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Abstract

Let P be the transition matrix of a finite, irreducible and reversible Markov chain. We say
the continuous time Markov chain X has transition matrix P and speed λ if it jumps at rate λ
according to the matrix P . Fix λX , λY , λZ ≥ 0, then let X,Y and Z be independent Markov
chains with transition matrix P and speeds λX , λY and λZ respectively, all started from the
stationary distribution. What is the chance that X and Y meet before either of them collides
with Z? For each choice of λX , λY and λZ with max(λX , λY ) > 0, we prove a lower bound for
this probability which is uniform over all transitive, irreducible and reversible chains. In the
case that λX = λY = 1 and λZ = 0 we prove a strengthening of our main theorem using a
martingale argument. We provide an example showing the transitivity assumption cannot be
removed for general λX , λY and λZ .
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1 Introduction

Consider three independent random walks X,Y, Z over the same finite connected graph. What is
the probability that X,Y meet at the same vertex before either of them meets Z? If the initial
distributions of the three walkers are the same, this probability is at least 1/3 by symmetry, at
least if we assume that ties (i.e. triple meetings) are broken symmetrically.

Now consider a similar problem where the initial states X0, Y0, Z0 are all sampled independently
from the same distribution, but Z stays put while X and Y move. What is the probability that X
and Y meet before hitting Z?

There are several examples of bounds [1, 4, 5] relating the meeting time of two random walks to the
hitting time of a fixed vertex by a single random walk. These typically provide upper bounds for
meeting times in terms of worst-case or average hitting times, sometimes up to constant factors. In
light of this, it seems natural to conjecture that the probability in question is at least 1/3. However,
the previous argument by symmetry fails. In fact, to the best of our knowledge, no known universal
lower bound for this probability is known.

It will be convenient to consider the problem in continuous time. For the remainder of the paper
let P be the transition matrix of an irreducible and reversible Markov chain on a finite state space
with stationary distribution π. Let X and Y be two independent continuous time Markov chains
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that jump at rate 1 according to the transition matrix P and let Z ∼ π be independent of X and
Y .

We define MX,Y to be the first time X and Y meet, i.e.

MX,Y = inf{t ≥ 0 : Xt = Yt}.

We also define:
MW,Z = inf{t ≥ 0 : Xt = Z} (W ∈ {X,Y }).

We write Mgood = MX,Y and Mbad = MX,Z ∧MY,Z .

1.1 Main results

Our first result proves a universal lower bound on the probability P
(
Mgood < Mbad

)
for the class

of transitive chains. First we recall the definition.

Definition 1.1. Fix a chain with transition matrix P and state space E. An automorphism of P
is a bijection ϕ : E → E such that P (z, w) = P (ϕ(z), ϕ(w)) for all z, w. The chain P is transitive
if for all x, y ∈ E there exists an automorphism ϕ of P with ϕ(x) = y.

Theorem 1.2. Let P be the transition matrix of a finite irreducible and reversible chain with two
or more states. Assume X0 and Y0 are independent with law π. If P is transitive, then

P
(
Mgood < Mbad

)
≥ 1

4
.

Next we consider a more general setup. We say that a random walk W has speed λW and transition
matrix P , if it jumps at rate λW according to the matrix P .

Suppose again that P is the transition matrix of an irreducible and reversible Markov chain on
a finite state space with stationary distribution π. Let λX = 1, 0 ≤ λY ≤ 1 and 0 ≤ λZ < ∞.
Let X,Y and Z be three independent continuous time Markov chains with speeds λX , λY and λZ
respectively and transition matrix P .

For the remainder of the paper, we write P for the probability measure under which X0, Y0 and Z0

are independent with law π. We also write Pa,b,c in the case when (X0, Y0, Z0) = (a, b, c). For
computations that only involve two chains we drop one index writing only Pa,b; which two chains
are involved will always be clear from context. Likewise, we write Pa when only one chain is
involved. We define MX,Y as above and redefine:

MW,Z = inf{t ≥ 0 : Xt = Zt} (W ∈ {X,Y }).

Mgood = MX,Y and Mbad = MX,Z∧MY,Z are defined as before. Again we are interested in uniform
lower bounds on the probability of the event {Mgood < Mbad} that have good dependence on the
three speeds.

Theorem 1.3. There exists c > 0 such that the following holds. Let P be the transition matrix
of a transitive and reversible chain with stationary distribution π and at least two states. Suppose
that X,Y and Z are three independent continuous time Markov chains with speeds λX = 1, λY ≤ 1
and 0 ≤ λZ <∞ and transition matrix P started from π. Then

P
(
Mgood < Mbad

)
≥ c

(
√

1 + λZ +
√
λY + λZ)2

.
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The proof shows that we may take c = 1/4752, which implies a version of Theorem 1.2 with 1/4
replaced by 1/((

√
2 + 1)2 · 4752). The constant c most likely can be improved, but the dependence

of the lower bound on λZ is sharp when λZ ↗ +∞. Indeed, if P is simple random walk over a
large complete graph with n vertices, then

P
(
Mgood ≤Mbad

)
=

1 + λY
2(1 + λY + λZ)

−O
(

1

n

)
,

where the term O(1/n) corresponds to the possibility of meetings at time 0.

It is natural to ask if our theorems can be extended to all transitive chains. The next theorem
shows that the answer is no for the more general Theorem 1.3. The theorem essentially asserts that
there are graphs where typical meeting times are much smaller than typical hitting times.

Theorem 1.4. For all ε > 0 there exists a finite connected graph G such that if P corresponds to
simple random walk on G and λX = 1, λY = 0 and λZ = 1, then P

(
Mgood ≤Mbad

)
< ε.

On the other hand, we believe that for certain values of λX , λY and λZ , universal lower bounds
are possible without transitivity. Here is a concrete conjecture, which relates to the setting of
Theorem 1.2.

Conjecture 1.5. If λY = λX = 1 and λZ = 0, the inequality

P
(
Mgood ≤Mbad

)
≥ 1/3

holds for all finite irreducible and reversible chains P .

Alexander Holroyd (personal communication) pointed out an example showing that for any δ > 0
there exist transitive chains for which P

(
Mgood ≤Mbad

)
≤ 1/3 + δ. We describe this example

in Section 6. This means that, if true, Conjecture 1.5 is best possible even for transitive chains.
However, we note that any uniform lower bound

P
(
Mgood ≤Mbad

)
≥ c > 0

for all P , and for λX , λY and λZ as in Conjecture 1.5, would be a new result.

Remark 1.6. Without reversibility, the conjecture fails badly. Consider a clockwise continuous
time random walk on a cycle of length 2n. More precisely, with P = (pij)1≤i,j≤n we have pij = 1
if j = (i + 1) mod n and pij = 0 otherwise. The distance between independent random walkers
behaves as continuous time simple symmetric random walk reflected at 0 and n. So started from
stationarity, it typically takes such walkers time of order n2 to meet. On the other hand, the hitting
time of any point is at most of order n.

Before we continue, we say a few words about the main proof ideas. The unifying theme of the
proofs of Theorems 1.2 and 1.3 is the relationship between meeting times and hitting times of single
vertices when P is transitive. Aldous and Fill [1, Chapter 14/Proposition 5 and Chapter 3] have
related the expected values of these random variables via martingales, and we use similar ideas to
prove Theorem 1.2.

For the proof of Theorem 1.3, we need a stronger result establishing identities in distribution of
meeting and hitting times, which (somewhat surprisingly) seems to be new: see Lemma 3.5 below.
The proof of Theorem 1.3 requires several other tools, including small time estimates for hitting
times (Lemma 3.4) and an occupation time formula for product chains (Lemma 4.2).
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The proof of Theorem 1.4 builds a graph with two parts: the “Up” part concentrates the bulk of
the stationary measure, but the “Down” part is where meetings tend to happen, and they happen
fast. As a result, only a negligible fraction of the “Up” part is explored before X and Z meet, and
the upshot is that MX,Y > MX,Z with high probability.

2 The 1/4 lower bound

In this section we prove Theorem 1.2. The argument is fairly short, and much simpler than the
one for the more general Theorem 1.3. Before presenting the proof, we recall some standard facts
about hitting times which are also used later on.

The hitting time of a state z ∈ Ω by X is the first time t at which Xt = z, i.e.

τXz := inf{t ≥ 0 : Xt = z}. (2.1)

We define τYz similarly and we also let

t∗hit := max
x∈Ω

Eπ
[
τXx
]

and thit := max
(x,z)∈Ω

Ex
[
τXz
]
. (2.2)

Whenever there is no confusion, i.e. if there is a single chain in question, we will drop the dependence
on X or Y from the notation of the hitting times.

Lemma 2.1. For any reversible chain with two or more states we have

0 < thit ≤ 2t∗hit.

Moreover, if X is a reversible and transitive chain, then for all x, z ∈ Ω and all t ≥ 0 we have

Px(τz ≤ t) = Pz(τx ≤ t) .

Proof. For a proof of the first assertion in discrete time we refer the reader to [3, Lemma 10.2].
A proof of the symmetry property specific to transitive chains can be found in [1, Lemma 1,
Chapter 7].

Lemma 2.2 (Aldous). Let P be an irreducible and reversible transition matrix. Suppose that X
and Y are independent continuous time Markov chains that jump at rate 1 according to the transition
matrix P . For all x, z ∈ Ω define f(x, z) := Ex

[
τXz
]
. Then f(Xt, z)+t, f(Yt, z)+t and f(Xt, Yt)+2t

are martingales up to time

S := Mgood ∧Mbad = MX,Y ∧ τXz ∧ τYz ,

for any initial states (x, y) ∈ Ω2 and any z ∈ Ω.

For a proof of the lemma above we refer the reader to [1, Chapter 14/Proposition 5 and Chapter 3].

Proof of Theorem 1.2. Since X and Y are two independent copies of the same chain, we have
Ea
[
τXb
]

= Ea
[
τYb
]

for all a, b. By Lemma 2.2 we now get that (Gt)t≥0 is a martingale up to time S,
where

Gt := EXt
[
τXz
]

+ EYt
[
τXz
]
− EXt

[
τXYt
]

(t ≥ 0).
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This martingale is bounded (because the state space is finite). The fact that the chain is finite and
irreducible implies S < ∞ almost surely for all initial states. We deduce from optional stopping
that

E[G0] = E[GS ] .

The left hand side above is given by the quantity t∗hit defined in (2.2). This is because

E[G0] = Eπ
[
τXz
]

+ Eπ
[
τXz
]
−
∑
y∈Ω

π(y)Eπ
[
τXy
]

= Eπ
[
τXz
]
, (2.3)

where the second equality follows from the fact that for a transitive chain, Eπ
[
τXy
]

is independent
of y. Using this a second time yields

t∗hit = E[GS ] . (2.4)

On the other hand, at time S we have two alternatives.

• If τXz ∧ τYz ≤Mgood, either XS = z, and then GS = EYS
[
τXz
]
−Ez

[
τXYs
]
, or YS = z, in which

case GS = EXS
[
τXz
]
− EXS

[
τXz
]
. In both cases GS = 0: this is obviously true in the second

case, and follows from Lemma 2.1 in the first case.

• On the other hand, if Mgood < τXz ∧ τYz , then GS = 2EXS
[
τXz
]
≤ 2thit.

We deduce that
GS ≤ 2thit 1(Mgood < τXz ∧ τYz ).

Plugging this into (2.4) gives

t∗hit ≤ 2 thit P
(
Mgood < Mbad

)
.

Using that thit ≤ 2t∗hit from Lemma 2.1 finishes the proof.

3 Towards the general lower bound

In this section we collect the tools that we will use in the proof of Theorem 1.3. We first argue that
the obvious “fix” to the proof of Theorem 1.2 does not work in all cases. Indeed, a straightforward
extension of Lemma 2.2 establishes that

Gt := f(Xt, Zt) + f(Yt, Zt)−
1 + λY + 2λZ

1 + λY
f(Xt, Yt)

is a martingale up to time S. One can see that in this case

E[G0] =

(
1− 2λZ

1 + λY

)
t∗hit,

which easily yields

P
(
Mgood < Mbad

)
≥ 1

4
·
(

1− 2λZ
1 + λY

)
.

In particular, we obtain the same bound as in Theorem 1.2 provided that λZ = 0 and λX 6= 0.
However, this bound becomes useless when λZ > (1+λY )/2. Other linear combinations of f(Xt, Zt),
f(Yt, Zt) and f(Xt, Yt) also fail to achieve our goal when λZ is large. So, in general a different
strategy is needed.
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3.1 Hitting times for states and trajectories

In this section we collect some results on hitting times for a single Markov chain.

Recall the quantity t∗hit defined in (2.2). The next lemma shows that, up to a constant factor, t∗hit

also bounds expected hitting times of moving targets, from arbitrary initial states. This lemma is
essentially due to Oliveira [4, Lemma 1.1], but in this particular form it appeared in [5].

Lemma 3.1. Let X be a reversible Markov chain taking values in Ω and h = (ht)t≥0 a determin-
istic, càdlàg, Ω-valued trajectory. If

τh := inf{t ≥ 0 : Xt = ht},

then for any x ∈ Ω,
Ex [τh] ≤ 11 t∗hit.

Proof. In [5] using [4, Lemma 1.1] it is proved that

Ex [τh] ≤ c thit.

for a universal constant c > 0, where thit is as in (2.2). Inspection of the proof [5] shows that
c ≤ 4 + 5/4, therefore 2c ≤ 11. Lemma 2.1 finishes the proof.

For a reversible transition matrix P we let λ∗ = maxi≥2 |λi|, where 1 = λ1 ≥ λ2 ≥ λ3, . . . are its
eigenvalues in decreasing order. We define the relaxation time via trel = (1− λ∗)−1.

The next lemma bounds the probability that τz is small for reversible chains. Clearly, if no as-
sumption is made on z and on the starting state x, such an estimate cannot be very good (think
of two adjacent points on a path). The next lemma shows that if we choose the “right” starting
state, and only consider the majority of possible target states, we can show that τz dominates an
exponential random variable with mean trel. This will be used later to upper bound the probability
that τz/thit is very small.

Lemma 3.2. Let X be a reversible chain. There exist x ∈ Ω and a subset A ⊂ Ω with stationary
measure π(A) ≥ 1/2 such that, if τA := minz∈A τz, then for any t > 0,

Px (τA > t) ≥ e−
t
trel .

Proof. We use the spectral theory of reversible chains [1, Section 3.4]. The first step is to note
that P has a non-zero eigenfunction ϕ : Ω→ R such that

Pϕ =

(
1− 1

trel

)
ϕ.

This eigenfunction is orthogonal to the constant eigenfunction in the inner product induced by π,
so it must take both positive and negative values. We may assume without loss of generality that
the set

A := {z ∈ Ω : ϕ(z) ≤ 0}

has measure π(A) ≥ 1/2 (if that is not the case, replace ϕ with −ϕ). Choose x ∈ Ω with ϕ(x) > 0
as large as possible. On one hand

∀t > 0, u ∈ Ω : Eu [ϕ(Xt)] = [et(P−I) ϕ](u) = e
− t
trel ϕ(u). (3.1)
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In particular, for all u ∈ A we have Eu[ϕ(Xt)] ≤ 0. Since XτA ∈ A, the strong Markov property
then gives

Ex [ϕ(Xt)1(τA ≤ t)] = Ex
[
EXτA [ϕ(Xt−τA)]1(τA ≤ t)

]
≤ Ex [0 · 1(τA ≤ t)] = 0.

Plugging this into (3.1) with the choice u = x, and recalling ϕ(Xt) ≤ ϕ(x) always, we obtain

e
− t
trel ϕ(x) = Ex [ϕ(Xt)] ≤ Ex [ϕ(Xt)1(τA > t)] ≤ ϕ(x)Px (τA > t) .

Dividing both sides by ϕ(x) (which is > 0) finishes the proof.

3.2 Results for transitive chains

In this section we prove results on hitting times under the assumption that P is transitive and
reversible.

3.2.1 A small-time estimate for hitting times

We start by recalling a result which follows from the complete positivity of the law of τz when
starting from π together with bounds from Aldous and Brown [2].

Lemma 3.3 (Aldous-Brown). Let P be an irreducible and reversible chain. Define f(s) = Eπ[τz − s | τz > s]
for all s > 0. Then f is an increasing function and

sup
s
f(s) ≤ Eπ[τz] + trel.

Proof. Let Q = I −P and Qz be the restriction of Q to Ω \ {z}. We recall the complete positivity
of the law of τz starting from π (see for instance [2, eqn. (18)]): there exist non-negative constants
(pi, 1 ≤ i ≤ n) such that for all t

Pπ(τz > t) =
m∑
i=1

pie
−γit,

where 0 < γ1 < . . . < γm are the distinct eigenvalues of −Qz. Note that γ−1
1 = Eα[τz], where α is

any quasistationary distribution on Ω \ {z} corresponding to the eigenvalue γ1.

Using the above representation we can rewrite f as follows

f(s) =

∫ ∞
s

Pπ(τz > t)

Pπ(τz > s)
dt =

∑m
i=1 pie

−γis/γi∑m
i=1 pie

−γis
.

A straightforward differentiation now gives that f is increasing. From the above expression we also
deduce

lim
s→∞

f(s) =
1

γ1
= Eα[τz] . (3.2)

From [2, Corollary 4] we have
Eα[τz] ≤ Eπ[τz] + trel.

Therefore, using this and the fact that f is increasing and (3.2) we conclude that for all s

f(s) ≤ Eα[τz] ≤ Eπ[τz] + trel

which completes the proof.
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The next lemma essentially improves upon Lemma 3.2 from Section 3.1.

Lemma 3.4. Suppose that P is reversible and transitive. Then for any x ∈ Ω, there exists a
subset Ax ⊂ Ω with π(Ax) ≥ 1/2 such that, for any θ > 0,

1

π(Ax)

∑
z∈Ax

π(z)Px (τz ≤ θ thit) ≤ 6
√
θ

Proof. By Lemma 3.2 there exists x ∈ Ω and a set A = Ax with π(Ax) ≥ 1/2 such that

Px (τA > t) ≥ e−
t
trel .

Since the chain is transitive, this in fact holds for all x. We now fix x ∈ Ω and θ > 0.

We will consider two cases separately: trel <
√
θ thit and trel ≥

√
θ thit.

Suppose first that trel ≥
√
θ thit. Since Px (τz > t) ≥ Px (τA > t) for all z ∈ A, we obtain

1

π(A)

∑
z∈A

π(z)Px (τz > θ thit) ≥ e
− θ thit

trel ≥ 1− θ thit

trel
≥ 1−

√
θ

which concludes the proof in this case.

Suppose next that trel <
√
θ thit. In this case it suffices to prove

∀z ∈ Ω : Pπ (τz > θ thit) ≥ 1− 3
√
θ. (3.3)

To see that this suffices, we use the fact that P is transitive and apply Lemma 2.1 to obtain that
Px (τz > t) is symmetric in x and z. As a result, (3.3) implies

1− 3
√
θ ≤ Pπ (τx > θ thit) =

∑
z∈Ω

π(z)Pz (τx > θ thit) =
∑
z∈Ω

π(z)Px (τz > θ thit) .

Therefore we obtain ∑
z

π(z)Px (τz ≤ θ thit) ≤ 3
√
θ.

Since π(A) ≥ 1/2, we conclude

1

π(A)

∑
z∈A

π(z)Px (τz ≤ θ thit) ≤ 6
√
θ.

It remains to prove (3.3). Since P is transitive, Eπ [τz] = t∗hit is independent of z. Moreover, we are
assuming that trel ≤

√
θ thit, and hence using Lemma 2.1 we get that trel ≤ 2

√
θ t∗hit so

Eπ [τz] + trel ≤ (1 + 2
√
θ) t∗hit. (3.4)

We now obtain for all s ≥ 0 and for all z ∈ Ω

t∗hit = Eπ [τz] ≤ s+ Eπ [τz − s | τz > s] Pπ (τz > s) ≤ s+ (Eπ[τz] + trel)Pπ(τz > s)

≤ s+ (1 + 2
√
θ) t∗hit Pπ (τz > s) ,

where the second inequality follows from Lemma 3.3 and the final one from (3.4). Taking s = θ t∗hit

gives

Pπ (τz > θ t∗hit) ≥
1− θ

1 + 2
√
θ
≥ 1− 2

√
θ.

This now finishes the proof of (3.3), since for all z ∈ Ω we have

Pπ(τz > θthit) ≥ Pπ(τz > 2θt∗hit) ≥ 1− 2
√

2
√
θ ≥ 1− 3

√
θ,

where for the first inequality we used again Lemma 2.1.
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3.2.2 Distributional identities for meeting and hitting times

Our next result shows that the distributions of hitting and meeting times are intimately related for
transitive and reversible P .

Lemma 3.5. Let P be a reversible and transitive transition matrix. Let X,Y and Z be three
independent continuous time Markov chains with speeds λX = 1, λY ≥ 0 and λZ ≥ 0 and transi-

tion matrix P . Then for all (x, z) ∈ Ω2, the distribution of τXz
λY +λZ

under Px is the same as the

distribution of MY,Z under P(x,z).

A special case of this lemma is when λX = λZ = 1, in which case we obtain the following corollary
of Lemma 3.5.

E(x,z)

[
MX,Z

]
=

1

2
Ex
[
τXz
]
.

This equality is well known and is usually proven by martingale methods such as the ones used in
the proof of Theorem 1.2. Somewhat oddly, it seems that Lemma 3.5 is new, or at least was not
widely known before. We also note the following corollary of Lemma 3.4 and Lemma 3.5.

Corollary 3.6. Let P be a transitive and reversible transition matrix and let X,Y and Z be three
independent continuous time Markov chains with speeds λX = 1 and λY , λZ ≥ 0 respectively and
transition matrix P . Then for all x ∈ Ω there exists a subset Ax ⊂ Ω with π(Ax) ≥ 1/2 such that:

1

π(Ax)

∑
z∈Ax

π(z)P(x,z)

(
MX,Z ≤ θ thit

)
≤ 6
√

(1 + λZ) θ

and
1

π(Ax)

∑
z∈Ax

π(z)P(x,z)

(
MY,Z ≤ θ thit

)
≤ 6
√

(λY + λZ) θ.

Proof of Lemma 3.5. Define the functions

g(x,z)(t) := Px (τz ≤ (λY + λZ) t) and fx,z(t) := P(x,z)

(
MY,Z ≤ t

)
((x, z) ∈ Ω2, t ≥ 0).

We will be done once we show that gx,z(t) = f(x,z)(t) for all (x, z) ∈ Ω2 and t ≥ 0. These equalities
are true (by inspection) when t = 0. We are going to show that the functions (f(x,z)(·))(x,z)∈Ω2 and
(gx,z(·))(x,z)∈Ω2 satisfy the same linear system of ordinary differential equations (with the derivatives
at t = 0 interpreted as right derivatives). Then the equality for all t ≥ 0 will follow from the general
uniqueness theory of linear ODE’s.

To prove that f and g satisfy the same system of ODE’s, we will use a standard formula for the
cumulative distribution function of a hitting time. If (Vt)t≥0 is an irreducible continuous time
Markov chain over a set ΩV with transition rates q(v, w), and A ⊂ ΩV is a nonempty subset of the
state space, the hitting time τVA of A by V satisfies

d

dt
Pv
(
τVA ≤ t

)
=

{
0, v ∈ A;∑

w∈V q(v, w) (Pw
(
τVA ≤ t

)
− Pv

(
τVA ≤ t

)
), v ∈ ΩV \A.

(3.5)

The derivative is understood as a right derivative at time t = 0.

Let ∆ = {(x, x) : x ∈ Ω} ⊂ Ω2 be the diagonal set. We first apply (3.5) to the product chain
(Vt)t≥0 = (Yt, Zt)t≥0, with ΩV = Ω2, and A = ∆. In this case τVA = MY,Z , and a straightforward
computation with the transition rates gives:

d

dt
fx,z(t) =


0, x = z
λY
∑

x′∈Ω P (x, x′) (f(x′,z)(t)− f(x,z)(t))

+λZ
∑

z′∈Ω P (z, z′) (f(x,z′)(t)− f(x,z)(t)), x 6= z.
(3.6)
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We now apply the same formula (3.5) with (Vt)t≥0 = (Xt)t≥0. Note that g(x,z)(t) := Px (τz ≤ s(t))
where s(t) = (λY + λZ) t, so the chain rule implies

d

dt
g(x,z)(t) =

{
0, x = z
(λY + λZ)

∑
x′∈Ω P (x, x′) (g(x′,z)(t)− g(x,z)(t)), x 6= z.

(3.7)

We will now make crucial use of transitivity, which allows us to use Lemma 2.1 to deduce that
Px
(
τXz ≤ (λY + λZ) t

)
is symmetric in x and z, i.e.

Px
(
τXz ≤ (λY + λZ) t

)
= Pz

(
τXx ≤ (λY + λZ) t

)
,

that is gx,z(·) = gz,x(·) for all x, z. This allows us to reverse the roles of x and z in (3.7) to obtain:

d

dt
g(x,z)(t) =

{
0, x = z
(λY + λZ)

∑
z′∈Ω P (z, z′) (g(x,z′)(t)− g(x,z)(t)), x 6= z.

(3.8)

We add the two formulas (3.7) and (3.8) with weights λY /(λY +λZ) and λZ/(λY +λZ) respectively.
The upshot is:

d

dt
g(x,z)(t) =


0, x = z
λY
∑

x′∈Ω P (x, x′) (g(x′,z)(t)− g(x,z)(t))

+λZ
∑

z′∈Ω P (z, z′) (g(x,z′)(t)− g(x,z)(t)), x 6= z.

This is precisely the system of ODEs we obtained for the f ’s in (3.6) and it concludes the proof.

4 The general lower bound

In this section we prove Theorem 1.3.

Proof of Theorem 1.3. We let n = |Ω| denote the number of states. The transitivity assumption
implies π(v) = 1/n for all v ∈ Ω. The next lemma will be used in the proof. We defer its proof
until Section 4.1.

Lemma 4.1. Let P be a reversible and transitive transition matrix. Let X,Y and Z be three
independent continuous time chains with transition matrix P and speeds λX = 1 and λY , λZ ≥ 0.
Let µ be the probability measure given by

µ(A) := P
(

(XMgood , YMgood , ZMgood) ∈ A
∣∣∣Mgood < Mbad

)
for A ⊆ Ω× Ω× Ω. (4.1)

Then ∫ +∞

0
Pµ
(
Xt = Yt, t < Mbad

)
dt ≤ 22 thit

n
.

Our proof is based on the analysis of the time that X,Y spend on the diagonal ∆ = {(x, x) : x ∈ Ω}
prior to time Mbad, i.e.

T :=

∫ Mbad

0
1(Xt = Yt) dt =

∫ ∞
0

1(Xt = Yt, t < Mbad) dt. (4.2)

Note that Mgood < Mbad if and only if T > 0, so

E[T ] = E
[
T
∣∣∣Mgood < Mbad

]
P
(
Mgood < Mbad

)
10



= Eµ
[∫ ∞

0
1(Xt = Yt, t < Mbad) dt

]
P
(
Mgood < Mbad

)
= P

(
Mgood < Mbad

)∫ ∞
0

Pµ
(
Xt = Yt, t < Mbad

)
dt. (4.3)

Lemma 4.1 upper bounds the integral appearing above. Thus in order to obtain a lower bound for
P
(
Mgood < Mbad

)
it suffices to lower bound

E[T ] =

∫ ∞
0

P
(
Xt = Yt, t < Mbad

)
dt. (4.4)

Using reversibility and the fact that π is uniform for a transitive chain we obtain

P
(
Xt = Yt, t < Mbad

)
= P (Xt = Yt, ∀s ≤ t, Xs 6= Zs and Ys 6= Zs)

= P (X0 = Y0,∀s ≤ t, Xs 6= Zs and Ys 6= Zs)

=
∑

x∈Ω,z∈Ω\{x}

P(x,x,z) (∀s ≤ t, Xs 6= Zs and Ys 6= Zs)

n3

=
∑

x∈Ω,z∈Ω\{x}

P(x,x,z)

(
Mbad > t

)
n3

=
1

n

∑
x,z∈Ω

π(x)π(z)P(x,x,z)

(
Mbad > t

)
.

Plugging this back into (4.4) gives

E [T ] =
1

n

∑
x∈Ω

π(x)

(∫ ∞
0

∑
z∈Ω

π(z)P(x,x,z)

(
Mbad > t

)
dt

)
. (4.5)

At this point we recall that Mbad = MX,Y ∧MY,Z , therefore

∀(x, z) ∈ Ω2 ; P(x,x,z)

(
Mbad > t

)
≥ 1− P(x,z)

(
MX,Z ≤ t

)
− P(x,z)

(
MY,Z ≤ t

)
.

By Corollary 3.6, for each x ∈ Ω there exists a subset Ax with π(Ax) ≥ 1/2 for which we have the
following bound for all t > 0∑

z∈Ax

π(z)P(x,x,z)

(
Mbad > t

)
≥ π(Ax)

[
1− 6(

√
1 + λZ +

√
λY + λZ)

√
t

thit

]
.

Therefore, fixing ξ > 0 and x ∈ Ω:∫ ∞
0

∑
z∈Ω

π(z)P(x,x,z)

(
Mbad > t

)
dt ≥ 1

2

∫ ξ

0

∑
z∈Ax

π(z)

π(Ax)
P(x,x,z)

(
Mbad > t

)
dt

≥ 1

2

∫ ξ

0

[
1− 6(

√
1 + λZ +

√
λY + λZ)

√
t

thit

]
dt

=
ξ

2

[
1− 4 (

√
1 + λZ +

√
λY + λZ)

√
ξ

thit

]
.

We can maximize the right hand side by taking

ξ :=
thit

36 (
√

1 + λZ +
√
λY + λZ)2

,

11



which gives the bound

∀x ∈ Ω :

∫ ∞
0

∑
z∈Ω

π(z)P(x,x,z)

(
Mbad > t

)
dt ≥ thit

216 (
√

1 + λZ +
√
λY + λZ)2

.

Combining this with (4.5) gives that

E[T ] ≥ thit

216n (
√

1 + λZ +
√
λY + λZ)2

.

Therefore, using this together with Lemma 4.1 and (4.3) we conclude

P
(
Mgood < Mbad

)
≥ 1

4752(
√

1 + λZ +
√
λY + λZ)2

and this finishes the proof.

4.1 Occupation time up to a stopping time

The goal of this section is to prove Lemma 4.1. We start with a more general setting. We give the
proof of the lemma at the end of the section.

It is well known that a finite irreducible chain (Vt)t≥0 with state space ΩV , started from a point x
and stopped at a stopping time τ > 0 with Vτ = x, satisfies:

∀v ∈ ΩV : Ex
[∫ τ

0
1(Xt = v) dt

]
= πV (v)Ex [τ ] ,

where πV is the unique stationary measure of (Vt)t≥0 (some simple conditions on τ are necessary
for this). There are also extensions of this lemma to the case where V0 and Vτ are not necessarily
equal, but have the same distribution [1, Proposition 2.4, Chapter 2]. The following lemma extends
this idea even further, and shows that τ may be a stopping time for a “larger” Markov chain.

Lemma 4.2. Suppose (Ut)t≥0, (Vt)t≥0 are independent, irreducible, continuous time Markov chains
with finite state spaces ΩU and ΩV respectively. Assume µ is a probability measure over ΩU × ΩV

and that τ is a stopping time for the process (Ut, Vt)t≥0 with the following properties.

(1) Pµ(τ > 0) = 1;

(2) Eµ [τ ] <∞.

(3) Pµ (V0 = ·) = Pµ (Vτ = ·) .

Then for all v ∈ ΩV

Eµ
[∫ τ

0
1(Vt = v) dt

]
= Eµ [τ ] πV (v)

where πV is the stationary distribution of V .

Proof. In this proof we will interchange integrals, expectations and summations several times.
Instead of justifying this at each step, we note right away that all of these interchanges are valid,
because the integrands are non-negative.

12



Consider the row vector h with nonnegative coordinates

h(v) := Eµ
[∫ τ

0
1(Vt = v) dt

]
=

∫ ∞
0

Pµ (Vt = v, τ > t) dt (v ∈ ΩV ).

Note that
∑

v∈V h(v) = Eµ [τ ] > 0 because τ > 0 a.s.. Letting Q be the generator of (Vt)t≥0, we
will show below that

hQ = 0. (4.6)

This identity implies that h/Eµ [τ ] is one invariant probability distribution for V . Since πV is the
unique invariant distribution, we deduce that for all v ∈ ΩV

h(v)

Eµ [τ ]
= πV (v),

which is precisely what we need to prove.

We will derive hQ = 0 from the limit

∀v ∈ ΩV : hQ(v) = lim
ε↘0

[h eεQ](v)− h(v)

ε
. (4.7)

In order to compute the limit we recall eεQ(w, v) = Pw (Xε = v) for all w, v ∈ ΩV . Therefore

[h eεQ](v) =
∑
w∈ΩV

h(w)Pw (Vε = v) =

∫ ∞
0

∑
w∈ΩV

Pµ (Vt = w, τ > t) Pw (Vε = v) dt.

Crucially, the fact that τ is a stopping time for U, V implies that the event {Vt = w, τ > t} is
measurable with respect to (Us, Vs)s≤t. Using that V and U evolve independently and the Markov
property for V implies

Pµ (Vt = w, τ > t) Pw (Vε = v) = Pµ (Vt = w, τ > t) Pµ (Vt+ε = v | Vt = w, τ > t)

= Pµ (Vt = w, Vt+ε = v, τ > t) .

Plugging this back in the previous display gives

[h eεQ](v) =

∫ ∞
0

Pµ (Vt+ε = v, τ > t) dt

=

∫ ∞
0

Pµ (Vt+ε = v, τ > t+ ε) dt+

∫ ∞
0

Pµ (Vt+ε = v, t ≤ τ ≤ t+ ε) dt

=: (I) + (II). (4.8)

The first term is

(I) =

∫ ∞
ε

Pµ (Vt = v, τ > t) dt = h(v)−
∫ ε

0
Pµ (Vt = v, τ > t) dt,

so
(I)− h(v)

ε
→ −Pµ (V0 = µ, τ > 0) = −Pµ (V0 = v) (4.9)

because τ > 0 always. Regarding the second term, we have

(II) =

∫ ∞
0

Pµ(Vt = v, Vτ = v, τ ≤ t ≤ τ + ε) dt+

∫ ∞
0

Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε) dt.

(4.10)
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For the first term on the right hand side above we obtain

lim
ε→0

∫∞
0 Pµ(Vt = v, Vτ = v, τ ≤ t ≤ τ + ε) dt

ε
= Pµ(Vτ = v) . (4.11)

As for the second term in the sum in (4.10) we get∫ ∞
0

Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε) dt =

∫ ∞
0

Eµ[Pµ(Vt = v, Vτ 6= v, τ ≤ t ≤ τ + ε | τ)] dt

=

∫ ∞
0

Eµ[1(τ ≤ t ≤ τ + ε)Pµ(Vt = v, Vτ 6= v | τ)] dt.

On the event {τ ≤ t ≤ τ + ε} in order to have Vt = v and Vτ 6= v, there must exist at least one
jump of the Markov chain in the time interval [τ, t], which on this event has length less than ε.
Therefore, we obtain that on the event {τ ≤ t ≤ τ + ε}

Pµ(Vt = v, Vτ 6= v | τ) = O(ε).

Therefore we deduce∫ ∞
0

Eµ[1(τ ≤ t ≤ τ + ε)Pµ(Vt = v, Vτ 6= v | τ)] dt = O(ε2).

Hence this together with (4.11) gives that

(II)

ε
→ Pµ (Vτ = v) as ε↘ 0.

Combining this with (4.9) and (4.8) gives:

[h eεQ](v)− h(v)

ε
→ Pµ (Vτ = v)− Pµ (V0 = v)

Our assumption that Pµ (V0 = ·) = Pµ (Vτ = ·) implies that the right hand side above is zero.
Plugging this back into (4.7) gives hQ = 0 and finishes the proof.

Proof of Lemma 4.1. We want to eventually use Lemma 4.2 to estimate the integral, which we
can rewrite as∫ ∞

0
Pµ
(
Xt = Yt, t < Mbad

)
dt =

∑
x∈Ω

Eµ

[∫ Mbad

0
1(Xt = Yt = x) dt

]
. (4.12)

This is a sum of terms of the form demanded by Lemma 4.2: just set (Ut)t≥0 = (Zt)t≥0 and
(Vt)t≥0 = (Xt, Yt)t≥0. However, other conditions are needed for this lemma to apply, and one of
them clearly fails: the distribution of (X0, Y0) is not the same as that of (XMbad , YMbad). To see
this, simply note that whereas X0 = Y0 under µ (as we will see below), typically XMbad 6= YMbad .
It turns out that we can circumvent this problem by defining

τ = inf{t ≥Mbad : Xt = Yt}. (4.13)

Note that Xt 6= Yt for all Mbad ≤ t < τ . Therefore∫ ∞
0

Pµ
(
Xt = Yt, t < Mbad

)
dt =

∑
x∈Ω

Eµ
[∫ τ

0
1(Xt = Yt = x) dt

]
. (4.14)
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Clearly τ is a stopping time for (Xt, Yt, Zt)t≥0. We claim that τ and the initial distribution µ satisfy
the conditions (1)− (3) of Lemma 4.2.

First, Pµ(τ > 0) = 1, since Pµ(X0 = Y0 6= Z0) = 1 and Pµ
(
τ ≥Mbad > 0

)
= 1. Hence condition (1)

of Lemma 4.2 is satisfied. Next we show that

Eµ[τ ] ≤ 22t∗hit, (4.15)

which will imply that condition (2) is also satisfied. Recalling that τ = inf{t ≥ Mbad : Xt = Yt},
we have

Eµ [τ ] ≤ max
(x,y,z)

E(x,y,z)

[
Mbad

]
+ max

(x′,y′,z′)
E(x′,y′,z′)

[
Mgood

]
.

The first expectation is at most the meeting time of X and Z, which is independent of Y . Lemma 3.1
implies that, conditionally on Z, this is at most 11t∗hit almost surely, so E(x,y,z)

[
Mbad

]
≤ 11t∗hit. Sim-

ilarly, Mgood is the meeting time of X and the independent trajectory Y , and E(x′,y′,z′)

[
Mgood

]
≤

11t∗hit.

Note now that by definition µ is supported on the set {(x, x, z) : x 6= z}. One can also check that
µ is invariant under the action of any automorphism ϕ of P , i.e. µ(x, y, z) = µ(ϕ(x), ϕ(y), ϕ(z)).
This together with transitivity give that the marginal of µ on the first two coordinates is uniform
on the diagonal set ∆ = {(x, x) ∈ Ω2 : x ∈ Ω}.

Similarly the law of (Xτ , Yτ ) is invariant under the action of any automorphism ϕ. Using transitivity
again we obtain that (Xτ , Yτ ) is uniform on ∆. Therefore, condition (3) is also satisfied.

We can now apply Lemma 4.2 to get that∫ ∞
0

Pµ
(
Xt = Yt, t < Mbad

)
dt =

∑
x∈Ω

Eµ [τ ]

n2
≤

22 t∗hit

n
,

where the inequality follows from (4.15). This concludes the proof.

5 Non transitive chains

The goal of this section is to prove Theorem 1.4. Throughout the section we fix ε > 0 and
let C = 6/ε. In what follows Kr is the complete graph on r ∈ N \ {0} vertices.

For n ∈ N construct a graph Gn as follows: begin from a clique Kn+1 and n disjoint copies of Kk

with k =
√
Cn. Fix a vertex v ∈ Kn+1 and add exactly one edge from v to each copy of Kk. See

Figure 1 for a depiction of the graph.

Let Ω be the vertex set ofGn. We call Down the set of vertices belonging toKn+1 and Up = Ω\Down
the rest.

Let P be the transition matrix of a simple random walk over G and π its stationary distribution.
Let X,Y and Z be independent random walks starting from π with transition matrix P and speeds
λX = 1, λY = 0 and λZ = 1.

The idea is that by choosing ε sufficiently small, the stationary measure of Down becomes arbitrarily
small. So if we start X,Y and Z according to π, then it is very likely they will all start from different
cliques in Up. Let T be the

√
n-th time that X visits the vertex v. We will show that as n → ∞

the probability that X and Z collide after time T is arbitrarily small. Moreover, we will show that
the probability that X and Y collide before T is arbitrarily small as n→∞. Combining these two
assertions will complete the proof.
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v

Kn+1

Kk

Kk

Kk

n

Figure 1: The graph G

For all r ≥ 0 we define τ
(r)
v to be the time of the r-th visit to v. Formally,

τ (0)
v = inf{t ≥ 0 : Xt = v}

and for i ≥ 1 we define
τ (i)
v = inf{t > τ (i−1)

v : Xt = v, Xt− 6= v}.

Lemma 5.1. There exists α = α(C) > 0 independent of n such that for all x, z ∈ Ω and all r ≥ 1
we have

Px,z
(
MX,Z > τ (r)

v

)
≤ (1− α)r−1.

Proof. First note that by the strong Markov property we have for all r ≥ 1

sup
x,z

Px,z
(
MX,Z > τ (r)

v

)
≤ sup

z
Pv,z

(
MX,Z > τ (r−1)

v

)
.

Using the strong Markov property again, for r ≥ 1 we obtain

sup
z

Pv,z
(
MX,Z > τ (r)

v

)
= sup

z
Pv,z

(
MX,Z > τ (r)

v

∣∣∣MX,Z > τ (1)
v

)
Pv,z

(
MX,Z > τ (1)

v

)
≤ sup

w
Pv,w

(
MX,Z > τ (r−1)

v

)
sup
z

Pv,z
(
MX,Z > τ (1)

v

)
.

By induction for all r ≥ 1 this yields

sup
z

Pv,z
(
MX,Z > τ (r)

v

)
≤
(

sup
z

Pv,z
(
MX,Z > τ (1)

v

))r
.

So we complete the proof by showing that

sup
z

Pv,z
(
MX,Z > τ (1)

v

)
≤ 1− α (5.1)

for a positive constant α depending only on C.
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Let τ = inf{t ≥ 0 : Zt ∈ Down \ {v}} and fix w ∈ Down \ {v}. By symmetry, for all z we then have

Pv,z
(
MX,Z ≤ τ (1)

v

)
≥ 1

2
·min

z
Pw,z

(
τ ≤ τ (0)

v

)
min

a,b∈Down\{v}
Pa,b

(
MX,Z ≤ τ (0)

v

)
,

where the factor 1/2 corresponds to the probability that the first time X jumps it goes to Down\{v}.

If X0 = a ∈ Down \ {v}, then τ
(0)
v = τXv , and hence if also b ∈ Down \ {v}, then

Pa,b
(
MX,Z ≤ τ (0)

v

)
≥ Pa,b

(
MX,Z ≤ τXv ∧ τZv

)
=

1

2
.

It remains to show that for a positive constant c1 we have

min
z

Pw,z
(
τ ≤ τ (0)

v

)
≥ c1 > 0. (5.2)

If z ∈ Down \ {v}, then this probability is 1 and if z = v it is easily seen to be at least 1/4. So we
assume that z ∈ Up. Let x be the unique neighbour of v lying in the same clique as z. Then the
time τ can be expressed as τ = Tz,x + Tx,v + Tv,Down\{v}, where the time Tr,S stands for the first
hitting time of S starting from r. Using this, it is then not hard to see that there exists a positive
constant c such that uniformly over all z ∈ Up we have E[τ ] ≤ ck2. Moreover, if X0 ∈ Down \ {v},
then τ

(0)
v is an exponential random variable with mean n. By Markov’s inequality we obtain

Pw,z
(
τ ≤ τ (0)

v

)
≥ Pz(τ ≤ 2E[τ ]) · Pw

(
τ (0)
v ≥ 2E[τ ]

)
≥ 1

2
·
∫ ∞

2E[τ ]
ne−ns ds =

1

2
e−2nE[τ ].

Note that this bound does not depend on z. Since k =
√
Cn and E[τ ] ≤ ck2 the bound in (5.2)

follows.

Proof of Theorem 1.4. We show that for n sufficiently large, the graph G = Gn satisfies the
claim of the theorem.

It is not hard to verify that for n large enough, in Gn we have

π(Down) ≤ 2

C
.

Let A be the set of pairs (x, y) such that y ∈ Up and x is not in the same clique as y. Then
let E = {(X0, Y0) ∈ A}. By the preceding bound P(Ec) ≤ 3/C = ε/2 for n large enough. We then
have

P
(
Mgood ≤Mbad

)
≤ P

(
MX,Y ≤MX,Z

)
= P

(
MX,Y ≤MX,Z , E

)
+ P

(
MX,Y ≤MX,Z , Ec

)
≤ sup

x,y,z: (x,y)∈A
Px,y,z

(
MX,Y ≤MX,Z

)
+
ε

2
. (5.3)

Therefore, it suffices to upper bound the last probability appearing above. Fix any z ∈ Ω and
(x, y) ∈ A. For r to be determined later we have

Px,y,z
(
MX,Y ≤MX,Z

)
≤ Px,y

(
MX,Y ≤ τ (r)

v

)
+ Px,z

(
MX,Z > τ (r)

v

)
. (5.4)

Because Y is not moving, we have MX,Y = τy, where y = Y0. Since x, y are not in the same clique

of Up, if τy ≤ τ
(r)
v , then there exists 1 ≤ i ≤ r such that τ

(i−1)
v < τy ≤ τ

(i)
v . By the strong Markov

property and union bound we obtain

Px,y
(
MX,Y ≤ τ (r)

v

)
≤ rPv

(
τy ≤ τ (1)

v

)
≤ r

2n
,
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since, when X0 = v, in order to hit y ∈ Up before returning to v, the first time X moves it must
jump into the clique that contains y.

Using the above bound and Lemma 5.1 in (5.4) we deduce

Px,y,z
(
MX,Y ≤MX,Z

)
≤ r

2n
+ (1− α)r−1.

Taking r =
√
n or any other function of n that goes to infinity slower than n gives that

Px,y,z
(
MX,Y ≤MX,Z

)
→ 0 as n→∞.

We conclude from (5.3) that

P
(
Mgood ≤Mbad

)
< ε

and this finishes the proof.

6 Sharpness of Conjecture 1.5

In this section we describe the example pointed out by Alexander Holroyd, mentioned in the
Introduction, of a family of transitive graphs for which P

(
Mgood ≤Mbad

)
≤ 1/3 + δ. In what

follows we take λX = λY = 1 and λZ = 0.

To construct the example, fix ε ∈ (0, 1) and consider the chain with state space {0, 1}n in which
the j’th coordinate changes value (from 0 to 1 or vice-versa) at rate qj = εj−1(1 − ε)/(1 − εn);
note that

∑n
i=1 qi = 1. The idea is that for small ε, earlier coordinates change state much more

quickly than later coordinates, so the primary obstacle to both meeting and hitting is simply the
largest coordinate in which the value differs. For u, v ∈ {0, 1}n, let k(u, v) = max{i : ui 6= vi}, or
k(u, v) = 0 if u = v.

We claim that for x, y, z ∈ {0, 1}n, if k(x, y) > min(k(x, z), k(y, z)) then Px,y,z
(
Mgood < Mbad

)
<

2εn. Assuming this, and taking ε = δ/(2n), it follows by symmetry that, starting from stationarity,

P
(
Mgood < Mbad

)
≤ δ + P(k(X0, Y0) < min(k(X0, Z0), k(Y0, Z0)) < δ +

1

3
.

It thus remains to prove the preceding claim.

Fix x, y, z ∈ {0, 1}n with k(x, y) > min(k(x, z), k(y, z)), and assume by symmetry that k(x, z) <

k(x, y). For 1 ≤ k ≤ n, let τk = min{t : X
(i)
t = zi, 1 ≤ i ≤ k} be the first time that Xt and z agree

in the first k coordinates. It is convenient to set τ0 = 0. Also, let σXk = min{t : ∃i ≥ k, X(i)
t 6= X

(i)
0 }

be the first time one of the last n− k + 1 coordinates of X changes, and define σYk accordingly.

We will show that for all 1 ≤ k < n,

P
(
τk < σXk+1

)
≥ (1− ε)k ≥ 1− kε. (6.1)

Note that τk, σ
X
k+1 and σYk+1 are all independent. Furthermore, σXk+1 and σYk+1 are identically

distributed, so if the preceding inequality holds as written then it also holds with σYk+1 in place

of σXk+1. We finish proving the claim assuming that (6.1) holds, then conclude by proving (6.1).

At time τk(x,z), the first k(x, z) coordinates of X agree with those of z. If τk(x,z) < σXk(x,z)+1 then the

remaining coordinates of X and z also agree (because they did at time 0 and they have not changed),
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so MX,Z = τk(x,z). Similarly, if τk(x,z) < σXk(x,z)+1 and τk(x,z) < σYk(x,z)+1 then Mbad < Mgood. It

then follows, using (6.1) and the subsequent observation, that

Px,y,z
(
Mgood < Mbad

)
≤ P

(
σXk(x,z)+1 ≤ τk(x,z)

)
+ P

(
σYk(x,z)+1 ≤ τk(x,z)

)
≤ 2k(x, z)ε < 2nε ,

as claimed. It thus remains to prove (6.1). In what follows we write σk = σXk .

Fix 1 ≤ k < n, and note that σk is exponential with rate
∑n

j=k qj = εk−1(1 − εn+1−k)/(1 − εn).
Furthermore, σk < σk+1 precisely if the k’th coordinate of X changes before any larger coordinate.
It follows that P(σk < σk+1) = qk/

∑n
j=k qj .

Suppose that X
(k)
0 = zk. In this case to have τk < σk+1 it suffices that τk−1 < σk, so

P
(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
≥ P(τk−1 < σk) .

If X
(k)
0 6= zk then the k’th coordinate must change before time τk, so to have τk < σk+1 it is

necessary that σk < σk+1. By the strong Markov property, we then have

P
(
τk < σk+1

∣∣∣ X(k)
0 6= zk

)
= P(σk < σk+1)P

(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
=

qk∑n
j=k qj

· P
(
τk < σk+1

∣∣∣ X(k)
0 = zk

)
≥ 1− ε

1− εn+1−kP(τk−1 < σk) .

We thus have the unconditional bound

P(τk < σk+1) ≥ 1− ε
1− εn+1−kP(τk−1 < σk) > (1− ε)P(τk−1 < σk) ,

This bound holds for all 1 ≤ k < n; since τ0 = 0 we also have P(τ0 < σ1) = 1, and (6.1) follows.
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