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Paper 4, Section II

28J Principles of Statistics
We consider a statistical model {f(·, θ) : θ ∈ Θ}.
(a) Define the maximum likelihood estimator (MLE) and the Fisher information

I(θ).

(b) Let Θ = R and assume there exist a continuous one-to-one function µ : R → R

and a real-valued function h such that

Eθ[h(X)] = µ(θ) ∀θ ∈ R.

(i) For X1, . . . ,Xn i.i.d. from the model for some θ0 ∈ R, give the limit in almost
sure sense of

µ̂n =
1

n

n∑

i=1

h(Xi) .

Give a consistent estimator θ̂n of θ0 in terms of µ̂n.

(ii) Assume further that Eθ0 [h(X)2] < ∞ and that µ is continuously differentiable
and strictly monotone. What is the limit in distribution of

√
n(θ̂n− θ0)? Assume too that

the statistical model satisfies the usual regularity assumptions. Do you necessarily expect
Var(θ̂n) > (nI(θ0))

−1 for all n? Why?

(iii) Propose an alternative estimator for θ0 with smaller bias than θ̂n if Bn(θ0) =
Eθ0 [θ̂n]− θ0 =

a
n + b

n2 +O( 1
n3 ) for some a, b ∈ R with a 6= 0.

(iv) Further to all the assumptions in iii), assume that the MLE for θ0 is of the form

θ̂MLE =
1

n

n∑

i=1

h(Xi).

What is the link between the Fisher information at θ0 and the variance of h(X)? What
does this mean in terms of the precision of the estimator and why?

[You may use results from the course, provided you state them clearly.]
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Paper 3, Section II

28J Principles of Statistics
We consider the exponential model {f(·, θ) : θ ∈ (0,∞)}, where

f(x, θ) = θe−θx for x > 0 .

We observe an i.i.d. sample X1, . . . ,Xn from the model.

(a) Compute the maximum likelihood estimator θ̂MLE for θ. What is the limit in
distribution of

√
n(θ̂MLE − θ)?

(b) Consider the Bayesian setting and place a Gamma(α, β), α, β > 0, prior for θ
with density

π(θ) =
βα

Γ(α)
θα−1 exp(−βθ) for θ > 0 ,

where Γ is the Gamma function satisfying Γ(α + 1) = αΓ(α) for all α > 0. What is the
posterior distribution for θ? What is the Bayes estimator θ̂π for the squared loss?

(c) Show that the Bayes estimator is consistent. What is the limiting distribution
of

√
n(θ̂π − θ)?

[You may use results from the course, provided you state them clearly.]
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Paper 2, Section II

28J Principles of Statistics
(a) We consider the model {Poisson(θ) : θ ∈ (0,∞)} and an i.i.d. sample

X1, . . . ,Xn from it. Compute the expectation and variance of X1 and check they are
equal. Find the maximum likelihood estimator θ̂MLE for θ and, using its form, derive the
limit in distribution of

√
n(θ̂MLE − θ).

(b) In practice, Poisson-looking data show overdispersion, i.e., the sample variance
is larger than the sample expectation. For π ∈ [0, 1] and λ ∈ (0,∞), let pπ,λ : N0 → [0, 1],

k 7→ pπ,λ(k) =





πe−λ λ
k

k! for k > 1

(1− π) + πe−λ for k = 0.

Show that this defines a distribution. Does it model overdispersion? Justify your answer.

(c) Let Y1, . . . , Yn be an i.i.d. sample from pπ,λ. Assume λ is known. Find the
maximum likelihood estimator π̂MLE for π.

(d) Furthermore, assume that, for any π ∈ [0, 1],
√
n(π̂MLE − π) converges in

distribution to a random variable Z as n → ∞. Suppose we wanted to test the null
hypothesis that our data arises from the model in part (a). Before making any further
computations, can we necessarily expect Z to follow a normal distribution under the null
hypothesis? Explain. Check your answer by computing the appropriate distribution.

[You may use results from the course, provided you state it clearly.]

Part II, 2019 List of Questions



81

Paper 1, Section II

29J Principles of Statistics
In a regression problem, for a given X ∈ Rn×p fixed, we observe Y ∈ Rn such that

Y = Xθ0 + ε

for an unknown θ0 ∈ Rp and ε random such that ε ∼ N (0, σ2In) for some known σ2 > 0.

(a) When p 6 n and X has rank p, compute the maximum likelihood estimator
θ̂MLE for θ0. When p > n, what issue is there with the likelihood maximisation approach
and how many maximisers of the likelihood are there (if any)?

(b) For any λ > 0 fixed, we consider θ̂λ minimising

‖Y −Xθ‖22 + λ‖θ‖22

over Rp. Derive an expression for θ̂λ and show it is well defined, i.e., there is a unique
minimiser for every X,Y and λ.

Assume p 6 n and that X has rank p. Let Σ = X⊤X and note that Σ = V ΛV ⊤

for some orthogonal matrix V and some diagonal matrix Λ whose diagonal entries satisfy
Λ1,1 > Λ2,2 > . . . > Λp,p. Assume that the columns of X have mean zero.

(c) Denote the columns of U = XV by u1, . . . , up. Show that they are sample
principal components, i.e., that their pairwise sample correlations are zero and that they
have sample variances n−1Λ1,1, . . . , n

−1Λp,p, respectively. [Hint: the sample covariance
between ui and uj is n−1u⊤i uj .]

(d) Show that
ŶMLE = Xθ̂MLE = UΛ−1U⊤Y.

Conclude that prediction ŶMLE is the closest point to Y within the subspace spanned by
the normalised sample principal components of part (c).

(e) Show that
Ŷλ = Xθ̂λ = U(Λ + λIp)

−1U⊤Y.

Assume Λ1,1,Λ2,2, . . . ,Λq,q >> λ >> Λq+1,q+1, . . . ,Λp,p for some 1 6 q < p. Conclude
that prediction Ŷλ is approximately the closest point to Y within the subspace spanned
by the q normalised sample principal components of part (c) with the greatest variance.
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