤ Ti+2−1+(k− i−1)M follows from (9) whose second assertion holds
trivially for j = k, k+ 1, while Tk ≤ Si+ (k− i)M is just the induction hypothesis. This
proves (13).

4 Two-block words

We prove Theorem 1(b) in this section. For p, q, j ≥ 0, define

σp,j = P (τ1 ≤M, . . . , τp ≤M, Tp+j > pM),

σ′p,j = P (τ1 ≤M, . . . , τp ≤M, Tp+j ≤ pM)

and

up,q = αp+q + β

q∑
j=1

αq−jσ′p,j = αp − β
q∑
j=1

αq−jσp,j.

Here we have used σp,j + σ′p,j = αp. Note that up,0 = αp and u0,q = αq. The next result
will allow us to compute σp,j fairly explicitly.
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Lemma 10. For p, j ≥ 0 and arbitrary l,

P (τ1 ≤M, . . . , τp ≤M, Tp+j > lM) =

p∑
i=0

(
p

i

)
(−β)iP (Tp+j > (l − i)M).

Proof. Use the fact that for any geometric random variable τ , the conditional distribu-
tion of τ −M given τ > M is the same as the distribution of τ , to write

P (τ1 ≤M, . . . , τm ≤M, Tk > lM)− P (τ1 ≤M, . . . , τm+1 ≤M, Tk > lM)

= P (τ1 ≤M, . . . , τm ≤M, τm+1 > M, Tk > lM)

= βP (τ1 ≤M, . . . , τm ≤M, Tk > (l − 1)M)

for any k > m. Now use induction on m, together with the relation
(
m
i

)
+
(
m
i−1

)
=(

m+1
i

)
.

Lemma 11. For p, q ≥ 0, P (Wp,q is M -seen) ≤ up,q.

Proof. If Wp,q is seen at (m1, . . . ,mp+q) where mi+1 − mi ≤ M for all i, then τ1 ≤
M, . . . , τp ≤ M by Proposition 7(b). Furthermore, if 1 ≤ j ≤ q and τp+j > M , then
Tp+j ≤ mp+1 ≤ (p + 1)M by Proposition 8. Considering the largest j ≥ 1 (if any) for
which τp+j > M , we see that

P (Wp,q is seen) ≤ P (τ1 ≤M, . . . , τp+q ≤M) +

q∑
j=1

σ̃p,j,

where

σ̃p,j = P (τ1 ≤M, . . . , τp ≤M, τp+j > M, τp+j+1 ≤M, . . . , τp+q ≤M, Tp+j ≤ (p+ 1)M).

Using the same trick as in the proof of the previous lemma we obtain

σ̃p,j = αq−jP (τ1 ≤M, . . . , τp ≤M, τp+j > M, Tp+j ≤ (p+ 1)M) = αq−jβσ′p,j,

so the result follows by definition of up,q.

For any function fp,q, p, q ≥ 0 , define a generalized mixed second derivative by

∆fp,q = fp+1,q+1 −Mβfp,q+1 − (α− β)fp+1,q + β(M − 2α)fp,q.

This particular choice of coefficients is designed to correspond to the coefficients in (4).
In order to do so, the middle coefficients would have to sum to −(α+ (M − 1)β). This
particular decomposition was chosen by computing numerically ∆up,q for various values
of the parameters, and checking to see which one made this expression ≤ 0.

Lemma 12. ∆up,q ≤ 0 for p, q ≥ 0.
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Proof. If fp,q = αp, then

∆fp,q = αp+1 −Mβαp − (α− β)αp+1 + β(M − 2α)αp = 0.

Therefore, if we let

wp,q =

q∑
j=1

αq−jσp,j,

we have ∆up,q = −β∆wp,q, so we need to show that ∆wp,q ≥ 0. We will do so by
computing the generating function of this expression as a function of q.

By Lemma 10,

σp,j =

p∑
i=0

(
p

i

)
(−β)p−iP (Tp+j > iM).

Since Tm is a sum of m independent geometric random variables and can thus be inter-
preted as the waiting time for the m-th success in a sequence of Bernoulli experiments,
and since Sk, the number of successes in the first k of these experiments is binomially
distributed, we have

P (Tj > k) = P (Sk < j) =
1

2k

j−1∑
l=0

(
k

l

)
.

Therefore, since 2−M = β,

σp,j =

p∑
i=0

(
p

i

)
(−β)p−iβi

p+j−1∑
l=0

(
iM

l

)
= βp

p∑
i=0

p+j−1∑
l=0

(−1)p−i
(
p

i

)(
iM

l

)
.

It follows that for 0 < x < 1,

(1− x)
∞∑
j=1

σp,jx
j−1 = βp

p∑
i=0

∞∑
l=0

(
p

i

)(
iM

l

)
(−1)p−ix(l−p)+ . (14)

Note that for every polynomial function g of degree deg g < p we have

p∑
i=0

(
p

i

)
g(i)(−1)p−i = 0. (15)

It suffices to check this for all polynomial functions of the form g(i) =
(
i
l

)
, 0 ≤ l < p:

p∑
i=0

(
p

i

)(
i

l

)
(−1)p−i =

(
p

l

) p∑
i=l

(
p− l
p− i

)
(−1)p−i =

(
p

l

)
(1− 1)p−l = 0.
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Applying (15) to the functions g(i) =
(
iM
l

)
, 0 ≤ l < p, it follows that the positive part

at the end of (14) is not needed:

(1− x)
∞∑
j=1

σp,jx
j−1 = βp

p∑
i=0

∞∑
l=0

(
p

i

)(
iM

l

)
(−1)p−ixl−p

= βpx−p
p∑
i=0

(
p

i

)
(−1)p−i(1 + x)iM

= βpx−p[(1 + x)M − 1]p.

Therefore,

(1− x)
∞∑
q=1

wp,qx
q−1 =

1− x
1− αx

∞∑
j=1

σp,jx
j−1 =

1

1− αx
βpx−p[(1 + x)M − 1]p.

Using this expression, we can write

(1− x)
∞∑
q=0

∆wp,qx
q−1 =

βp+1x−p

x2(1− αx)
[(1 + x)M − 1]pP (x),

where

P (x) = (1 + x)M [1− (α− β)x]− 1− (M + β − α)x+ x2(M − 2α).

Note that P (1) = 2M(1− α + β)− 2 = 0, so we may define a polynomial Q by P (x) =
(1 − x)Q(x). If Q has nonnegative coefficients, it will follow that ∆wp,q ≥ 0 for all
p, q ≥ 0 as required. The coefficients of Q are the partial sums of the coefficients of P .
The constant and linear terms in P vanish. The coefficient of x2 is

(
M
2

)
− 2(α −Mβ),

while for k ≥ 3, the coefficient of xk is
(
M
k

)
− (α− β)

(
M
k−1

)
. Therefore, we need to check

that the following expression is nonnegative for 2 ≤ l ≤M :(
M

2

)
− 2(α−Mβ) +

l∑
k=3

[(
M

k

)
− (α− β)

(
M

k − 1

)]

=

(
M

l

)
+ 2β

l−1∑
k=2

(
M

k

)
− 2(α−Mβ) =

(
M

l

)
− 2β

M∑
k=l

(
M

k

)
.

This is nonnegative for 2 ≤ l < M since β
∑M

k=0

(
M
k

)
= 1, and for l = M since then the

right side above is 1− 2β. It equals 0 when l > M .

Proof of Theorem 1(b). Let

δp,q = vp+q − up,q, p, q ≥ 0.

11



By (3) we have vn+1 ≥ αvn and thus vn ≥ αn, so

δp,0 = vp − αp ≥ 0 and δ0,q = vq − αq ≥ 0 for all p, q ≥ 0. (16)

By (4) and Lemma 12 we have

δp+1,q+1 −Mβδp,q+1 − (α− β)δp+1,q + β(M − 2α)δp,q

= vp+q+2 − (α + (M − 1)β)vp+q+1 + β(M − 2α)vp+q −∆up,q ≥ 0,

which can be rewritten as

δp+1,q+1 −Mβδp,q+1 ≥ (α− β)δp+1,q − β(M − 2α)δp,q. (17)

We will now prove by induction on q the statement that δp+1,q ≥ Mβδp,q for all p ≥ 0.
By (16), for the basis step we have to show that

vn+1 − αn+1 ≥Mβ(vn − αn).

This follows from

vn+1 −Mβvn = (α−Mβ)(vn + v′n) ≥ (α−Mβ)αn,

where we have used (3), α −Mβ > 0, v′n ≥ 0, and vn ≥ αn. For the induction step,
assume that the statement is true for a given q ≥ 0. Using (16) it follows that δp,q ≥ 0
for that q and all p. Therefore, since 0 ≤ M − 2α ≤ M(α − β) (which is equivalent to
Mβ ≤ α), (17) can be written as

δp+1,q+1 −Mβδp,q+1 ≥
M − 2α

M
[δp+1,q −Mβδp,q] ≥ 0,

where the final inequality follows from the induction hypothesis. This proves that
δp+1,q ≥ Mβδp,q for all p, q ≥ 0, and hence that δp,q ≥ 0 for all p, q ≥ 0 and there-
fore up,q ≤ vp+q. Now apply Lemma 11 to complete the proof.

5 Independence of parameter choice

Let X = (Xn : n ≥ 1) and Y = (Yn : n ≥ 1) be two independent Bernoulli sequences
with parameters pX and pY respectively, and let W ∈ {0, 1}N be an arbitrary infinite
word.

Theorem 13. (a) The validity of the assertion “ ∀M ≥ 2 : P (X is M-seen in Y ) = 0”
does not depend on the values of pX , pY ∈ (0, 1).
(b) The validity of the assertion “ ∀M ≥ 2 : P (W is M-seen in Y ) = 0” does not
depend on the value of pY ∈ (0, 1).

The main idea of the proof of Theorem 13 is to use a coupling of two Bernoulli
sequences so that one can be M -seen in the other for sufficiently large M .

12



Lemma 14. Let X,X ′ be Bernoulli sequences with parameters p, p′ ∈ (0, 1) respectively.
(a) If p′ ∈ [p2, 1− (1− p)2], there is a coupling such that X ′ can be 3-seen in X.
(b) There is an M ≥ 2 and a coupling such that X ′ can be M-seen in X.

Proof. (a) Let X be a Bernoulli sequence with parameter p. For a given sequence
x ∈ {0, 1}N, we define a random subsequence F (x) by partitioning x into disjoint blocks
each comprising 2 consecutive letters, and replacing every block 00 by 0, 11 by 1, and
01 and 10 by 1 with probability p1 and by 0 with probability p0 = 1− p1. This is done
independently for each block and independently of the choice of the Bernoulli sequence
X. The sequence X ′ := F (X) is a Bernoulli sequence with parameter

p′ = p2 + 2p(1− p)p1

such that X ′ can be 3-seen in X (since for every k, X ′k = X2k or X2k−1). Since p1 can
be chosen arbitrarily in [0, 1], p′ has a possible range of [p2, 1− (1− p)2].
(b) Let f1(p) = p2 and f2(p) = 1 − (1 − p)2. We note that f1(p) ≤ p ≤ f2(p) and
fk1 (p) → 0 and fk2 (p) → 1 for k → ∞, where fk(p) = f ◦ · · · ◦ f(p). Thus for arbitrary
given p, p′ ∈ (0, 1), there exist p0, . . . , pk ∈ (0, 1) such that p0 = p, pk = p′ and pi+1 ∈
[f1(pi), f2(pi)] for all i. Thus by (a) there exist Bernoulli sequences X(0), . . . , X(k) such
that X(i) has parameter pi and X(i+1) can be 3-seen in X(i) for all i. Thus X ′ := X(k)

can be 3k-seen in X := X(0).

Proof of Theorem 13. (a) Let pX , pY , p
′
X , p

′
Y ∈ (0, 1). By Lemma 14 there are Bernoulli

sequences X, Y,X ′, Y ′ with these parameters such that X ′ can be MX-seen in X, Y can
be MY -seen in Y ′, and (X,X ′) is independent of (Y, Y ′). In particular we have

{X is M -seen in Y } ⊂ {X ′ is MXMYM -seen in Y ′} for all M.

Thus the validity of “∀M ′ ≥ 2 : P (X ′ is M ′-seen in Y ′) = 0” implies the validity of
“∀M ≥ 2 : P (X is M -seen in Y ) = 0”.
(b) Let pY , p

′
Y ∈ (0, 1). By Lemma 14 there are Bernoulli sequences Y, Y ′ with these

parameters such that Y can be MY -seen in Y ′. In particular we have

{W is M -seen in Y } ⊂ {W is MYM -seen in Y ′} for all M.

Thus the validity of “∀M ′ ≥ 2 : P (W is M ′-seen in Y ′) = 0” implies the validity of
“∀M ≥ 2 : P (W is M -seen in Y ) = 0”.

6 Variance of the number of embeddings

We prove Theorem 4. Let W = (w1, w2, . . . , wn) be a word of length n, and let j =
(j0, j1, . . . , jn) and k = (k0, k1, . . . , kn) be strictly increasing sequences of integers with

13



j0 = k0 = 0 and gaps not exceeding M . Then

E(N2
n) =

∑
j,k

P (j and k are M -admissible embeddings)

=
∑
j,k

(1
2
)|j∪k|Ij,k =

∑
j,k

(1
2
)2n−|j∩k|Ij,k,

where
Ij,k = Ij,k(W ) =

∏
(r,s)6=0: jr=ks

1(wr = ws),

j ∪ k = {j1, j2 . . . , jn} ∪ {k1, k2, . . . , kn} viewed as a set, and |j ∩ k| = |{(r, s) 6= (0, 0) :
jr = ks}|. Therefore,

E(N2
n) = (M/2)2nE(2|J∩K|IJ,K),

as claimed in part (a).
Part (b) follows from the fact that, for the random word X,

E(Ij,k(X)) = (1
2
)|j∩k|−Z(j,k),

where Z(j, k) = |{l 6= 0 : jl = kl}|.
To determine the asymptotics of E(2Zn), we proceed as follows. Let τ, τ1, τ2, ... be

iid with the distribution of the hitting time of 0 for the random walk J −K starting at
0. Then P (Zn ≥ k) = P (τ1 + · · ·+ τk ≤ n), so

E(2Zn) = 1 +
∞∑
k=1

2k−1P (τ1 + · · ·+ τk ≤ n).

Therefore, with f(z) = Ezτ ,

(1− z)
∞∑
n=0

znE(2Zn) =
1− f(z)

1− 2f(z)
, (18)

whenever |2f(z)| < 1. Two methods are presented for extracting the asymptotics of
E(2Zn) from (18).

The function f is smooth on the real interval [0, 1), so if we define c = cM > 1 by
Ec−τ = 1

2
, the right side of (18) is asymptotic to a constant multiple of (1 − cx)−1 as

x ↑ c−1. By a Tauberian theorem (e.g., Theorem 5 in [4, Sect. XIII.5]), it follows that
E(2Zn) is asymptotic to a constant multiple of cn. When M = 2, Exτ = 1 −

√
1− x

(see, for example, [3, Sect. XIV.4]), so c = c2 = 4
3

in this case.
In order to get full benefit from the Tauberian theorem, we need to know that the

sequence E(2Zn)c−n is monotone; otherwise we would only have convergence in the
Cesàro sense. We check this next. Let un = P (Jn −Kn = 0), v0 = 1,

vn =
n∑
k=1

ukvn−k, n ≥ 1, (19)
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and Vn =
∑n

k=0 vk. We will check that

un ↓, (20)

V 2
n ≥ Vn+1Vn−1, n ≥ 1 (21)

and
E(2Zn) = Vn. (22)

Once these are checked, it will follow from (21) that Vn+1/Vn is decreasing, and by (22)
and the Cesàro convergence noted above, Vn+1/Vn ↓ c. Therefore Vn+1 ≥ cVn, so Vn/c

n

is increasing as required.
To check (20), note first that by the Schwarz inequality,

P (Jn −Kn = m) =
∑
l

P (Kn = l)P (Jn = l +m)

≤
√∑

l

P 2(Kn = l)
∑
l

P 2(Jn = l +m)

=
∑
l

P 2(Kn = l) = un.

Then use this to write

un+1 =
∑
m

P (Jn −Kn = m)P (J1 −K1 = −m) ≤ un.

We check (21) by induction on n. Note that it is equivalent to

vn
Vn−1

≥ vn+1

Vn
. (23)

Dividing (19) by Vn−1 expresses the left side of (23) as an average of u1, . . . , un, and
of course the right side is an average of u1, . . . , un+1. By (20), it suffices to check
that the two averaging measures are stochastically ordered. But this is equivalent to
Vn−1Vj ≥ VnVj−1 for 1 ≤ j ≤ n, which is a consequence of the induction hypothesis.

Finally, we check (22). Write

E(2Zn) = E
n∏
i=1

(
1 + 1(Ji = Ki)

)
=

∑
A⊆{1,...,n}

P (Ji = Ki, ∀ i ∈ A).

So, it is enough to show that

vn =
∑

n∈A⊆{1,...,n}

P (Ji = Ki, ∀ i ∈ A),

or equivalently, that the right side above satisfies the recursion (19). But this is easily
checked by breaking up the sum according to the value of the smallest element k of A.
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Finally, we give a second analysis of (18). This approach is simpler, but gives
somewhat less than the first, in that it does not imply the log-concavity statement in
(21). With c given as after (18), f is analytic on the disk |z| < 1, and f ′(c−1) > 0.
Therefore,

h(z) :=
1− f(z)

(1− z)(1− 2f(z))

has a simple pole at z = c−1.
On the other hand, |f(z)| ≤ f(|z|), since the power-series expansion of f has real

nonnegative coefficients. Therefore, |f(z)| < 1
2

for |z| ≤ c−1, z 6= c−1, since τ is not
concentrated on a non-trivial arithmetic progression. It follows that z = c−1 is the only
root of f(z) = 1

2
in some disk |z| < c−1 + ε with ε > 0. Hence, z = c−1 is the only

singularity of h in that disk, whence

h(z) =
a

1− cz
+ g(z)

for some a > 0 and with g analytic in the disk. The coefficients of the power series for
g grow as O(dn) for some 0 < d < c, so it follows from (18) that E(2Zn) = acn + O(dn).
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