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Paper 1, Section I

7E Statistics
Suppose X1, . . . ,Xn are independent N(0, σ2) random variables, where σ 2 is an

unknown parameter. Explain carefully how to construct the uniformly most powerful test
of size α for the hypothesis H0 : σ

2 = 1 versus the alternative H1 : σ
2 > 1 .

Paper 2, Section I

8E Statistics
A washing powder manufacturer wants to determine the effectiveness of a television

advertisement. Before the advertisement is shown, a pollster asks 100 randomly chosen
people which of the three most popular washing powders, labelled A, B and C, they prefer.
After the advertisement is shown, another 100 randomly chosen people (not the same as
before) are asked the same question. The results are summarized below.

A B C

before 36 47 17
after 44 33 23

Derive and carry out an appropriate test at the 5% significance level of the
hypothesis that the advertisement has had no effect on people’s preferences.

[You may find the following table helpful:

χ2
1 χ2

2 χ2
3 χ2

4 χ2
5 χ2

6

95 percentile 3.84 5.99 7.82 9.49 11.07 12.59
.

]
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Paper 1, Section II

19E Statistics
Consider the the linear regression model

Yi = β xi + ǫi,

where the numbers x1, . . . , xn are known, the independent random variables ǫ1, . . . , ǫn
have the N(0, σ 2) distribution, and the parameters β and σ 2 are unknown. Find the
maximum likelihood estimator for β .

State and prove the Gauss–Markov theorem in the context of this model.

Write down the distribution of an arbitrary linear estimator for β . Hence show that
there exists a linear, unbiased estimator β̂ for β such that

Eβ, σ 2 [(β̂ − β)4] 6 Eβ, σ 2 [(β̃ − β)4]

for all linear, unbiased estimators β̃ .

[Hint: If Z ∼ N(a, b 2) then E [(Z − a)4] = 3 b4 .]

Paper 3, Section II

20E Statistics
Let X1, . . . , Xn be independent Exp(θ) random variables with unknown parameter

θ . Find the maximum likelihood estimator θ̂ of θ , and state the distribution of n/θ̂ . Show
that θ/θ̂ has the Γ(n, n) distribution. Find the 100 (1 − α)% confidence interval for θ of
the form [0, C θ̂] for a constant C > 0 depending on α .

Now, taking a Bayesian point of view, suppose your prior distribution for the
parameter θ is Γ(k, λ). Show that your Bayesian point estimator θ̂B of θ for the loss
function L(θ, a) = (θ − a)2 is given by

θ̂B =
n+ k

λ+
∑

i Xi
.

Find a constant CB > 0 depending on α such that the posterior probability that
θ 6 CB θ̂B is equal to 1− α .

[The density of the Γ(k, λ) distribution is f(x; k, λ) = λkx k−1e−λx/Γ(k), for x > 0.]
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Paper 4, Section II

19E Statistics
Consider a collection X1, . . . , Xn of independent random variables with common

density function f(x; θ) depending on a real parameter θ. What does it mean to say T
is a sufficient statistic for θ? Prove that if the joint density of X1, . . . , Xn satisfies the
factorisation criterion for a statistic T , then T is sufficient for θ .

Let each Xi be uniformly distributed on [−
√
θ,

√
θ ] . Find a two-dimensional

sufficient statistic T = (T1, T2). Using the fact that θ̂ = 3X 2
1 is an unbiased estimator of

θ , or otherwise, find an unbiased estimator of θ which is a function of T and has smaller
variance than θ̂ . Clearly state any results you use.
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