Liouville quantum gravity and the Brownian map

Jason Miller and Scott Sheffield

Cambridge and MIT

July 15, 2015
Overview

Part I: Picking surfaces at random
1. Discrete: random planar maps
2. Continuum: Liouville quantum gravity (LQG)
3. Relationship

Part II: The $\text{QLE}(8/3, 0)$ metric on $\sqrt{8/3}\text{-LQG}$
1. First passage percolation on random planar maps
2. First passage percolation on $\sqrt{8/3}\text{-LQG}: \text{QLE}(8/3, 0)$
Part I: Picking surfaces at random
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.

[Diagram of a planar map with faces highlighted]
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
- Interested in **uniformly random quadrangulations** with n faces — **random planar map** (RPM).
Random planar maps

- A **planar map** is a finite graph together with an embedding in the plane so that no edges cross.
- Its **faces** are the connected components of the complement of its edges.
- A map is a **quadrangulation** if each face has 4 adjacent edges.
- A quadrangulation corresponds to a **metric space** when equipped with the graph distance.
- Interested in **uniformly random quadrangulations** with \(n \) faces — **random planar map** (RPM).
- First studied by Tutte in 1960s while working on the four color theorem.

Combinatorics: enumeration formulas

Physics: statistical physics models: percolation, Ising, UST ...

Probability: “uniformly random surface,” Brownian surface
Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)

(simulation due to J.F. Marckert)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- **RPM as a metric space.** Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequently limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)

(Simulation due to J.F. Marckert)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequentially limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)
Structure of large random planar maps

- RPM as a **metric space**. Is there a limit?
- **Diameter** is $n^{1/4}$ (Chaissang-Schaefer)
- Rescaling by $n^{-1/4}$ gives a tight sequence of metric spaces (Le Gall)
- Subsequently limiting space is a.s.:
 - 4-dimensional (Le Gall)
 - homeomorphic to the 2-sphere (Le Gall and Paulin, Miermont)
- There exists a unique limit in distribution: **the Brownian map** (Le Gall, Miermont)

Important tool: bijections which encode the surface using a gluing of a pair of trees

(Mullin, Schaeffer, Cori-Schaeffer-Vauquelin, Bouttier-Di Francesco-Guitter, Sheffield,...)

Brownian map also described in terms of trees (CRT)

(Markert-Mokkadem)
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk \(D \) can be conformally mapped to the disk.

 Isothermal coordinates: Metric for the surface takes the form

\[e^{\rho(z)} \, dz \]

for some smooth function \(\rho \) where \(dz \) is the Euclidean metric.

⇒ Can parameterize the surfaces homeomorphic to \(D \) with smooth functions on \(D \).

▶ If \(\rho = 0 \), get \(D \)

▶ If \(\Delta \rho = 0 \), i.e. if \(\rho \) is harmonic, the surface described is flat

Question: Which measure on \(\rho \)? If we want our surface to be a perturbation of a flat metric, natural to choose \(\rho \) as the canonical perturbation of a harmonic function.
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}\,dz$ for some smooth function ρ where dz is the Euclidean metric.
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk \(D \) can be conformally mapped to the disk.

Isothermal coordinates: Metric for the surface takes the form \(e^{\rho(z)} \, dz \) for some smooth function \(\rho \) where \(dz \) is the Euclidean metric.

\[\Rightarrow \] Can parameterize the surfaces homeomorphic to \(D \) with smooth functions on \(D \).

- If \(\rho = 0 \), get \(D \)
- If \(\Delta \rho = 0 \), i.e. if \(\rho \) is harmonic, the surface described is flat
Picking a surface at random in the continuum

Uniformization theorem: every Riemannian surface homeomorphic to the unit disk D can be conformally mapped to the disk.

![Diagram](image)

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)}dz$ for some smooth function ρ where dz is the Euclidean metric.

\Rightarrow Can parameterize the surfaces homeomorphic to D with smooth functions on D.

- If $\rho = 0$, get D
- If $\Delta \rho = 0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.
The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

- Measure on functions $h: D \to \mathbb{R}$ for $D \subseteq \mathbb{Z}^2$ and $h|_{\partial D} = \psi$ with density respect to Lebesgue measure on $\mathbb{R}^{|D|}$:

\[
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2 \right)
\]
The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbb{R}$ for $D \subseteq \mathbb{Z}^2$ and $h|_{\partial D} = \psi$ with density respect to Lebesgue measure on $\mathbb{R}^{|D|}$:
 \[
 \frac{1}{Z} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2 \right)
 \]
- Natural perturbation of a harmonic function
The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

- Measure on functions $h: D \to \mathbb{R}$ for $D \subseteq \mathbb{Z}^2$ and $h|_{\partial D} = \psi$ with density respect to Lebesgue measure on $\mathbb{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2 \right)
$$

- Natural perturbation of a harmonic function

- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla} = \frac{1}{2\pi} \int \nabla f(x) \cdot \nabla g(x) dx.
$$
The Gaussian free field

- The **discrete Gaussian free field** (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbb{R}$ for $D \subseteq \mathbb{Z}^2$ and $h|_{\partial D} = \psi$ with density respect to Lebesgue measure on $\mathbb{R}^{|D|}$:
 \[
 \frac{1}{Z} \exp \left(-\frac{1}{2} \sum_{x \sim y} (h(x) - h(y))^2 \right)
 \]
- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the **Dirichlet inner product**
 \[
 (f, g)_{\nabla} = \frac{1}{2\pi} \int \nabla f(x) \cdot \nabla g(x) dx.
 \]
- Continuum GFF not a function — only a generalized function
Liouville quantum gravity

- Liouville quantum gravity: \(e^{\gamma h(z)} dz \)
 where \(h \) is a GFF and \(\gamma \in [0, 2) \)

\(\gamma = 0.5 \)

(Number of subdivisions)
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} \, dz$
 where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s

$\gamma = 0.5$

(Number of subdivisions)
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} dz$ where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions

\[\gamma = 0.5 \]
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} \, dz$
 where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h
 takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

\[\gamma = 0.5 \]
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} \, dz$ where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

\[\gamma = 1.0 \]
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} \, dz$
 where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

$\gamma = 1.5$
Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} \, dz$ where h is a GFF and $\gamma \in [0, 2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Has been made sense of as a random area measure using a regularization procedure
 - Can compute areas of regions and lengths of curves
 - *Does not* come with an obvious notion of “distance”

$\gamma = 2.0$

(Number of subdivisions)
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)} (dx^2 + dy^2)$.
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$

So far, only made sense of as an area measure using a regularization procedure
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)} (dx^2 + dy^2)$

So far, only made sense of as an area measure using a regularization procedure

LQG has a conformal structure (compute angles, etc...) and an area measure
Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)

For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$

So far, only made sense of as an area measure using a regularization procedure

LQG has a conformal structure (compute angles, etc...) and an area measure

In contrast, TBM has a metric structure and an area measure
LQG and TBM

- Two “canonical” (but very different) constructions of random surfaces: Liouville quantum gravity (LQG) and the Brownian map (TBM)
- For $\gamma \in [0, 2)$, Liouville quantum gravity (LQG) is the “random surface” with “Riemannian metric” $e^{\gamma h(z)}(dx^2 + dy^2)$
- So far, only made sense of as an area measure using a regularization procedure
- LQG has a conformal structure (compute angles, etc...) and an area measure
- In contrast, TBM has a metric structure and an area measure

This talk is about endowing each of these objects with the other’s structure and showing they are equivalent.
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2. It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8}/3$.

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8}/3$-LQG. Not the approach we will describe today...
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2
- It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$-LQG.

Not the approach we will describe today...
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2.
- It is believed that there should be a “natural embedding” of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$.

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$-LQG.
Canonical embedding of TBM into S^2

- TBM is an abstract metric measure space homeomorphic to S^2, but it does not obviously come with a canonical embedding into S^2.
- It is believed that there should be a "natural embedding" of TBM into S^2 and that the embedded surface is described by a form of Liouville quantum gravity (LQG) with $\gamma = \sqrt{8/3}$.

Discrete approach: take a uniformly random planar map and embed it conformally into S^2 (circle packing, uniformization, etc...), then in the $n \to \infty$ limit it converges to a form of $\sqrt{8/3}$-LQG. Not the approach we will describe today ...
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi : (M, d) \rightarrow S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\).
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \rightarrow S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi : (M, d) \rightarrow S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\)
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) (TBM determines its conformal structure)
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) \textbf{(TBM determines its conformal structure)}
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\)
Main result

Theorem (M., Sheffield)

Suppose that (M, d, μ) is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi : (M, d) \to S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$-LQG sphere (S^2, h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure)
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) \textbf{(TBM determines its conformal structure)}
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) \textbf{(LQG determines its metric structure)}

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) (TBM determines its conformal structure)
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) (LQG determines its metric structure)

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on \(\sqrt{8/3}\)-LQG using the growth process \(\text{QLE}(8/3, 0)\)
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows the embedding of TBM into \(\sqrt{8/3}\)-LQG is determined by TBM
5. Metric construction is for the \(\sqrt{8/3}\)-LQG sphere. By absolute continuity, can construct a metric on any \(\sqrt{8/3}\)-LQG surface.
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi : (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) (TBM determines its conformal structure)
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) (LQG determines its metric structure)

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.

Comments

1. Construction is purely in the continuum
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi : (M, d) \rightarrow S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) \((\text{TBM determines its conformal structure})\)
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) \((\text{LQG determines its metric structure})\)

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on \(\sqrt{8/3}\)-LQG using the growth process \(\text{QLE}(8/3, 0)\)
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi: (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) (TBM determines its conformal structure)
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) (LQG determines its metric structure)

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on \(\sqrt{8/3}\)-LQG using the growth process QLE(8/3, 0)
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
Main result

Theorem (M., Sheffield)

Suppose that μ is an instance of TBM. Then there exists a Hölder homeomorphism $\varphi : (M, d) \to S^2$ such that the pushforward of μ by φ has the law of a $\sqrt{8/3}$-LQG sphere (S^2, h). Moreover,

- φ is determined by (M, d, μ) (TBM determines its conformal structure)
- (M, d, μ) and φ are determined by (S^2, h) (LQG determines its metric structure)

That is, (M, d, μ) and (S^2, h) are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on $\sqrt{8/3}$-LQG using the growth process QLE$(8/3, 0)$
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows the embedding of TBM into $\sqrt{8/3}$-LQG is determined by TBM
Main result

Theorem (M., Sheffield)

Suppose that \((M, d, \mu)\) is an instance of TBM. Then there exists a Hölder homeomorphism \(\varphi : (M, d) \to S^2\) such that the pushforward of \(\mu\) by \(\varphi\) has the law of a \(\sqrt{8/3}\)-LQG sphere \((S^2, h)\). Moreover,

- \(\varphi\) is determined by \((M, d, \mu)\) (TBM determines its conformal structure)
- \((M, d, \mu)\) and \(\varphi\) are determined by \((S^2, h)\) (LQG determines its metric structure)

That is, \((M, d, \mu)\) and \((S^2, h)\) are equivalent.

Comments

1. Construction is purely in the continuum
2. Proof by endowing a metric space structure directly on \(\sqrt{8/3}\)-LQG using the growth process QLE\((8/3, 0)\)
3. Resulting metric space structure is shown to satisfy axioms which characterize TBM
4. Separate argument shows the embedding of TBM into \(\sqrt{8/3}\)-LQG is determined by TBM
5. Metric construction is for the \(\sqrt{8/3}\)-LQG sphere. By absolute continuity, can construct a metric on any \(\sqrt{8/3}\)-LQG surface.
Part II:
Construction of the metric on $\sqrt{8/3}$-LQG
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\text{exp}(1)$ edge weights

Introduced by Eden (1961) and Hammersley and Welsh (1965)

On \mathbb{Z}^2?

Question: Large scale behavior of shape of ball wrt perturbed metric?

Cox and Durrett (1981) showed that the macroscopic shape is convex

Computer simulations show that it is not a Euclidean disk

\mathbb{Z}^2 is not isotropic enough

Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if \mathbb{Z}^2 is replaced by the Voronoi tesselation associated with a Poisson process
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. exp(1) edge weights

Introduced by Eden (1961) and Hammersley and Welsh (1965)

On \mathbb{Z}^2?

Question: Large scale behavior of shape of ball wrt perturbed metric?

Cox and Durrett (1981) showed that the macroscopic shape is convex

Computer simulations show that it is not a Euclidean disk

\mathbb{Z}^2 is not isotropic enough

Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if \mathbb{Z}^2 is replaced by the Voronoi tesselation associated with a Poisson process.
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. $\exp(1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \mathbb{Z}^2?

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 is not isotropic enough.

Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if \mathbb{Z}^2 is replaced by the Voronoi tesselation associated with a Poisson process.
Detour: first passage percolation (FPP)

- Associate with a graph \((V, E)\) i.i.d. \(\exp(1)\) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \(\mathbb{Z}^2\)?
- **Question:** Large scale behavior of shape of ball wrt perturbed metric?
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \mathbb{Z}^2?
- **Question:** Large scale behavior of shape of ball wrt perturbed metric?

Cox and Durrett (1981) showed that the macroscopic shape is convex.

Computer simulations show that it is not a Euclidean disk.

\mathbb{Z}^2 is not isotropic enough.

Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if \mathbb{Z}^2 is replaced by the Voronoi tessellation associated with a Poisson process.
Detour: first passage percolation (FPP)

- Associate with a graph (V, E) i.i.d. exp(1) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \mathbb{Z}^2?
- **Question:** Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
Detour: first passage percolation (FPP)

- Associate with a graph \((V, E)\) i.i.d. \(\exp(1)\) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \(\mathbb{Z}^2\)?
- **Question:** Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
Detour: first passage percolation (FPP)

- Associate with a graph \((V, E)\) i.i.d. \(\exp(1)\) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \(\mathbb{Z}^2\)?
- **Question:** Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \(\mathbb{Z}^2\) is not isotropic enough
Detour: first passage percolation (FPP)

- Associate with a graph \((V, E)\) i.i.d. \(\text{exp}(1)\) edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
- On \(\mathbb{Z}^2\)?
- **Question**: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \(\mathbb{Z}^2\) is not isotropic enough
- Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if \(\mathbb{Z}^2\) is replaced by the Voronoi tessellation associated with a Poisson process
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).

Jason Miller (Cambridge)
LQG and TBM
July 15, 2015 15 / 24
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex \(x \). Perform FPP from \(x \) (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time \(n \) only depends on the boundary lengths of the outside components.

Exploration respects the Markovian structure of the map.

Belief:

Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Exploration respects the Markovian structure of the map.

Belief:

- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Belief:
- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
- Exploration respects the Markovian structure of the map.

Belief:
- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Belief:

- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).

Jason Miller (Cambridge)
LQG and TBM
July 15, 2015
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.

Belief:
Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex \(x \). Perform FPP from \(x \) (Angel’s peeling process).

Important observations:

- Conditional law of map given growth at time \(n \) only depends on the boundary lengths of the outside components.

Exploration respects the Markovian structure of the map.

Belief:

- Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall).
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel's peeling process).

Important observations:

- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components.
FPP on random planar maps I

- RPM, random vertex x. Perform FPP from x (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time n only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map.*
FPP on random planar maps I

- RPM, random vertex \(x \). Perform FPP from \(x \) (Angel’s peeling process).

Important observations:
- Conditional law of map given growth at time \(n \) only depends on the boundary lengths of the outside components. *Exploration respects the Markovian structure of the map.*

Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric (now proved by Curien and Le Gall)
First passage percolation on random planar maps II

Goal: Make sense of FPP in the continuum on top of a LQG surface

- We do not know how to take a continuum limit of FPP on a random planar map and couple it directly with LQG
- Explain a discrete variant of FPP that involves two operations that we do know how to perform in the continuum:
 - Sample random points according to boundary length
 - Draw (scaling limits of) critical percolation interfaces (SLE_6)
FPP on random planar maps II

Variant:
- Pick two edges on outer boundary of cluster
FPP on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow

This exploration also respects the Markovian structure of the map.

Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. \(\frac{1}{2} \)
- Explore percolation (blue/yellow) interface
FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
Variant:
- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.
Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.

Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
Variant:
- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.

Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
Variant:
- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat
FPP on random planar maps II

Variant:
- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. \(\frac{1}{2} \)
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.
Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map. Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:
- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.
Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
FPP on random planar maps II

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.

Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
Variant:

- Pick two *edges* on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

This exploration also respects the Markovian structure of the map.
Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball.
Continuum limit ansatz

- Sample a random planar map
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $\frac{1}{2}$ and draw percolation interface
- Conformally map to the sphere
- Ansatz: Image of random map converges to a $\sqrt{8}/3$-LQG surface and the image of the interface converges to an independent SLE$_6$.

Jason Miller (Cambridge)
LQG and TBM
July 15, 2015
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1/2$

$(\sqrt{8}/3$-LQG surface and the image of the interface converges to an independent SLE_6.)
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1/2$ and draw percolation interface
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere
Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability 1/2 and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8/3}$-LQG surface and the image of the interface converges to an independent SLE$_6$.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE_6
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{\frac{8}{3}}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{\frac{8}{3}}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE_6
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point \times
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat

$\text{QLE}(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion. $\text{QLE}(8/3, 0)$ is SLE$_6$ with tip re-randomization.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point \times
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$QLE(8/3,0)$ is the limit as $\delta \to 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

$\text{QLE}(8/3, 0)$ is the limit as $\delta \to 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8/3}$-LQG surface
- Fix $\delta > 0$ small and a starting point x
- Draw δ units of SLE$_6$
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage

\(\text{QLE}(8/3, 0) \) is the limit as $\delta \to 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

\(\text{QLE}(8/3, 0) \) is SLE$_6$ with **tip re-randomization**.
Discrete approximation of QLE(8/3, 0). Metric ball on a $\sqrt{8/3}$-LQG.
Emergence of TBM in $\sqrt{8/3}$-LQG

- So far, have described a growth process $\text{QLE}(8/3, 0)$ which is a candidate for growth of a metric ball on $\sqrt{8/3}$-LQG.
Emergence of TBM in $\sqrt{8/3}$-LQG

- So far, have described a growth process $\text{QLE}(8/3, 0)$ which is a candidate for growth of a metric ball on $\sqrt{8/3}$-LQG.
- Not obvious that $\text{QLE}(8/3, 0)$ corresponds to the metric balls in a metric space.
Emergence of TBM in $\sqrt{8/3}$-LQG

- So far, have described a growth process $\text{QLE}(8/3, 0)$ which is a candidate for growth of a metric ball on $\sqrt{8/3}$-LQG.
- Not obvious that $\text{QLE}(8/3, 0)$ corresponds to the metric balls in a metric space.
- Requires an additional argument — make use of a trick developed by Sheffield, Watson, Wu in the context of CLE_4. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE_6.

Still a lot of work to show that resulting metric space structure has the law of TBM and that $\sqrt{8/3}$-LQG and TBM are measurable with respect to each other. But can start to see the Brownian map structure emerge: boundary lengths of metric balls in both spaces evolve in the same way.
Emergence of TBM in $\sqrt{8/3}$-LQG

- So far, have described a growth process $\text{QLE}(8/3, 0)$ which is a candidate for growth of a metric ball on $\sqrt{8/3}$-LQG.
- Not obvious that $\text{QLE}(8/3, 0)$ corresponds to the metric balls in a metric space.
- Requires an additional argument — make use of a trick developed by Sheffield, Watson, Wu in the context of CLE_4. Reduces (in a non-trivial way) to the reversibility of whole-plane SLE_6.
- Still a lot of work to show that resulting metric space structure has the law of TBM and that $\sqrt{8/3}$-LQG and TBM are measurable with respect to each other. But can start to see the Brownian map structure emerge: boundary lengths of metric balls in both spaces evolve in the same way.
Quantum Loewner evolution

QLE(8/3, 0) is a member of a family of processes which are candidates for the scaling limits of DLA and the dielectric breakdown model on LQG surfaces.

More in Scott Sheffield’s talk on Friday.
Further questions

- What is the law of the geodesics for $\sqrt{8/3}$-LQG?
Further questions

- What is the law of the geodesics for $\sqrt{8/3}$-LQG?
 - What is their dimension?
Further questions

- What is the law of the geodesics for $\sqrt{8/3}$-LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?
Further questions

- What is the law of the geodesics for $\sqrt{8/3}$-LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?
 - Is there an explicit description of the metric space structure (like for TBM)?
Further questions

- What is the law of the geodesics for $\sqrt{8/3}$-LQG?
 - What is their dimension?
- What about $\gamma \neq \sqrt{8/3}$?
 - Is there an explicit description of the metric space structure (like for TBM)?
 - What is the dimension of the metric space?
Thanks!