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Sergios Agapiou (University of Cyprus) 

Heavy-tailed Bayesian nonparametric adaptation - direct and inverse problems 
 

We will consider Bayesian nonparametric direct and inverse problems and we will be 

interested in evaluating the asymptotic performance of the posterior in the infinitely 

informative data limit, in terms of rates of contraction. We will be especially interested in 

priors which are adaptive to the smoothness of the unknown function, at least in the direct 

problem. 

 

In the last decade, certain hierarchical and empirical Bayes procedures based on Gaussian 

process priors, have been shown to achieve adaptation to spatially homogenous smoothness. 

However, we have recently shown that Gaussian priors are suboptimal for spatially 

inhomogeneous unknowns, that is, functions which are smooth in some areas and rough or 

even discontinuous in other areas of their domain. In contrast, we have shown that (similar) 

hierarchical and empirical Bayes procedures based on Laplace (series) priors, achieve 

adaptation to both homogeneously and inhomogeneously smooth functions. All of these 

procedures involve the tuning of a hyperparameter of the Gaussian or Laplace prior. 

 

After briefly reviewing the above results, we will present a new strategy for adaptation to 

smoothness based on heavy-tailed priors. We will first illustrate it in the direct setting, 

showing in particular that adaptive rates of contraction in the minimax sense (up to 

logarithmic factors) are achieved without tuning of any hyperparameters and for both 

homogeneously and inhomogeneously smooth unknowns. Then we will show that the 

adaptation properties of these priors are retained in the diagonal linear inverse problem 

setting. Finally, we will consider generic forward and inverse problems under a local 

Lipschitz condition on the forward map, and will study rates of contraction of pseudo-

posteriors, that is, posteriors arising from a tempered likelihood. Numerical simulations 

corroborating the theory will be provided.  

 

The main part of this talk is joint work with Ismaël Castillo. 

 

 

 

 



Giovanni Alberti (University of Genova) 

Non-zero constraints in PDE and applications to hybrid inverse problems 
 

The reconstruction in quantitative coupled-physics imaging often requires that the solutions 

of certain PDEs satisfy some non-zero constraints, such as the absence of critical points or 

nodal points. I will review several methods that have been employed to construct such 

solutions, including the Radó–Kneser–Choquet theorem, complex geometrical optics 

solutions, the use of multiple frequencies, the Runge approximation, the Whitney embedding 

theorem, and the use of random boundary conditions. 

 

Chiara Amorino (University of Luxembourg) 

Polynomial rates via deconvolution for nonparametric estimation in McKean-Vlasov 

SDEs 
 

This paper investigates the estimation of the interaction function for a class of McKean-

Vlasov stochastic differential equations. The estimation is based on observations of the 

associated particle system at time $T$,  considering the scenario where both the time horizon 

$T$ and the number of particles $N$ tend to infinity. Our proposed method recovers 

polynomial rates of convergence for the resulting estimator. This is achieved under the 

assumption of exponentially decaying tails for the interaction function. Additionally, we 

conduct a thorough analysis of the transform of the associated invariant density as a complex 

function, providing essential insights for our main results. 

 

Helmut Bölcskei (ETH Zurich) 
Metric-entropy limits on nonlinear dynamical system learning 
 

This talk is concerned with the fundamental limits of nonlinear dynamical system learning 

from input-output traces. Specifically, we show that recurrent neural networks (RNNs) are 

capable of learning nonlinear systems that satisfy a Lipschitz property and forget past inputs 

fast enough in a metric-entropy optimal manner. As the sets of sequence-to-sequence maps 

realized by the dynamical systems we consider are significantly more massive than function 

classes generally considered in deep neural network approximation theory, a refined metric-

entropy characterization is needed, namely in terms of order, type, and generalized 

dimension. We compute these quantities for the classes of exponentially-decaying and 

polynomially-decaying Lipschitz fading-memory systems and show that RNNs can achieve 

them. 

 

Edoardo Calvello (Caltech) 

Transformers for Scientific Machine Learning 

Attention mechanisms and their use in transformer architectures have been widely successful at 

modeling nonlocal correlations in data. Recent interest in applying attention for operator learning 

motivates a formulation of the methodology in the function space setting. In this talk we outline the 

construction of an attention mechanism based on [1] in the continuum. We show how this formulation 



can be leveraged to design transformer neural operators, neural network architectures mapping 

between infinite-dimensional spaces of functions, and discuss relevant universal approximation 

theory. By generalizing the “patching” strategy from computer vision to the continuum, we design 

efficient transformer neural operators which we show to be competitive in cost and accuracy for 

operator learning tasks involving Darcy flow and Navier-Stokes equations. 

[1] Vaswani, Ashish et al. “Attention is All you Need.” Neural Information Processing Systems 

(2017). 

Maarten de Hoop (Rice University) 

Posterior sampling via score-based diffusion: From finite to infinite dimensions  
A Bayesian approach to inverse problems in function spaces has been studied in depth, 

establishing a foundation that enables further algorithmic and theoretical developments. 

Recently, score-based diffusion models (SDMs) have shown success as a sampling method in 

finite-dimensional Bayesian inverse problems. Here, we extend these SDM-based approaches 

to infinite dimensions while developing a framework for function-space posterior sampling in 

linear and nonlinear Bayesian inverse problems. For linear problems, we introduce a method 

to learn posterior distributions using amortized conditional SDMs. Building on prior work by 

Pidstrigach et al. on learning the unconditional score, we prove the consistency of conditional 

denoising estimators for infinite-dimensional conditional scores. For learning the score, we 

employ a neural operator. We also identify the necessary conditions for uniform-in-time 

estimates of conditional scores for general prior measures, ensuring correct sampling from 

target conditional distributions. Notably, our analysis reveals that, unlike the unconditional 

score, the conditional score typically diverges at small times, requiring careful treatment in 

infinite dimensions. Building on these results in the linear case, we develop a sampling 

method for nonlinear inverse problems in function spaces that leverages infinite-dimensional 

SDMs as learning-based priors within a Langevin-type Markov chain Monte Carlo algorithm. 

Assuming that the forward operator, explicitly in a projection, depends only an arbitrarily 

finite number of eigenvectors of the relevant trace-class covariance operator for the diffusion 

prior, we present a convergence analysis with dimension-free bounds that depend on score 

approximation errors, and are compatible with weighted annealing. We extend the non-

asymptotic stationary convergence analysis of Sun et al. from finite to infinite dimensions. 

Additionally, we provide theoretical guarantees for sampling from posteriors with non-log-

concave likelihoods and discuss the robustness of the learned distribution against 

perturbations in the observations. We showcase our method through both stylized examples 

and PDE-based inverse problems associated with the acoustic wave equation and the 

groundwater flow equation. Joint work with L. Baldassari, J. Garnier, A. Siahkoohi and K. 

Sølna 

 

Zhou Fan (Yale) 

Gradient flows for empirical Bayes in high-dimensional linear models 

 

Empirical Bayes provides a powerful approach to learning and adapting to latent structure in 

data. Theory and algorithms for empirical Bayes have a rich literature for sequence models, 

but are less understood in settings where latent variables and data interact through more 

complex designs. 

 



In this work, we study empirical Bayes estimation of an i.i.d. prior in Bayesian linear models, 

via the nonparametric maximum likelihood estimator (NPMLE). We introduce and study a 

system of gradient flow equations for optimizing the marginal log-likelihood, jointly over the 

prior and posterior measures in its Gibbs variational representation using a smoothed 

reparametrization of the regression coefficients. A diffusion-based implementation yields a 

Langevin dynamics MCEM algorithm, where the prior law evolves continuously over time to 

optimize a sequence-model log-likelihood defined by the coordinates of the current Langevin 

iterate. 

 

We show consistency of the NPMLE under mild conditions, including settings of random 

sub-Gaussian designs under high-dimensional asymptotics. In high noise, we prove a uniform 

log-Sobolev inequality for the mixing of Langevin dynamics, for possibly misspecified priors 

and non-log-concave posteriors. We then establish polynomial-time convergence of the joint 

gradient flow to a near-NPMLE if the marginal negative log-likelihood is convex in a sub-

level set of the initialization. This is joint work with Leying Guan, Yandi Shen, and Yihong 

Wu. 

 

Matteo Giordano (Turin) 

Nonparametric Bayesian intensity estimation for covariate-driven inhomogeneous 

point processes 
 

The talk will consider nonparametric Bayesian estimation of the intensity function of an 

inhomogeneous Poisson point process in the important case where the intensity depends on 

covariates, based on the observation of a single realisation of the point pattern over a large 

area. It is shown how the presence of covariates allows to borrow information from far away 

locations in the observation window, enabling consistent inference in the growing domain 

asymptotics. In particular, minimax-optimal posterior contraction rates under both global and 

point-wise loss functions are derived. The rates in global loss are obtained under conditions 

on the prior distribution resembling those in the well established theory of Bayesian 

nonparametrics, here combined with concentration inequalities for functionals of stationary 

processes to control certain random covariate-dependent loss functions appearing in the 

analysis. The local rates are derived with an ad-hoc study that builds on recent advances in 

the theory of Pólya tree priors, extended to the present multivariate setting with a novel 

construction that makes use of the random geometry induced by the covariates. Joint work 

with Alisa Kirichenko and Judith Rousseau. 

Barbara Kaltenbacher (University of Klagenfurt) 
Convergence guarantees and rates for variational and Newton type methods via range 

invariance with application in electrical impedance tomography 
 

Range invariance is a property that - like the tangential cone condition - enables a proof of 

convergence of iterative methods for inverse problems. In contrast to the tangential cone 

condition it can also be verified for some parameter identification problems in partial 

differential equations PDEs from boundary measurements, as relevant, e.g., in tomographic 

applications. 

 

The goal of this talk is to highlight some of these examples of coefficient identification from 



boundary observations in elliptic and parabolic PDEs. 

In particular, we will also present results on convergence rates for the classical inverse 

problem of electrical impedance tomography. 

 

Pu-Zhao Kow (National Chengchi University)  
Increasing Stability in an inverse boundary value problem and a statistical aspect  
 

Motivated by Abraham and Nickl's recent work about the statistical Calderón problem (Math. 

Stat. Learn. 2019), we revisit the increasing stability phenomenon in the inverse boundary 

value problem for the stationary wave equation with a potential using the Bayesian approach. 

Rather than the well-known and widely used Dirichlet-to-Neumann map, we consider another 

type of boundary measurements called the impedance-to-Neumann map. Its graph forms a 

subset of Cauchy data. We will explain the consistency of posterior mean with a contraction 

rate demonstrating the phenomenon of increasing stability. This talk is prepared based on my 

recent work with Jenn-Nan Wang (to appear in Taiwanese J. Math.). 

 

Han Lie  (University of Potsdam) 
Bayesian inference of covariate-parameter relationships for population modelling  
 

An important goal in pharmacology is to tailor drug doses to each patient. To this end, one 

often uses parametrised ODE initial value problems to model the time evolution of drug 

concentrations in the body after administration. The parameters in these models often cannot 

be measured directly in clinical settings, and per-patient data may be too sparse to permit 

reliable parameter inference for each patient. One approach to this problem is to identify a set 

of covariates that are clinically measurable, e.g. age and weight, and to specify a covariate-

parameter relationship, i.e. a function that maps every admissible covariate vector to a 

parameter vector. This establishes a nonlinear regression problem, where the i-th covariate 

X_i is the vector of covariates for the i-th patient, the i-th response Y_i is a vector of blood 

drug concentrations collected at finitely many times for the i-th patient, and the forward 

model depends on an unknown covariate-parameter relationship. The task is then to find the 

most appropriate covariate-parameter relationship from some admissible class. We show how 

this task can be tackled for a family of parametrised ODEs, by using a framework for 

Bayesian nonlinear statistical inverse problems developed by Nickl et al., to show posterior 

contraction and a Bernstein-von Mises result. 

 

Youssef Marzouk  (MIT) 

Dimension reduction in nonlinear statistical inverse problems 

Inverse problems in the Bayesian setting can exhibit many types of "low-dimensional" 

structure. The posterior distribution might be well approximated as a low-dimensional update 

of the prior or of some other dominating reference distribution. Alternatively, we might seek 

low-dimensional projections or summaries of the variables on which we condition. I will 



survey recent methods for identifying these types of structure, when they are present, and 

exploiting them in algorithms. A recurrent theme will be the use of gradient-based 

diagnostics, derived from functional inequalities, that provide upper bounds on the 

approximation error resulting from dimension reduction. 

Andrea Montanari (Stanford) 

Posterior Sampling in High Dimensional Linear Regression 

I will consider the problem of sampling from the posterior in high-dimensional Bayesian 

linear regression, when the number of parameters d is of the same order as the number of 

samples n. I will present two polynomial-time algorithms, the first one based on measure 

decomposition and the second on diffusion processes. 

In both cases (and under different conditions) we prove sampling guarantees 

when n> C*d for a suitable constant C. 

I will then review other sampling problems that were recently attacked using the diffusion 

approach, and discuss the fundamental limits of this method.  

[Based on joint work with Yuchen Wu, Brice Huang, Huy Tuan Pham, Ahmed El Alaoui, 

Mark Sellke 

 

Conor Moriarty-Osborne (University of Edinburgh) 

Convergence rates of deep Gaussian processes 

Gaussian processes have proven to be powerful and flexible tools for various statistical 

inference and machine learning tasks. However, they can be limited when the underlying 

datasets exhibit non-stationary or anisotropic properties. Deep Gaussian processes extend the 

capabilities of standard Gaussian processes by introducing a hierarchical structure, where the 

outputs of one Gaussian process serve as inputs to another. This hierarchical approach 

enables deep Gaussian processes to model complex, non-stationary behaviours that standard 

Gaussian processes may struggle to capture. In this talk, we introduce deep Gaussian 

processes and explore their use as priors in interpolation and regression tasks. We present 

results on the convergence rates of deep Gaussian processes in terms of the number of known 

data points. 

Houman Owhadi (Caltech) 

Co-discovering graphical structure and functional relationships within data: A 

Gaussian Process framework for connecting the dots. 

 Most scientific challenges can be framed into one of the following three levels of complexity 

of function approximation.  

• Type 1: Approximate an unknown function given input/output data.  



• Type 2: Consider a collection of variables and functions, some of which are unknown, 

indexed by the nodes and hyperedges of a hypergraph (a generalized graph where 

edges can connect more than two vertices). Given partial observations of the variables 

of the hypergraph (satisfying the functional dependencies imposed by its structure), 

approximate all the unobserved variables and unknown functions.  

• Type 3: Expanding on Type 2, if the hypergraph structure itself is unknown, use 

partial observations of the variables of the hypergraph to discover its structure and 

approximate its unknown functions.  

Examples of Type 2 problems include solving and learning (possibly stochastic) nonlinear 

partial differential equations (PDEs), while Type 3 problems encompass learning 

dependencies between variables in a mechanical system, identifying chemical reaction 

networks, and determining relationships between genes through a protein-signaling network. 

Although Gaussian Process (GP) methods are sometimes perceived as a well-founded but old 

technology limited to Type 1 curve fitting, they can be generalized to an interpretable 

framework for solving Type 2 and Type 3 problems, all while maintaining the simple and 

transparent theoretical and computational guarantees of kernel/optimal recovery methods. 

 

Greg Pavliotis (Imperial College London) 

Interacting particle systems and their mean field limit: phase transitions, inference 

and control 

 In this talk we present recent results on the quantitative study of stochastic interacting 

particle systems and of their mean field limit. We will start by presenting links between 

uniform propagation of chaos, the absence of phase transitions and Gaussian fluctuations 

around the mean field limit. We will present different methodologies for inferring parameters 

in the mean field (McKean) stochastic differential equation from observations of particle 

paths. Finally, we show how we can identify stationary states of the mean field PDE and how 

to steer the dynamics towards a chosen steady state using optimal control methodologies. 

  

Mark Podolskij (University of Luxembourg)  

On nonparametric estimation of the interaction function in particle system models 

This paper delves into a challenging problem of nonparametric estimation for the interaction 

function within diffusion-type particle system models. We introduce two estimation methods 

based upon an empirical risk minimization. Our study encompasses an analysis of the 

stochastic and approximation errors associated with both procedures, along with an 

examination of certain minimax lower bounds. In particular, for the first method we show 

that there is a natural metric under which the corresponding estimation error of the interaction 

function converges to zero with parametric rate which is minimax optimal. This result is 

rather surprising given the complexity of the underlying estimation problem and rather large 

class of interaction functions for which the above parametric rate holds. 

 



Kolyan Ray (Imperial College London) 

Bayesian nonparametric inference in a McKean-Vlasov model 

We study nonparametric estimation of the interaction term in a McKean-Vlasov model where 

noisy observations are drawn from the nonlinear parabolic PDE arising in the mean-field 

limit as the number particles grows to infinity. In this model, the long-time invariant state can 

be uninformative about the interaction potential. We therefore show that under certain 

regularity conditions on the initial state, the short-time behaviour of this system contains 

sufficient information to consistently recover the interaction potential using Gaussian process 

priors. This involves establishing a stability-type estimate for this PDE to solve the resulting 

inverse problem. 

This is joint work with Richard Nickl and Greg Pavliotis. 

Markus Reiss (Humboldt University) 

Statistics for SPDEs 
 

Paul Rosa (Oxford University) 

Nonparametric regression on random geometric graphs sampled from submanifolds 
 

We consider the nonparametric regression problem when the covariates are located on an 

unknown smooth compact submanifold of a Euclidean space. Under defining a random 

geometric graph structure over the covariates we analyze the asymptotic frequentist 

behaviour of the posterior distribution arising from Bayesian priors designed through random 

basis expansion in the graph Laplacian eigenbasis. Under Holder smoothness assumption on 

the regression function and the density of the covariates over the submanifold, we prove that 

the posterior contraction rates of such methods are minimax optimal (up to logarithmic 

factors) for any positive smoothness index. 

 

Otmar Scherzer (University of Vienna) 

Numerical Linear Algebra Networks for Solving Linear Inverse Problems 

 
We consider solving a probably ill-conditioned linear operator equation, where the operator is 

not modelled but specified via training pairs of the input-output relation of the operator. The 

proposed method is motivated from de-and encoder networks strategies for solving nonlinear 

inverse problems. The linear case is simpler and by showing synergies we want to find more 

insight in the structure of coding networks. 

 



Christoph Schwab  (ETH Zurich)  
Multilevel approximation of Gaussian random fields 
 

Centered Gaussian random fields (GRFs) indexed by compacta 

as e.g. compact orientable manifolds M are determined by their covariance operators. 

 

We consider the numerical analysis of sample-wise, compressive multi-level wavelet-

Galerkin approximations of centered GRFs given as variational solutions to coloring operator 

equations driven by spatial white noise, with pseudodifferential covariance operator being 

elliptic, self-adjoint and positive from the Hörmander class. 

 

For pathwise approximations with p parameters, tapered covariance or precision matrices 

have O(p) nonzero entries, can be optimally diagonally preconditioned, 

and allow O(p) path simulation, covariance estimation and kriging of GRFs. 

 

Joint work with Helmut Harbrecht (Uni Basel), 

Kristin Kirchner (TU Delft), and Lukas Herrmann (RICAM, Linz). 

 

Maximilian Siebel (Heidelberg) 

Convergence Rates for the Maximum A Posteriori Estimator in PDE-Regression Models 

with Random Design 
In this ongoing work, we consider the statistical inverse problem of recovering a parameter 

$\theta\in H^\alpha$ from data arising from the Gaussian regression problem  

\begin{equation*} 

Y = \mathcal{G}(\theta)(Z)+\sigma\varepsilon 

\end{equation*} 

with nonlinear forward map $\mathcal{G}:\mathbb{L}^2\to\mathbb{L}^2$ and random 

design points $Z$. The estimation strategy is based on a least squares approach under 

$H^\alpha$-constraints. Under Lipschitz-type assumptions on the forward map 

$\mathcal{G}$, we establish the existence of a least squares estimator $\hat{\theta}$ as a 

maximizer for some given functional. We state a general concentration result, which is used 

to prove consistency and upper bounds for the prediction error. The corresponding rates of 

convergence reflect not only the smoothness of the parameter of interest but also the ill-

posedness of the underlying inverse problem. We apply the general model to the Darcy 

problem, where the recovery of an unknown coefficient function of a PDE is of interest. For 

this example, we also provide corresponding rates of convergence for the prediction and 

estimation errors. Additionally, we briefly discuss the applicability of the general model to 

other problems. 

 



Michael Sørensen, (University of Copenhagen) 

Diffusion processes on the torus - models of time series of angular data 
 

Two classes of diffusion processes on the multivariate torus with related statistical 

methodology are presented. The aim is to model time series of angular data. The diffusion 

processes are ergodic and time-reversible and can be constructed for any pre-specified 

stationary distribution on the torus. Applications to the evolution of proteins and to ants’ 

movement are briefly presented. 

For the class of Langevin diffusions, approximations to the likelihood function are presented 

and compared. We also present a class of diffusion models with explicit transition probability 

densities, which enables exact likelihood inference. We consider asymptotic likelihood theory 

and easy exact diffusion bridge simulation for the latter class. A class of circular jump 

processes with similar properties is proposed too. 

Co-author: Eduardo García-Portugués, Department of Statistics, Carlos III University of 

Madri 

 

Vladimir Spokoiny (Humboldt University of Berlin) 

Statistical inference for nonlinear inverse problems» 
 

The talk discusses a new approach to statistical analysis for a large class of statistical models 

including nonlinear inverse problems. The main idea behind the method is to extend the 

parameter space and to replace the structural equation with a structural penalty. 

 

The focus is on finite sample expansions for the profile MLE in the extended model which 

enable us to obtain sharp risk bounds and to study the asymptotic properties of the estimator. 

We provide a few examples illustrating the approach for elliptic PDEs. 

 

Bjorn Sprungk (TU Freiberg) 
Noise-level robust sampling and Bayesian inference on the sphere 

We consider two topics in this talk: the first is related to sampling from concentrated 

posterior distributions arising in Bayesian inference with informative data. Although a 

desirable situation from an inference perspective concentrated posteriors pose a 

computational challenge for many sampling algorithms. We present results regarding Markov 

chain Monte Carlo methods based on the Laplace approximation which show a statistical 

efficiency independent of the concentration of the posterior under suitable assumptions. 

The second topic again considers the construction of Markov chain Monte Carlo algorithms 

but this time for dimension-independent sampling from posterior measures defined on a high-

dimensional sphere as occurring in Bayesian density estimation. Both topics are related by 

the concept of pushforward Markov kernels. 



Bernard Stankewitz (University of Milano Bocconi) 

Contraction rates for conjugate gradient and Lanczos approximate posteriors in 

Gaussian process regression 
 

Due to their flexibility and theoretical tractability Gaussian process (GP) 

regression models have become a central topic in modern statistics and machine 

learning. 

 

While the true posterior in these models is given explicitly, numerical 

evaluations depend on the inversion of the augmented kernel matrix  

\( K + \sigma^2 I \), which requires up to \( O(n^3) \) operations. 

For large sample sizes n, which are typically given in modern applications, 

this is computationally infeasible and necessitates the use of an approximate 

version of the posterior. Although such methods are widely used in practice, they typically 

have limited theoretical underpinning. 

 

In this context, we analyze a class of recently proposed approximation 

algorithms from the field of Probabilistic numerics. 

They can be interpreted in terms of Lanczos approximate eigenvectors of the 

kernel matrix or a conjugate gradient approximation of the posterior mean, 

which are particularly advantageous in truly large scale applications, as they 

are only based on matrix vector multiplications amenable to the GPU acceleration 

of modern software frameworks. 

 

We combine result from the numerical analysis literature with state of the art 

concentration results for spectra of kernel matrices to obtain minimax 

contraction rates. 

 

Andrew Stuart (Caltech) 

The Mean-Field Ensemble Kalman Filter 
Ensemble Kalman filters constitute a methodology  approximating aspects of the filtering 

distribution in partially observed and noisy dynamical systems. They are widely adopted in 

the geophysical sciences, underpinning weather forecasting for example, and are starting to 

be used throughout the sciences and engineering; furthermore, they have been adapted to 

function as a general-purpose tool for parametric inference. The strength of these methods 

stems from their ability to operate using complex models as a black box, together with their 

natural adaptation to high performance computers. In this talk we introduce theory which 

elucidates conditions under which this widely adopted methodology provides accurate model 

predictions and uncertainties for discrete time filtering. The theory rests on a mean-field 

formulation of the methodology and an error analysis controlling differences between 

probability measure propagation under the mean-field model and under the true filtering 

distribution.  

The mean-field formulation is based on joint work with Edoardo Calvello (Caltech) and 

Sebastian Reich (Potsdam).  



The error analysis is based on joint work with Jose Carrillo (Oxford), Franca Hoffmann 

(Caltech) and Urbain Vaes (Paris) and on joint work with Edoardo Calvello (Caltech), Pierre 

Monmarche and Urbain Vaes (Paris). 

Botond Szabo (University of Bocconi) 

Linear methods for non-linear inverse problems 

We consider recovering an unknown function $f$ from a noisy observation of the solution 

$u_f$ to a partial differential equation of the type $\mathcal{L} u_f=c(f,u_f)$ 

for a differential operator $\mathcal{L}$, and invertible function $c$, i.e. 

$f=e(\mathcal{L}u_f)$. 

Examples include amongst others the time-independent Schr\"odinger equation 

$\frac{1}{2}\Delta u_f = u_ff$ and the heat equation with absorption term $\frac{d u_f}{dt}-

\frac{1}{2}\Delta u_f=f$. We transform this problem into the linear inverse problem of 

recovering $\mathcal{L}u_f$ under Dirichlet boundary condition, and show that Bayesian 

methods (with priors placed either on $u_f$ or $\mathcal{L}u_f$) for this problem may yield 

optimal recovery rates not only 

for $u_f$, but also for $f$. We also derive frequentist coverage guarantees for the 

corresponding Bayesian credible sets. Adaptive 

priors are shown to yield adaptive contraction rates for $f$, thus eliminating the need to know 

the smoothness of this function. The results are illustrated by several numerical analysis on 

synthetic data sets. Joint work with Aad van der Vaart (Delft) and Geerten Koers (Delft) 

Edriss S. Titi  (University of Cambridge Texas A&M University and 

Weizmann Institute of Science) 

Rigorous Analysis and Numerical Implementation of Nudging Data Assimilation 

Algorithms 
 

In this talk, we will introduce downscaling data assimilation algorithms for weather and 

climate prediction based on discrete coarse spatial scale measurements of the state variables 

(or only part of them, depending on the underlying model). The algorithm is based on linear 

nudging of the coarse spatial scales in the algorithm’s solution toward the coarse spatial 

scales corresponding to the observed measurements of the unknown reference solution. The 

algorithm’s solution can be initialized arbitrary and is shown to converge at an exponential 

rate toward the exact unknown reference solution. This indicates that the dynamics of the 

algorithm is globally stable (not chaotic) unlike the dynamics of the model that governs the 

unknown reference solution. Capitalizing on this fact, we will also demonstrate uniform in 

time error estimates of the numerical discretization of these algorithms, which makes them 

reliable upon implementation computationally. Furthermore, we will also present a recent 



improvement of this algorithm by employing nonlinear nudging, which yields super 

exponential convergence rate toward the unknown exact reference solution.  

 

Sven Wang  (Humboldt University) 

Likelihood-based methods for low frequency diffusion data 
 

We consider the problem of nonparametric inference in multi-dimensional diffusion models 

from low-frequency data. Due to the computational intractability of the likelihood, 

implementation of likelihood-based procedures in such settings is a notoriously difficult task. 

Exploiting the underlying (parabolic) PDE structure of the transition densities, we derive 

computable formulas for the likelihood function and its gradients. We then construct a 

Metropolis-Hastings Crank-Nicolson-type algorithm for Bayesian inference with Gaussian 

priors, as well as gradient-based methods for computing the MLE and Langevin-type 

MCMC. The performance of the algorithms is illustrated via numerical experiments. 

 

Jakob Zech (Heidelberg University) 
Statistical Learning Theory for Neural Operators  

In this talk, we discuss convergence rates for neural network-based operator surrogates, 

which approximate smooth maps between infinite-dimensional Hilbert spaces. Such 

surrogates have a wide range of applications and can be used in uncertainty quantification 

and parameter estimation problems in fields such as classical mechanics, fluid mechanics, 

electrodynamics, earth sciences etc. Here, the operator input represents the problem 

configuration and models initial conditions, material properties, forcing terms, and/or the 

domain of a partial differential equation (PDE) describing the underlying physics. The 

operator output is the corresponding PDE solution. Our analysis demonstrates that, under 

suitable smoothness assumptions, the empirical risk minimizer for specific neural network 

architectures can overcome the curse of dimensionality both in terms of required network 

parameters and the input-output pairs needed for training. 

 

Yichen Zhu (Bocconi University) 

Vecchia Gaussian Processes: Probabilistic properties and Bayesian Nonparametrics 
 
Gaussian Processes are widely used to model spatial dependency in geostatistical data, yet the 

exact computation suffers an intractable time complexity of $O(n^3)$. Vecchia 

approximation allows scalable Bayesian inference of Gaussian processes in $O(n)$ time by 

introducing sparsity in the spatial dependency structure that is characterized by a sparse 

directed acyclic graph (DAG). Despite the popularity in practice, little is understood about 

the Vecchia Gaussian processes themselves, let alone their theoretical guarantees when 

employed in regression models. In this paper, we systematically study the probabilistic 

properties of Vecchia Gaussian processes when the mother Gaussian process is a Mat\'{e}rn 

process. Under minimal regularity conditions and appropriate selection of the DAG, the 

Vecchia Gaussian process retains many desirable properties of the mother Gaussian process. 



These probabilistic properties further allow us to develop Bayesian nonparametric theory for 

the Vecchia Gaussian process, where minimax optimality is achieved by optimally tuned 

Gaussian processes via either oracle rescaling or hierarchical Bayesian methods. 

 

 


