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What is meant by an equaliser decision rule? What is meant by an extended Bayes

rule? Show that a decision rule that is both an equaliser rule and extended Bayes is
minimax.

Let X1, . . . ,Xn be independent and identically distributed random variables with
the normal distribution N (θ, h−1), and let k > 0. It is desired to estimate θ with loss
function L(θ, a) = 1 − exp{−1

2
k(a − θ)2}.

Suppose the prior distribution is θ ∼ N (m0, h
−1

0
). Find the Bayes act and the

Bayes loss posterior to observing X1 = x1, . . . ,Xn = xn. What is the Bayes risk of the
Bayes rule with respect to this prior distribution?

Show that the rule that estimates θ by X = n−1
∑

n

i=1
Xi is minimax.
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Consider the double dichotomy, where the loss is 0 for a correct decision and 1 for an
incorrect decision. Describe the form of a Bayes decision rule. Assuming the equivalence
of normal and extensive form analyses, deduce the Neyman–Pearson lemma.

For a problem with random variable X and real parameter θ, define monotone

likelihood ratio (MLR) and monotone test.

Suppose the problem has MLR in a real statistic T = t(X). Let φ be a monotone
test, with power function γ(·) , and let φ′ be any other test, with power function γ′(·) .
Show that if θ1 > θ0 and γ(θ0) > γ′(θ0) , then γ(θ1) > γ′(θ1) . Deduce that there exists
θ∗ ∈ [−∞,∞] such that γ(θ) 6 γ′(θ) for θ < θ∗ , and γ(θ) > γ′(θ) for θ > θ∗ .

For an arbitrary prior distribution Π with density π(·), and an arbitrary value θ∗,
show that the posterior odds

Π(θ > θ∗ | X = x)

Π(θ 6 θ∗ | X = x)

is a non-decreasing function of t(x).
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(i) Let X1, . . . ,Xn be independent and identically distributed random variables,
having the exponential distribution E(λ) with density p(x|λ) = λ exp(−λx) for x, λ > 0.
Show that Tn =

∑

n

i=1
Xi is minimal sufficient and complete for λ.

[You may assume uniqueness of Laplace transforms.]

(ii) For given x > 0, it is desired to estimate the quantity φ = Prob(X1 > x|λ).
Compute the Fisher information for φ.

(iii) State the Lehmann–Scheffé theorem. Show that the estimator φ̃n of φ defined
by

φ̃n =

{

0, if Tn < x,
(

1 − x

Tn

)n−1

, if Tn > x

is the minimum variance unbiased estimator of φ based on (X1, . . . ,Xn). Without doing
any computations, state whether or not the variance of φ̃n achieves the Cramér–Rao lower
bound, justifying your answer briefly.

Let k 6 n. Show that E(φ̃k | Tn, λ) = φ̃n.
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Suppose that the random vector X = (X1, . . . ,Xn) has a distribution over R
n

depending on a real parameter θ, with everywhere positive density function p(x | θ).
Define the maximum likelihood estimator θ̂, the score variable U , the observed information
ĵ and the expected (Fisher) information I for the problem of estimating θ from X.

For the case where the (Xi) are independent and identically distributed, show that,

as n → ∞, I−1/2 U
d
→ N (0, 1). [You may assume sufficient conditions to allow interchange

of integration over the sample space and differentiation with respect to the parameter.]
State the asymptotic distribution of θ̂.

The random vector X = (X1, . . . ,Xn) is generated according to the rule

Xi+1 = θXi + Ei,

where X0 = 1 and the (Ei) are independent and identically distributed from the standard
normal distribution N (0, 1). Write down the likelihood function for θ based on data
x = (x1, . . . , xn), find θ̂ and ĵ and show that the pair (θ̂, ĵ) forms a minimal sufficient
statistic.

A Bayesian uses the improper prior density π(θ) ∝ 1. Show that, in the posterior,
S(θ − θ̂) (where S is a statistic that you should identify) has the same distribution as E1.
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