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Paper 1, Section II
29J Principles of Statistics

State and prove the Cramér–Rao inequality for a real-valued parameter θ. [Neces-
sary regularity conditions need not be stated.]

In a general decision problem, define what it means for a decision rule to be minimax.

Let X1, . . . , Xn be i.i.d. from a N(θ, 1) distribution, where θ ∈ Θ = [0,∞). Prove
carefully that Xn = 1

n

∑n
i=1Xi is minimax for quadratic risk on Θ.
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Consider X1, . . . , Xn from a N(µ, σ2) distribution with parameter θ = (µ, σ2) ∈
Θ = R × (0,∞). Derive the likelihood ratio test statistic Λn(Θ,Θ0) for the composite
hypothesis

H0 : σ2 = 1 vs. H1 : σ2 6= 1,

where Θ0 = {(µ, 1) : µ ∈ R} is the parameter space constrained by H0.

Prove carefully that

Λn(Θ,Θ0)→d χ2
1 as n→∞,

where χ2
1 is a Chi-Square distribution with one degree of freedom.
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Let Θ = Rp, let µ > 0 be a probability density function on Θ and suppose we
are given a further auxiliary conditional probability density function q(·|t) > 0, t ∈ Θ, on
Θ from which we can generate random draws. Consider a sequence of random variables
{ϑm : m ∈ N} generated as follows:

• For m ∈ N and given ϑm, generate a new draw sm ∼ q(·|ϑm).

• Define

ϑm+1 =

{
sm, with probability ρ(ϑm, sm),

ϑm, with probability 1− ρ(ϑm, sm)

where ρ(t, s) = min
{
µ(s)
µ(t)

q(t|s)
q(s|t) , 1

}
.

(i) Show that the Markov chain (ϑm) has invariant measure µ, that is, show that
for all (measurable) subsets B ⊂ Θ and all m ∈ N we have

∫

Θ
Pr(ϑm+1 ∈ B|ϑm = t)µ(t)dt =

∫

B
µ(θ)dθ.

(ii) Now suppose that µ is the posterior probability density function arising in a
statistical model {f(·, θ) : θ ∈ Θ} with observations x and a N(0, Ip) prior distribution
on θ. Derive a family {q(· | t) : t ∈ Θ} such that in the above algorithm the acceptance
probability ρ(t, s) is a function of the likelihood ratio f(x, s)/f(x, t), and for which the
probability density function q(· | t) has covariance matrix 2δIp for all t ∈ Θ.
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Consider X1, . . . , Xn drawn from a statistical model {f(·, θ) : θ ∈ Θ},Θ = Rp, with
non-singular Fisher information matrix I(θ). For θ0 ∈ Θ, h ∈ Rp, define likelihood ratios

Zn(h) = log

∏n
i=1 f(Xi, θ0 + h/

√
n)∏n

i=1 f(Xi, θ0)
, Xi ∼i.i.d. f(·, θ0).

Next consider the probability density functions (ph : h ∈ Rp) of normal distributions
N(h, I(θ0)

−1) with corresponding likelihood ratios given by

Z(h) = log
ph(X)

p0(X)
, X ∼ p0.

Show that for every fixed h ∈ Rp, the random variables Zn(h) converge in distribution as
n→∞ to Z(h).

[You may assume suitable regularity conditions of the model {f(·, θ) : θ ∈ Θ} without
specification, and results on uniform laws of large numbers from lectures can be used
without proof.]
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