BE UNIVERSITY OF
¥¥ CAMBRIDGE 79

Paper 4, Section 11
27K Principles of Statistics

Assuming only the existence and properties of the univariate normal distribution,
define Np(u,X), the multivariate normal distribution with mean (row-)vector p and
dispersion matrix ¥; and W,(v; ), the Wishart distribution on integer v > 1 degrees
of freedom and with scale parameter X. Show that, if X ~ N,(u, %), S ~ W, (v;X), and
b (1xgq), A(pxq) are fixed, then b+ XA ~ Ny(b+ puA, ), ATSA ~ W,(v; ®), where
o = AT A.

The random (n x p) matrix X has rows that are independently distributed as
Np(M, X)), where both parameters M and ¥ are unknown. Let X = n 117X, where
1 is the (n x 1) vector of 1s; and S¢ := XTIIX, with IT := I, — n~111T. State the joint
distribution of X and S¢ given the parameters.

Now suppose n > p and ¥ is positive definite. Hotelling’s T? is defined as
T2 — n(X . M) (gC)fl (X . M)T

where S := §¢/v with v := (n — 1). Show that, for any values of M and X,

v—p+1 2 P
<T> =~ FV*pH’

the F distribution on p and v — p + 1 degrees of freedom.
[You may assume that:
1. If S~ Wp(v;%) and a is a fixed (p x 1) vector, then
aly"la

alS—1la v—p+1

2. fV ~ X;Qm W ~ Xi are independent, then

Vip

~ FP.
W/)\ A ]
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What is meant by a conver decision problem? State and prove a theorem to the
effect that, in a convex decision problem, there is no point in randomising. [You may use
standard terms without defining them.]

The sample space, parameter space and action space are each the two-point set
{1,2}. The observable X takes value 1 with probability 2/3 when the parameter © = 1,
and with probability 3/4 when © = 2. The loss function L(6,a) is 0 if a = 6, otherwise 1.
Describe all the non-randomised decision rules, compute their risk functions, and plot
these as points in the unit square. Identify an inadmissible non-randomised decision rule,
and a decision rule that dominates it.

Show that the minimax rule has risk function (8/17,8/17), and is Bayes against a
prior distribution that you should specify. What is its Bayes risk? Would a Bayesian with
this prior distribution be bound to use the minimax rule?

Paper 1, Section II
28K Principles of Statistics

When the real parameter © takes value 6, variables X1, X5, ... arise independently
from a distribution Py having density function pg(z) with respect to an underlying
measure p. Define the score wvariable U,(0) and the information function I,(0) for
estimation of © based on X" := (X1,...,X,), and relate I,,(0) to i(0) := I,(0).

State and prove the Cramér—Rao inequality for the variance of an unbiased estimator
of ©. Under what conditions does this inequality become an equality? What is the form
of the estimator in this case? [You may assume E¢{U,(6)} = 0, varg{U,(0)} = I,,(f), and
any further required regularity conditions, without comment.]

Let (:)n be the maxin}urll likelihood estimator of © based on X". What is the
asymptotic distribution of n2 (0, — ©) when © = 67

Suppose that, for each n, (:)n is unbiased for ©, and the variance of n%((:)n — @l is
exactly equal to its asymptotic variance. By considering the estimator a©y + (1 — )0,
or otherwise, show that, for k < n, covy(O, 6,) = varg(©,,).
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Describe the Weak Sufficiency Principle (WSP) and the Strong Sufficiency Principle
(SSP). Show that Bayesian inference with a fixed prior distribution respects WSP.

A parameter ® has a prior distribution which is normal with mean 0 and precision
(inverse variance) hg. Given ® = ¢, further parameters ® := (©; : ¢ = 1,...,I) have
independent normal distributions with mean ¢ and precision hg. Finally, given both
®=¢and ® =0 :=(0,...,07), observables X := (X;; :i=1,...,I;j=1,...,J) are
independent, X;; being normal with mean ¢;, and precision hx. The precision parameters
(he,he,hx) are all fixed and known. Let X = (X1,...,X[), where X; := 23'121 Xij/J.
Show, directly from the definition of sufficiency, that X is sufficient for (®,®). [You may
assume without proof that, if Y7,...,Y,, have independent normal distributions with the
same variance, and Y :=n~"! Yo, Y;, then the vector (Y3 ~-Y,...,Y,—Y) is independent
of Y]

For data-values © := (x;; : ¢ = 1,...,I;7 = 1,...,J), determine the joint
distribution, Il say, of ®, given X = x and ® = ¢. What is the distribution of ®,
given @ = 6 and X = x?

Using these results, describe clearly how Gibbs sampling combined with Rao—
Blackwellisation could be applied to estimate the posterior joint distribution of @, given
X ==
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