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1/I/7H Statistics

A Bayesian statistician observes a random sample X1, . . . , Xn drawn from a
N(µ, τ−1) distribution. He has a prior density for the unknown parameters µ, τ of the
form

π0(µ, τ) ∝ τ α0−1 exp (− 1
2 K0τ (µ− µ0)2 − β0τ)

√
τ ,

where α0 , β0 , µ0 and K0 are constants which he chooses. Show that after observing
X1, . . . , Xn his posterior density πn(µ, τ) is again of the form

πn(µ, τ) ∝ τ αn−1 exp (− 1
2 Knτ (µ− µn)2 − βnτ)

√
τ ,

where you should find explicitly the form of αn , βn , µn and Kn .

1/II/18H Statistics

Suppose that X1, . . . , Xn is a sample of size n with common N(µX , 1) distribution,
and Y1, . . . , Yn is an independent sample of size n from a N(µY , 1) distribution.

(i) Find (with careful justification) the form of the size-α likelihood–ratio test of the
null hypothesis H0 : µY = 0 against alternative H1 : (µX , µY ) unrestricted.

(ii) Find the form of the size-α likelihood–ratio test of the hypothesis

H0 : µX > A,µY = 0 ,

against H1 : (µX , µY ) unrestricted, where A is a given constant.

Compare the critical regions you obtain in (i) and (ii) and comment briefly.
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2/II/19H Statistics

Suppose that the joint distribution of random variables X,Y taking values in
Z+ = {0, 1, 2, . . . } is given by the joint probability generating function

ϕ(s, t) ≡ E [sXtY ] =
1− α− β

1− αs− βt
,

where the unknown parameters α and β are positive, and satisfy the inequality α+β < 1.
Find E(X). Prove that the probability mass function of (X,Y ) is

f(x, y |α, β) = (1− α− β)
(
x+ y

x

)
αxβy (x, y ∈ Z+) ,

and prove that the maximum-likelihood estimators of α and β based on a sample of size
n drawn from the distribution are

α̂ =
X

1 +X + Y
, β̂ =

Y

1 +X + Y
,

where X (respectively, Y ) is the sample mean of X1, . . . , Xn (respectively, Y1, . . . , Yn).

By considering α̂ + β̂ or otherwise, prove that the maximum-likelihood estimator
is biased. Stating clearly any results to which you appeal, prove that as n → ∞, α̂ → α,
making clear the sense in which this convergence happens.

3/I/8H Statistics

If X1, . . . , Xn is a sample from a density f(·|θ) with θ unknown, what is a 95%
confidence set for θ?

In the case where the Xi are independent N(µ, σ2) random variables with σ2 known,
µ unknown, find (in terms of σ2) how large the size n of the sample must be in order for
there to exist a 95% confidence interval for µ of length no more than some given ε > 0 .

[Hint: If Z ∼ N(0, 1) then P (Z > 1.960) = 0.025 .]
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4/II/19H Statistics

(i) Consider the linear model

Yi = α+ βxi + εi ,

where observations Yi, i = 1, . . . , n, depend on known explanatory variables xi,
i = 1, . . . , n, and independent N(0, σ2) random variables εi, i = 1, . . . , n .

Derive the maximum-likelihood estimators of α , β and σ2.

Stating clearly any results you require about the distribution of the maximum-likelihood
estimators of α , β and σ2, explain how to construct a test of the hypothesis that α = 0
against an unrestricted alternative.

(ii) A simple ballistic theory predicts that the range of a gun fired at angle of
elevation θ should be given by the formula

Y =
V 2

g
sin 2θ ,

where V is the muzzle velocity, and g is the gravitational acceleration. Shells are fired at
9 different elevations, and the ranges observed are as follows:

θ (degrees) 5 15 25 35 45 55 65 75 85
sin 2θ 0.1736 0.5 0.7660 0.9397 1 0.9397 0.7660 0.5 0.1736
Y (m) 4322 11898 17485 20664 21296 19491 15572 10027 3458

The model
Yi = α+ β sin 2θi + εi (∗)

is proposed. Using the theory of part (i) above, find expressions for the maximum-
likelihood estimators of α and β.

The t-test of the null hypothesis that α = 0 against an unrestricted alternative
does not reject the null hypothesis. Would you be willing to accept the model (∗)? Briefly
explain your answer.

[You may need the following summary statistics of the data. If xi = sin 2θi, then
x̄ ≡ n−1

∑
xi = 0.63986, Ȳ = 13802, Sxx ≡

∑
(xi − x̄)2 = 0.81517, Sxy =

∑
Yi(xi − x̄) =

17186. ]
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