
Dynamic Programming

and Optimal Control

Richard Weber

Graduate Course at London Business School

Winter 2013

i

Contents

Table of Contents 1

1 Dynamic Programming 1
1.1 Control as optimization over time . 1
1.2 The principle of optimality . 1
1.3 Example: the shortest path problem . 1
1.4 The optimality equation . 2
1.5 Markov decision processes . 4

2 Examples of Dynamic Programming 5
2.1 Example: optimization of consumption 5
2.2 Example: exercising a stock option . 6
2.3 Example: secretary problem . 7

3 Dynamic Programming over the Infinite Horizon 9
3.1 Discounted costs . 9
3.2 Example: job scheduling . 9
3.3 The infinite-horizon case . 10
3.4 The optimality equation in the infinite-horizon case 11
3.5 Example: selling an asset . 12

4 Positive Programming 14
4.1 Example: possible lack of an optimal policy. 14
4.2 Characterization of the optimal policy 14
4.3 Example: optimal gambling . 15
4.4 Value iteration . 15
4.5 Example: search for a moving object . 16
4.6 Example: pharmaceutical trials . 17

5 Negative Programming 19
5.1 Example: a partially observed MDP . 19
5.2 Stationary policies . 20
5.3 Characterization of the optimal policy 20
5.4 Optimal stopping over a finite horizon 21
5.5 Example: optimal parking . 22

6 Optimal Stopping Problems 23
6.1 Bruss’s odds algorithm . 23
6.2 Example: Stopping a random walk . 24
6.3 Optimal stopping over the infinite horizon 24
6.4 Sequential Probability Ratio Test . 26
6.5 Bandit processes . 26
6.6 Example: Two-armed bandit . 27

ii

6.7 Example: prospecting . 27

7 Bandit Processes and the Gittins Index 29
7.1 Index policies . 29
7.2 Multi-armed bandit problem . 29
7.3 Gittins index theorem . 30
7.4 Calibration . 31
7.5 Proof of the Gittins index theorem . 31
7.6 Example: Weitzman’s problem . 32

8 Applications of Bandit Processes 33
8.1 Forward induction policies . 33
8.2 Example: playing golf with more than one ball 33
8.3 Target processes . 34
8.4 Bandit superprocesses . 34
8.5 Example: single machine stochastic scheduling 35
8.6 Calculation of the Gittins index . 35
8.7 Branching bandits . 36
8.8 Example: Searching for a single object 37

9 Average-cost Programming 38
9.1 Average-cost optimality equation . 38
9.2 Example: admission control at a queue 39
9.3 Value iteration bounds . 39
9.4 Policy improvement algorithm . 40

10 Continuous-time Markov Decision Processes 42
10.1 Stochastic scheduling on parallel machines 42
10.2 Controlled Markov jump processes . 44
10.3 Example: admission control at a queue 45

11 Restless Bandits 47
11.1 Examples . 47
11.2 Whittle index policy . 48
11.3 Whittle indexability . 49
11.4 Fluid models of large stochastic systems 49
11.5 Asymptotic optimality . 50

12 Sequential Assignment and Allocation Problems 53
12.1 Sequential stochastic assignment problem 53
12.2 Sequential allocation problems . 54
12.3 SSAP with arrivals . 56
12.4 SSAP with a postponement option . 57
12.5 Stochastic knapsack and bin packing problems 58

iii

13 LQ Regulation 59

13.1 The LQ regulation problem . 59

13.2 The Riccati recursion . 61

13.3 White noise disturbances . 61

13.4 LQ regulation in continuous-time . 62

13.5 Linearization of nonlinear models . 62

14 Controllability and Observability 63

14.1 Controllability and Observability . 63

14.2 Controllability . 63

14.3 Controllability in continuous-time . 65

14.4 Example: broom balancing . 65

14.5 Stabilizability . 66

14.6 Example: pendulum . 66

14.7 Example: satellite in a plane orbit . 67

15 Observability and the LQG Model 68

15.1 Infinite horizon limits . 68

15.2 Observability . 68

15.3 Observability in continuous-time . 70

15.4 Example: satellite in planar orbit . 70

15.5 Imperfect state observation with noise 70

16 Kalman Filter and Certainty Equivalence 72

16.1 The Kalman filter . 72

16.2 Certainty equivalence . 73

16.3 The Hamilton-Jacobi-Bellman equation 74

16.4 Example: LQ regulation . 75

16.5 Example: harvesting fish . 75

17 Pontryagin’s Maximum Principle 78

17.1 Example: optimization of consumption 78

17.2 Heuristic derivation of Pontryagin’s maximum principle 79

17.3 Example: parking a rocket car . 80

17.4 Adjoint variables as Lagrange multipliers 82

18 Using Pontryagin’s Maximum Principle 83

18.1 Transversality conditions . 83

18.2 Example: use of transversality conditions 83

18.3 Example: insects as optimizers . 84

18.4 Problems in which time appears explicitly 84

18.5 Example: monopolist . 85

18.6 Example: neoclassical economic growth 86

iv

19 Controlled Diffusion Processes 88
19.1 The dynamic programming equation . 88
19.2 Diffusion processes and controlled diffusion processes 88
19.3 Example: noisy LQ regulation in continuous time 89
19.4 Example: passage to a stopping set . 90

20 Risk-sensitive Optimal Control 92
20.1 Whittle risk sensitivity . 92
20.2 The felicity of LEQG assumptions . 92
20.3 A risk-sensitive certainty-equivalence principle 94
20.4 Large deviations . 95
20.5 A risk-sensitive maximum principle . 96
20.6 Example: risk-sensitive optimization of consumption 96

Index 97

1 Dynamic Programming

Dynamic programming and the principle of optimality. Notation for state-structured models.

Feedback, open-loop, and closed-loop controls. Markov decision processes.

1.1 Control as optimization over time

Optimization is a key tool in modelling. Sometimes it is important to solve a problem
optimally. Other times either a near-optimal solution is good enough, or the real
problem does not have a single criterion by which a solution can be judged. However,
even when an optimal solution is not required it can be useful to test one’s thinking
by following an optimization approach. If the ‘optimal’ solution is ridiculous it may
suggest ways in which both modelling and thinking can be refined.

Control theory is concerned with dynamic systems and their optimization over
time. It accounts for the fact that a dynamic system may evolve stochastically and
that key variables may be unknown or imperfectly observed.

The optimization models in the IB course (for linear programming and network
flow models) were static and nothing was either random or hidden. In this course
it is the additional features of dynamic and stochastic evolution, and imperfect state
observation, that give rise to new types of optimization problem and which require new
ways of thinking.

We could spend an entire lecture discussing the importance of control theory and
tracing its development through the windmill, steam governor, and so on. Such ‘classic
control theory’ is largely concerned with the question of stability, and there is much of
this theory which we ignore, e.g., Nyquist criterion and dynamic lags.

1.2 The principle of optimality

A key idea in this course is that optimization over time can often be seen as ‘optimiza-
tion in stages’. We trade off our desire to obtain the least possible cost at the present
stage against the implication this would have for costs at future stages. The best action
minimizes the sum of the cost incurred at the current stage and the least total cost
that can be incurred from all subsequent stages, consequent on this decision. This is
known as the Principle of Optimality.

Definition 1.1 (Principle of Optimality). From any point on an optimal trajectory,
the remaining trajectory is optimal for the problem initiated at that point.

1.3 Example: the shortest path problem

Consider the ‘stagecoach problem’ in which a traveler wishes to minimize the length
of a journey from town A to town J by first traveling to one of B, C or D and then
onwards to one of E, F or G then onwards to one of H or I and the finally to J. Thus
there are 4 ‘stages’. The arcs are marked with distances between towns.

1

A

B

C

D

E

F

G

H

I

J

1

1

2

2

3

3

3

3
3

3

4

4

4

4

4

4

5

6

6

7

Road system for stagecoach problem

Solution. Let F (X) be the minimal distance required to reach J from X. Then clearly,
F (J) = 0, F (H) = 3 and F (I) = 4.

F (F) = min[6 + F (H), 3 + F (I)] = 7,

and so on. Recursively, we obtain F (A) = 11 and simultaneously an optimal route, i.e.
A→D→F→I→J (although it is not unique).

The study of dynamic programming dates from Richard Bellman, who wrote the
first book on the subject (1957) and gave it its name. A very large number of problems
can be treated this way.

1.4 The optimality equation

The optimality equation in the general case. In discrete-time t takes integer
values, say t = 0, 1, Suppose ut is a control variable whose value is to be chosen at
time t. Let Ut−1 = (u0, . . . , ut−1) denote the partial sequence of controls (or decisions)
taken over the first t stages. Suppose the cost up to the time horizon h is given by

C = G(Uh−1) = G(u0, u1, . . . , uh−1).

Then the principle of optimality is expressed in the following theorem.

Theorem 1.2 (The principle of optimality). Define the functions

G(Ut−1, t) = inf
ut,ut+1,...,uh−1

G(Uh−1).

Then these obey the recursion

G(Ut−1, t) = inf
ut

G(Ut, t+ 1) t < h,

with terminal evaluation G(Uh−1, h) = G(Uh−1).

The proof is immediate from the definition of G(Ut−1, t), i.e.

G(Ut−1, t) = inf
ut

{

inf
ut+1,...,uh−1

G(u0, . . . , ut−1, ut , ut+1, . . . , uh−1)

}

.

2

The state structured case. The control variable ut is chosen on the basis of knowing
Ut−1 = (u0, . . . , ut−1), (which determines everything else). But a more economical
representation of the past history is often sufficient. For example, we may not need to
know the entire path that has been followed up to time t, but only the place to which
it has taken us. The idea of a state variable x ∈ R

d is that its value at t, denoted xt,
can be found from known quantities and obeys a plant equation (or law of motion)

xt+1 = a(xt, ut, t).

Suppose we wish to minimize a separable cost function of the form

C =

h−1∑

t=0

c(xt, ut, t) +Ch(xh), (1.1)

by choice of controls {u0, . . . , uh−1}. Define the cost from time t onwards as,

Ct =

h−1∑

τ=t

c(xτ , uτ , τ) +Ch(xh), (1.2)

and the minimal cost from time t onwards as an optimization over {ut, . . . , uh−1}
conditional on xt = x,

F (x, t) = inf
ut,...,uh−1

Ct.

Here F (x, t) is the minimal future cost from time t onward, given that the state is x at
time t. Then by an inductive proof, one can show as in Theorem 1.2 that

F (x, t) = inf
u
[c(x, u, t) + F (a(x, u, t), t+ 1)], t < h, (1.3)

with terminal condition F (x, h) = Ch(x). Here x is a generic value of xt. The mini-
mizing u in (1.3) is the optimal control u(x, t) and values of x0, . . . , xt−1 are irrelevant.
The optimality equation (1.3) is also called the dynamic programming equation
(DP) or Bellman equation.

The DP equation defines an optimal control problem in what is called feedback or
closed-loop form, with ut = u(xt, t). This is in contrast to the open-loop formulation
in which {u0, . . . , uh−1} are to be determined all at once at time 0. A policy (or
strategy) is a rule for choosing the value of the control variable under all possible
circumstances as a function of the perceived circumstances. To summarise:

(i) The optimal ut is a function only of xt and t, i.e. ut = u(xt, t).

(ii) The DP equation expresses the optimal ut in closed-loop form. It is optimal
whatever the past control policy may have been.

(iii) The DP equation is a backward recursion in time (from which we get the optimum
at h− 1, then h− 2 and so on.) The later policy is decided first.

‘Life must be lived forward and understood backwards.’ (Kierkegaard)

3

1.5 Markov decision processes

Consider now stochastic evolution. Let Xt = (x0, . . . , xt) and Ut = (u0, . . . , ut) denote
the x and u histories at time t. As above, state structure is characterized by the fact
that the evolution of the process is described by a state variable x, having value xt at
time t. The following assumptions define what is known as a discrete-time Markov
decision process (MDP).

(a) Markov dynamics: (i.e. the stochastic version of the plant equation.)

P (xt+1 | Xt, Ut) = P (xt+1 | xt, ut).

(b) Separable (or decomposible) cost function, (i.e. cost given by (1.1)).

For the moment we also require the following:

(c) Perfect state observation: The current value of the state is observable. That is, xt

is known when choosing ut. So, letting Wt denote the observed history at time t,
we assume Wt = (Xt, Ut−1).

Note that C is determined by Wh, so we might write C = C(Wh).

As in the previous section, the cost from time t onwards is given by (1.2). Denote
the minimal expected cost from time t onwards by

F (Wt) = inf
π

Eπ[Ct | Wt],

where π denotes a policy, i.e. a rule for choosing the controls u0, . . . , uh−1.
The following theorem is then obvious.

Theorem 1.3. F (Wt) is a function of xt and t alone, say F (xt, t). It obeys the
optimality equation

F (xt, t) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1) | xt, ut]} , t < h, (1.4)

with terminal condition
F (xh, h) = Ch(xh).

Moreover, a minimizing value of ut in (1.4) (which is also only a function xt and t) is
optimal.

Proof. The value of F (Wh) is Ch(xh), so the asserted reduction of F is valid at time
h. Assume it is valid at time t+ 1. The DP equation is then

F (Wt) = inf
ut

{c(xt, ut, t) + E[F (xt+1, t+ 1) | Xt, Ut]}. (1.5)

But, by assumption (a), the right-hand side of (1.5) reduces to the right-hand member
of (1.4). All the assertions then follow.

4

2 Examples of Dynamic Programming

Examples of dynamic programming problems and some useful tricks to solve them. The idea

that it can be useful to model things in terms of time to go.

2.1 Example: optimization of consumption

An investor receives annual income of xt pounds in year t. He consumes ut and adds
xt − ut to his capital, 0 ≤ ut ≤ xt. The capital is invested at interest rate θ × 100%,
and so his income in year t+ 1 increases to

xt+1 = a(xt, ut) = xt + θ(xt − ut). (2.1)

He desires to maximize total consumption over h years,

C =

h−1∑

t=0

c(xt, ut, t) +Ch(xh) =

h−1∑

t=0

ut

The plant equation (2.1) specifies a Markov decision process (MDP). When
we add to this the aim of maximizing the performance measure C we have what is
called a Markov decision problem. For both we use the abbreviation MDP. In the
notation we have been using, c(xt, ut, t) = ut, Ch(xh) = 0. This is termed a time-
homogeneous model because neither costs nor dynamics depend on t.

Solution. Since dynamic programming makes its calculations backwards, from the
termination point, it is often advantageous to write things in terms of the ‘time to
go’, s = h − t. Let Fs(x) denote the maximal reward obtainable, starting in state x
when there is time s to go. The dynamic programming equation is

Fs(x) = max
0≤u≤x

[u+ Fs−1(x+ θ(x− u))],

where F0(x) = 0, (since nothing more can be consumed once time h is reached.) Here,
x and u are generic values for xs and us.

We can substitute backwards and soon guess the form of the solution. First,

F1(x) = max
0≤u≤x

[u+ F0(u+ θ(x− u))] = max
0≤u≤x

[u+ 0] = x.

Next,
F2(x) = max

0≤u≤x
[u+ F1(x + θ(x− u))] = max

0≤u≤x
[u+ x+ θ(x− u)].

Since u+ x+ θ(x− u) linear in u, its maximum occurs at u = 0 or u = x, and so

F2(x) = max[(1 + θ)x, 2x] = max[1 + θ, 2]x = ρ2x.

This motivates the guess Fs−1(x) = ρs−1x. Trying this, we find

Fs(x) = max
0≤u≤x

[u+ ρs−1(x+ θ(x − u))] = max[(1 + θ)ρs−1, 1 + ρs−1]x = ρsx.

5

Thus our guess is verified and Fs(x) = ρsx, where ρs obeys the recursion implicit in
the above, and i.e. ρs = ρs−1 +max[θρs−1, 1]. This gives

ρs =

{
s s ≤ s∗

(1 + θ)s−s∗s∗ s ≥ s∗
,

where s∗ is the least integer such that 1+s∗ ≤ (1+θ)s∗ ⇐⇒ s∗ ≥ 1/θ, i.e. s∗ = ⌈1/θ⌉.
The optimal strategy is to invest the whole of the income in years 0, . . . , h− s∗ − 1, (to
build up capital) and then consume the whole of the income in years h− s∗, . . . , h− 1.

There are several things worth learning from this example. (i) It is often useful
to frame things in terms of time to go, s. (ii) Although the form of the dynamic
programming equation can sometimes look messy, try working backwards from F0(x)
(which is known). Often a pattern will emerge from which you can piece together a
solution. (iii) When the dynamics are linear, the optimal control lies at an extreme
point of the set of feasible controls. This form of policy, which either consumes nothing
or consumes everything, is known as bang-bang control.

2.2 Example: exercising a stock option

The owner of a call option has the option to buy a share at fixed ‘striking price’ p.
The option must be exercised by day h. If she exercises the option on day t and then
immediately sells the share at the current price xt, she can make a profit of xt − p.
Suppose the price sequence obeys the equation xt+1 = xt + ǫt, where the ǫt are i.i.d.
random variables for which E|ǫ| < ∞. The aim is to exercise the option optimally.

Let Fs(x) be the value function (maximal expected profit) when the share price is
x and there are s days to go. Show that (i) Fs(x) is non-decreasing in s, (ii) Fs(x)− x
is non-increasing in x and (iii) Fs(x) is continuous in x. Deduce that the optimal policy
can be characterized as follows.

There exists a non-decreasing sequence {as} such that an optimal policy is to exercise
the option the first time that x ≥ as, where x is the current price and s is the number
of days to go before expiry of the option.

Solution. The state variable at time t is, strictly speaking, xt plus a variable which
indicates whether the option has been exercised or not. However, it is only the latter
case which is of interest, so x is the effective state variable. As above, we use time to
go, s = h− t. So if we let Fs(x) be the value function (maximal expected profit) with
s days to go then

F0(x) = max{x− p, 0},
and so the dynamic programming equation is

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]}, s = 1, 2, . . .

Note that the expectation operator comes outside, not inside, Fs−1(·).

6

It easy to show (i), (ii) and (iii) by induction on s. For example, (i) is obvious, since
increasing s means we have more time over which to exercise the option. However, for
a formal proof

F1(x) = max{x− p,E[F0(x+ ǫ)]} ≥ max{x− p, 0} = F0(x).

Now suppose, inductively, that Fs−1 ≥ Fs−2. Then

Fs(x) = max{x− p,E[Fs−1(x+ ǫ)]} ≥ max{x− p,E[Fs−2(x+ ǫ)]} = Fs−1(x),

whence Fs is non-decreasing in s. Similarly, an inductive proof of (ii) follows from

Fs(x)− x
︸ ︷︷ ︸

= max{−p,E[Fs−1(x+ ǫ)− (x + ǫ)
︸ ︷︷ ︸

] + E(ǫ)},

since the left hand underbraced term inherits the non-increasing character of the right
hand underbraced term. Thus the optimal policy can be characterized as stated. For
from (ii), (iii) and the fact that Fs(x) ≥ x−p it follows that there exists an as such that
Fs(x) is greater that x− p if x < as and equals x− p if x ≥ as. It follows from (i) that
as is non-decreasing in s. The constant as is the smallest x for which Fs(x) = x− p.

2.3 Example: secretary problem

We are to interview h candidates for a job. At the end of each interview we must either
hire or reject the candidate we have just seen, and may not change this decision later.
Candidates are seen in random order and can be ranked against those seen previously.
The aim is to maximize the probability of choosing the candidate of greatest rank.

Solution. Let Wt be the history of observations up to time t, i.e. after we have in-
terviewed the t th candidate. All that matters are the value of t and whether the t th
candidate is better than all her predecessors: let xt = 1 if this is true and xt = 0 if it
is not. In the case xt = 1, the probability she is the best of all h candidates is

P (best of h | best of first t) = P (best of h)

P (best of first t)
=

1/h

1/t
=

t

h
.

Now the fact that the tth candidate is the best of the t candidates seen so far places
no restriction on the relative ranks of the first t− 1 candidates; thus xt = 1 and Wt−1

are statistically independent and we have

P (xt = 1 | Wt−1) =
P (Wt−1 | xt = 1)

P (Wt−1)
P (xt = 1) = P (xt = 1) =

1

t
.

Let F (t − 1) be the probability that under an optimal policy we select the best
candidate, given that we have passed over the first t − 1 candidates. Dynamic
programming gives

7

F (t− 1) =
t− 1

t
F (t) +

1

t
max

(
t

h
, F (t)

)

= max

(
t− 1

t
F (t) +

1

h
, F (t)

)

The first term deals with what happens when the tth candidate is not the best so far;
we should certainly pass over her. The second term deals with what happens when she
is the best so far. Now we have a choice: either accept her (and she will turn out to be
best with probability t/h), or pass over her.

These imply F (t − 1) ≥ F (t) for all t ≤ h. Therefore, since t/h and F (t) are
respectively increasing and non-increasing in t, it must be that for small t we have
F (t) > t/h and for large t we have F (t) ≤ t/h. Let t0 be the smallest t such that
F (t) ≤ t/h. Then

F (t− 1) =







F (t0), t < t0,

t− 1

t
F (t) +

1

h
, t ≥ t0.

Solving the second of these backwards from the point t = h, F (h) = 0, we obtain

F (t− 1)

t− 1
=

1

h(t− 1)
+

F (t)

t
= · · · = 1

h(t− 1)
+

1

ht
+ · · ·+ 1

h(h− 1)
,

whence

F (t− 1) =
t− 1

h

h−1∑

τ=t−1

1

τ
, t ≥ t0.

Since we require F (t0) ≤ t0/h, it must be that t0 is the smallest integer satisfying

h−1∑

τ=t0

1

τ
≤ 1.

For large h the sum on the left above is about log(h/t0), so log(h/t0) ≈ 1 and we
find t0 ≈ h/e. Thus the optimal policy is to interview ≈ h/e candidates, but without
selecting any of these, and then select the first candidate thereafter who is the best of
all those seen so far. The probability of success is F (0) = F (t0) ∼ t0/h ∼ 1/e = 0.3679.
It is surprising that the probability of success is so large for arbitrarily large h.

There are a couple things to learn from this example. (i) It is often useful to try
to establish the fact that terms over which a maximum is being taken are monotone
in opposite directions, as we did with t/h and F (t). (ii) A typical approach is to first
determine the form of the solution, then find the optimal cost (reward) function by
backward recursion from the terminal point, where its value is known.

8

3 Dynamic Programming over the Infinite Horizon

Cases of discounted, negative and positive dynamic programming. Validity of the optimality

equation over the infinite horizon.

3.1 Discounted costs

For a discount factor, β ∈ (0, 1], the discounted-cost criterion is defined as

C =

h−1∑

t=0

βtc(xt, ut, t) + βhCh(xh). (3.1)

This simplifies things mathematically, particularly when we want to consider an
infinite horizon. If costs are uniformly bounded, say |c(x, u)| < B, and discounting is
strict (β < 1) then the infinite horizon cost is bounded by B/(1 − β). In finance, if
there is an interest rate of r% per unit time, then a unit amount of money at time t is
worth ρ = 1+r/100 at time t+1. Equivalently, a unit amount at time t+1 has present
value β = 1/ρ. The function, F (x, t), which expresses the minimal present value at
time t of expected-cost from time t up to h is

F (x, t) = inf
π

Eπ

[
h−1∑

τ=t

βτ−tc(xτ , uτ , τ) + βh−tCh(xh)

∣
∣
∣
∣
∣
xt = x

]

. (3.2)

where Eπ denotes expectation over the future path of the process under policy π. The
DP equation is now

F (x, t) = inf
u

[c(x, u, t) + βEF (xt+1, t+ 1)] , t < h, (3.3)

where F (x, h) = Ch(x).

3.2 Example: job scheduling

A collection of n jobs is to be processed in arbitrary order by a single machine. Job i
has processing time pi and when it completes a reward ri is obtained. Find the order
of processing that maximizes the sum of the discounted rewards.

Solution. Here we take ‘time-to-go k’ as the point at which the n− k th job has just
been completed and there remains a set of k uncompleted jobs, say Sk. The dynamic
programming equation is

Fk(Sk) = max
i∈Sk

[riβ
pi + βpiFk−1(Sk − {i})].

Obviously F0(∅) = 0. Applying the method of dynamic programming we first find
F1({i}) = riβ

pi . Then, working backwards, we find

F2({i, j}) = max[riβ
pi + βpi+pjrj , rjβ

pj + βpj+piri].

There will be 2n equations to evaluate, but with perseverance we can determine
Fn({1, 2, . . . , n}). However, there is a simpler way.

9

An interchange argument

Suppose jobs are processed in the order i1, . . . , ik, i, j, ik+3, . . . , in. Compare the reward
that is obtained if the order of jobs i and j is reversed: i1, . . . , ik, j, i, ik+3, . . . , in. The
rewards under the two schedules are respectively

R1 + βT+piri + βT+pi+pjrj +R2 and R1 + βT+pj rj + βT+pj+piri +R2,

where T = pi1 + · · ·+ pik , and R1 and R2 are respectively the sum of the rewards due
to the jobs coming before and after jobs i, j; these are the same under both schedules.
The reward of the first schedule is greater if riβ

pi/(1− βpi) > rjβ
pj/(1− βpj). Hence

a schedule can be optimal only if the jobs are taken in decreasing order of the indices
riβ

pi/(1− βpi). This type of reasoning is known as an interchange argument.

There are a couple points to note. (i) An interchange argument can be useful
for solving a decision problem about a system that evolves in stages. Although such
problems can be solved by dynamic programming, an interchange argument – when it
works – is usually easier. (ii) The decision points need not be equally spaced in time.
Here they are the times at which jobs complete.

3.3 The infinite-horizon case

In the finite-horizon case the value function is obtained simply from (3.3) by the back-
ward recursion from the terminal point. However, when the horizon is infinite there is
no terminal point and so the validity of the optimality equation is no longer obvious.

Consider the time-homogeneous Markov case, in which costs and dynamics do not
depend on t, i.e. c(x, u, t) = c(x, u). Suppose also that there is no terminal cost, i.e.
Ch(x) = 0. Define the s-horizon cost under policy π as

Fs(π, x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

,

If we take the infimum with respect to π we have the infimal s-horizon cost

Fs(x) = inf
π

Fs(π, x).

Clearly, this always exists and satisfies the optimality equation

Fs(x) = inf
u

{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]} , (3.4)

with terminal condition F0(x) = 0.
Sometimes a nice way to write (3.4) is as Fs = LFs−1 where L is the operator with

action
Lφ(x) = inf

u
{c(x, u) + βE[φ(x1) | x0 = x, u0 = u]}.

This operator transforms a scalar function of the state x to another scalar function of x.
Note that L is a monotone operator, in the sense that if φ1 ≤ φ2 then Lφ1 ≤ Lφ2.

10

The infinite-horizon cost under policy π is also quite naturally defined as

F (π, x) = lim
s→∞

Fs(π, x). (3.5)

This limit need not exist (e.g. if β = 1, xt+1 = −xt and c(x, u) = x), but it will do so
under any of the following three scenarios.

D (discounted programming): 0 < β < 1, and |c(x, u)| < B for all x, u.

N (negative programming): 0 < β ≤ 1, and c(x, u) ≥ 0 for all x, u.

P (positive programming): 0 < β ≤ 1, and c(x, u) ≤ 0 for all x, u.

Notice that the names ‘negative’ and ‘positive’ appear to be the wrong way around
with respect to the sign of c(x, u). The names actually come from equivalent problems
of maximizing rewards, like r(x, u) (= −c(x, u)). Maximizing positive rewards (P) is
the same thing as minimizing negative costs. Maximizing negative rewards (N) is the
same thing as minimizing positive costs. In cases N and P we usually take β = 1.

The existence of the limit (possibly infinite) in (3.5) is assured in cases N and P
by monotone convergence, and in case D because the total cost occurring after the sth
step is bounded by βsB/(1− β).

3.4 The optimality equation in the infinite-horizon case

The infimal infinite-horizon cost is defined as

F (x) = inf
π

F (π, x) = inf
π

lim
s→∞

Fs(π, x). (3.6)

The following theorem justifies our writing the optimality equation (i.e. (3.7)).

Theorem 3.1. Suppose D, N, or P holds. Then F (x) satisfies the optimality equation

F (x) = inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u)]}. (3.7)

Proof. We first prove that ‘≥’ holds in (3.7). Suppose π is a policy, which chooses
u0 = u when x0 = x. Then

Fs(π, x) = c(x, u) + βE[Fs−1(π, x1) | x0 = x, u0 = u]. (3.8)

Either D, N or P is sufficient to allow us to takes limits on both sides of (3.8) and
interchange the order of limit and expectation. In cases N and P this is because of
monotone convergence. Infinity is allowed as a possible limiting value. We obtain

F (π, x) = c(x, u) + βE[F (π, x1) | x0 = x, u0 = u]

≥ c(x, u) + βE[F (x1) | x0 = x, u0 = u]

≥ inf
u
{c(x, u) + βE[F (x1) | x0 = x, u0 = u]}.

11

Minimizing the left hand side over π gives ‘≥’.
To prove ‘≤’, fix x and consider a policy π that having chosen u0 and reached

state x1 then follows a policy π1 which is suboptimal by less than ǫ from that point,
i.e. ¡F (π1, x1) ≤ F (x1) + ǫ. Note that such a policy must exist, by definition of F ,
although π1 will depend on x1. We have

F (x) ≤ F (π, x)

= c(x, u0) + βE[F (π1, x1) | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) + ǫ | x0 = x, u0]

≤ c(x, u0) + βE[F (x1) | x0 = x, u0] + βǫ.

Minimizing the right hand side over u0 and recalling that ǫ is arbitrary gives ‘≤’.

3.5 Example: selling an asset

A spectulator owns a rare collection of tulip bulbs and each day has an opportunity to
sell it, which she may either accept or reject. The potential sale prices are independently
and identically distributed with probability density function g(x), x ≥ 0. Each day
there is a probability 1−β that the market for tulip bulbs will collapse, making her bulb
collection completely worthless. Find the policy that maximizes her expected return
and express it as the unique root of an equation. Show that if β > 1/2, g(x) = 2/x3,
x ≥ 1, then she should sell the first time the sale price is at least

√

β/(1− β).

Solution. There are only two states, depending on whether she has sold the collection
or not. Let these be 0 and 1, respectively. The optimality equation is

F (1) =

∫ ∞

y=0

max[y, βF (1)] g(y) dy

= βF (1) +

∫ ∞

y=0

max[y − βF (1), 0] g(y) dy

= βF (1) +

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy

Hence

(1− β)F (1) =

∫ ∞

y=βF (1)

[y − βF (1)] g(y) dy. (3.9)

That this equation has a unique root, F (1) = F ∗, follows from the fact that left and
right hand sides are increasing and decreasing in F (1), respectively. Thus she should
sell when she can get at least βF ∗. Her maximal reward is F ∗.

Consider the case g(y) = 2/y3, y ≥ 1. The left hand side of (3.9) is less that the
right hand side at F (1) = 1 provided β > 1/2. In this case the root is greater than 1
and we compute it as

(1− β)F (1) = 2/βF (1)− βF (1)/[βF (1)]2,

12

and thus F ∗ = 1/
√

β(1− β) and βF ∗ =
√

β/(1− β).

If β ≤ 1/2 she should sell at any price.

Notice that discounting arises in this problem because at each stage there is a
probability 1 − β that a ‘catastrophe’ will occur that brings things to a sudden end.
This characterization of the way that discounting can arise is often quite useful.

What if past offers remain open? The state is now the best of the offers received
and the dynamic programming equation is

F (x) =

∫ ∞

y=0

max[y, βF (max(x, y))] g(y) dy

=

∫ x

y=0

max[y, βF (x)] g(y) dy +

∫ ∞

y=x

max[y, βF (y)] g(y) dy

However, the solution is exactly the same as before: sell at the first time an offer
exceeds βF ∗. Can you see why?

13

4 Positive Programming

Special theory for maximizing positive rewards. We see that there can be no optimal policy.

However, if a given policy has a value function that satisfies the optimality equation then that

policy is optimal. Value iteration algorithm.

4.1 Example: possible lack of an optimal policy.

Positive programming is about maximizing non-negative rewards, r(x, u) ≥ 0, or mini-
mizing non-positive costs, c(x, u) ≤ 0. The following example shows that there may be
no optimal policy.

Example 4.1. Suppose the possible states are the non-negative integers and in state
x we have a choice of either moving to state x+ 1 and receiving no reward, or moving
to state 0, obtaining reward 1 − 1/x, and then remaining in state 0 thereafter and
obtaining no further reward. The optimality equations is

F (x) = max{1− 1/x, F (x+ 1)} x > 0.

Clearly F (x) = 1, x > 0, but the policy that chooses the maximizing action in the
optimality equation always moves on to state x+1 and hence has zero reward. Clearly,
there is no policy that actually achieves a reward of 1.

4.2 Characterization of the optimal policy

The following theorem provides a necessary and sufficient condition for a policy to be
optimal: namely, its value function must satisfy the optimality equation. This theorem
also holds for the case of strict discounting and bounded costs.

Theorem 4.2. Suppose D or P holds and π is a policy whose value function F (π, x)
satisfies the optimality equation

F (π, x) = sup
u
{r(x, u) + βE[F (π, x1) | x0 = x, u0 = u]}.

Then π is optimal.

Proof. Let π′ be any policy and suppose it takes ut(x) = ft(x). Since F (π, x) satisfies
the optimality equation,

F (π, x) ≥ r(x, f0(x)) + βEπ′ [F (π, x1) | x0 = x, u0 = f0(x)].

By repeated substitution of this into itself, we find

F (π, x) ≥ Eπ′

[
s−1∑

t=0

βtr(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ′ [F (π, xs) | x0 = x]. (4.1)

In case P we can drop the final term on the right hand side of (4.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (π, x) ≥ F (π′, x).

14

4.3 Example: optimal gambling

A gambler has i pounds and wants to increase this to N . At each stage she can bet
any whole number of pounds not exceeding her capital, say j ≤ i. Either she wins,
with probability p, and now has i+ j pounds, or she loses, with probability q = 1− p,
and has i − j pounds. Let the state space be {0, 1, . . . , N}. The game stops upon
reaching state 0 or N . The only non-zero reward is 1, upon reaching state N . Suppose
p ≥ 1/2. Prove that the timid strategy, of always betting only 1 pound, maximizes the
probability of the gambler attaining N pounds.

Solution. The optimality equation is

F (i) = max
j,j≤i

{pF (i+ j) + qF (i− j)}.

To show that the timid strategy, say π, is optimal we need to find its value function,
say G(i) = F (π, x), and then show that it is a solution to the optimality equation. We
have G(i) = pG(i+ 1) + qG(i − 1), with G(0) = 0, G(N) = 1. This recurrence gives

G(i) =







1− (q/p)i

1− (q/p)N
p > 1/2,

i

N
p = 1/2.

If p = 1/2, then G(i) = i/N clearly satisfies the optimality equation. If p > 1/2 we
simply have to verify that

G(i) =
1− (q/p)i

1− (q/p)N
= max

j:j≤i

{

p

[
1− (q/p)i+j

1− (q/p)N

]

+ q

[
1− (q/p)i−j

1− (q/p)N

] }

.

Let Wj be the expression inside { } on the right hand side. It is simple calculation to
show that Wj+1 < Wj for all j ≥ 1. Hence j = 1 maximizes the right hand side.

4.4 Value iteration

An important and practical method of computing F is successive approximation
or value iteration. Starting with F0(x) = 0, we can successively calculate, for s =
1, 2, . . . ,

Fs(x) = inf
u
{c(x, u) + βE[Fs−1(x1) | x0 = x, u0 = u]}.

So Fs(x) is the infimal cost over s steps. Now let

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x) = lim
s→∞

L
s(0). (4.2)

This exists (by monotone convergence under N or P, or by the fact that under D the
cost incurred after time s is vanishingly small.)

Notice that (4.2) reverses the order of lims→∞ and infπ in (3.6). The following
theorem states that we can interchange the order of these operations and that therefore
Fs(x) → F (x). However, in case N we need an additional assumption:

F (finite actions): There are only finitely many possible values of u in each state.

15

Theorem 4.3. Suppose that D or P holds, or N and F hold. Then F∞(x) = F (x).

Proof. First we prove ‘≤’. Given any π̄,

F∞(x) = lim
s→∞

Fs(x) = lim
s→∞

inf
π

Fs(π, x) ≤ lim
s→∞

Fs(π̄, x) = F (π̄, x).

Taking the infimum over π̄ gives F∞(x) ≤ F (x).
Now we prove ‘≥’. In the positive case, c(x, u) ≤ 0, so Fs(x) ≥ F (x). Now let

s → ∞. In the discounted case, with |c(x, u)| < B, imagine subtracting B > 0 from
every cost. This reduces the infinite-horizon cost under any policy by exactly B/(1−β)
and F (x) and F∞(x) also decrease by this amount. All costs are now negative, so the
result we have just proved applies. [Alternatively, note that

Fs(x)− βsB/(1− β) ≤ F (x) ≤ Fs(x) + βsB/(1− β)

(can you see why?) and hence lims→∞ Fs(x) = F (x).]
In the negative case,

F∞(x) = lim
s→∞

min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + lim
s→∞

E[Fs−1(x1) | x0 = x, u0 = u]}

= min
u

{c(x, u) + E[F∞(x1) | x0 = x, u0 = u]}, (4.3)

where the first equality follows because the minimum is over a finite number of terms
and the second equality follows by Lebesgue monotone convergence (since Fs(x) in-
creases in s). Let π be the policy that chooses the minimizing action on the right hand
side of (4.3). This implies, by substitution of (4.3) into itself, and using the fact that
N implies F∞ ≥ 0,

F∞(x) = Eπ

[
s−1∑

t=0

c(xt, ut) + F∞(xs)

∣
∣
∣
∣
∣
x0 = x

]

≥ Eπ

[
s−1∑

t=0

c(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

.

Letting s → ∞ gives F∞(x) ≥ F (π, x) ≥ F (x).

4.5 Example: search for a moving object

Initially an object is equally likely to be in one of two boxes. If we search box 1 and
the object is there we will discover it with probability 1, but if it is in box 2 and we
search there then we will find it only with probability 1/2, and if we do not then the
object moves to box 1 with probability 1/4. Suppose that we find the object on our
Nth search. Our aim is to maximize EβN , where 0 < β < 1.

16

Our state variable is pt, the probability that the object is in box 1 given that we
have not yet found it. If at time t we search box 1 and fail to find the object, then
pt+1 = 0. On the other hand, if we search box 2,

pt+1 = a(pt) =
pt + qt(1/2)(1/4)

pt + (1/2)qt
=

1 + 7pt
8(1− 0.5qt)

.

The optimality equation is

F (p) = max[p+ qβF (0), 0.5q + (1 − 0.5q)βF (a(p))]. (4.4)

By value iteration of

Fs(p) = max[p+ qβFs−1(0), 0.5q + (1− 0.5q)βFs−1(a(p))]

we can prove that F (p) is convex in p, by induction. The key fact is that Fs(p) is
always the maximum of a collection of linear function of p. We also use the fact that
maximums of convex functions are convex.

The left hand side of (4.4) is linear in p taking values at p = 0 and p = 1 of βF (0)
and 1 respectively, and the right hand side takes values 0.5 + 0.5βF (.25) and βF (0).
Thus there is a unique p for which the left and right hand sides are equal, say p∗, and
so an optimal policy is to search box 1 if and only if pt ≥ p∗.

4.6 Example: pharmaceutical trials

A doctor has two drugs available to treat a disease. One is well-established drug and is
known to work for a given patient with probability p, independently of its success for
other patients. The new drug is untested and has an unknown probability of success θ,
which the doctor believes to be uniformly distributed over [0, 1]. He treats one patient
per day and must choose which drug to use. Suppose he has observed s successes and f
failures with the new drug. Let F (s, f) be the maximal expected-discounted number of
future patients who are successfully treated if he chooses between the drugs optimally
from this point onwards. For example, if he uses only the established drug, the expected-
discounted number of patients successfully treated is p + βp + β2p + · · · = p/(1 − β).
The posterior distribution of θ is

f(θ | s, f) = (s+ f + 1)!

s!f !
θs(1− θ)f , 0 ≤ θ ≤ 1,

and the posterior mean is θ̄(s, f) = (s+ 1)/(s+ f + 2). The optimality equation is

F (s, f) = max

[
p

1− β
,

s+ 1

s+ f + 2
(1 + βF (s+ 1, f)) +

f + 1

s+ f + 2
βF (s, f + 1)

]

.

Notice that after the first time that the doctor decides is not optimal to use the new
drug it cannot be optimal for him to return to using it later, since his information about
that drug cannot have changed while not using it.

17

It is not possible to give a closed-form expression for F , but we can find an approxi-
mate numerical solution. If s+f is very large, say 300, then θ̄(s, f) = (s+1)/(s+f+2)
is a good approximation to θ. Thus we can take F (s, f) ≈ (1 − β)−1 max[p, θ̄(s, f)],
s+ f = 300 and work backwards. For β = 0.95, one obtains the following table.

s 0 1 2 3 4 5f
0 .7614 .8381 .8736 .8948 .9092 .9197
1 .5601 .6810 .7443 .7845 .8128 .8340
2 .4334 .5621 .6392 .6903 .7281 .7568
3 .3477 .4753 .5556 .6133 .6563 .6899
4 .2877 .4094 .4898 .5493 .5957 .6326

These numbers are the greatest values of p (the known success probability of the
well-established drug) for which it is worth continuing with at least one more trial of
the new drug. For example, suppose p = 0.6 and 6 trials with the new drug have given
s = f = 3. Then since p = 0.6 < 0.6133 we should treat the next patient with the new
drug. At this point the probability that the new drug will successfully treat the next
patient is 0.5 and so the doctor will actually be treating that patient with the drug
that is least likely to cure!

Here we see a tension going on between desires for exploitation and exploration.
A myopic policy seeks only to maximize immediate reward. However, an optimal
policy takes account of the possibility of gaining information that could lead to greater
rewards being obtained later on. Notice that it is worth using the new drug at least
once if p < 0.7614, even though at its first use the new drug will only be successful
with probability 0.5. Of course as the discount factor β tends to 0 the optimal policy
will looks more and more like the myopic policy.

The above is an example of a two-armed bandit problem and a foretaste for
Chapter 7 in which we will learn about the multi-armed bandit problem and how
to optimally conduct trials amongst several alternative drugs with unknown success
probabilities.

18

5 Negative Programming

The special theory of minimizing positive costs. We see that action that extremizes the right

hand side of the optimality equation is an optimal policy. Stopping problems and their solution.

5.1 Example: a partially observed MDP

Example 5.1. Consider a similar problem to that of §4.5. A hidden object moves
between two location according to a Markov chain with probability transition matrix
P = (pij). A search in location i costs ci, and if the object is there it is found with
probability αi. The aim is to minimize the expected cost of finding the object.

This is example of what is called a partially observable Markov decision pro-
cess (POMDP). In a POMDP the decision-maker cannot directly observe the underly-
ing state. Instead, he must maintain a probability distribution over the set of possible
states, based on his observations, and the underlying MDP. This distribution is updated
using the usual Bayesian calculations.

Solution. Let xi be the probability that the object is in location i (where x1+x2 = 1).
Value iteration of the dynamic programming equation is via

Fs(x1) = min

{

c1 + (1− α1x1)Fs−1

(
(1− α1)x1p11 + x2p21

1− α1x1

)

,

c2 + (1− α2x2)Fs−1

(
(1− α2)x2p21 + x1p11

1− α2x2

)}

.

The arguments of Fs−1(·) are the posterior probabilities that the object in location 1,
given that we have search location 1 (or 2) and not found it.

Now F0(x1) = 0, F1(x1) = min{c1, c2}, F2(x) is the minimum of two linear functions
of x1. If Fs−1 is the minimum of some collection of linear functions of x1 it follows that
the same can be said of Fs. Thus, by induction, Fs is a concave function of x1.

By application of our theorem that Fs → F in the N and F case, we can deduce
that the infinite horizon return function, F , is also a concave function. Notice that in
the optimality equation for F (obtained by letting s → ∞ in the equation above), the
left hand term within the min{·, ·} varies from c1 +F (p21) to c1 +(1−α1)F (p11) as x1

goes from 0 to 1. The right hand term varies from c2 + (1 − α2)F (p21) to c2 + F (p11)
as x1 goes from 0 to 1.

Consider the special case of α1 = 1 and c1 = c2 = c. Then the left hand term is the
linear function c + (1 − x1)F (p21). This means we have the picture below, where the
blue and red curves corresponds to the left and right hand terms, and intersect exactly
once since the red curve is concave.

Thus the optimal policy can be characterized as “search location 1 iff the probability
that the object is in location 1 exceeds a threshold x∗

1”.

19

0 1x1x∗

1

c+ F (p21)

c

c+ (1− α2)F (p21)

c+ F (p11)

The value of x∗
1 depends on the parameters, αi and pij . It is believed that the

answer is of this form for any parameters, but this is still an unproved conjecture.

5.2 Stationary policies

A Markov policy is a policy that specifies the control at time t to be simply a function
of the state and time. In the proof of Theorem 4.2 we used ut = ft(xt) to specify the
control at time t. This is a convenient notation for a Markov policy, and we can write
π = (f0, f1, . . .) to denote such a policy. If in addition the policy does not depend on
time and is non-randomizing in its choice of action then it is said to be a deterministic
stationary Markov policy, and we write π = (f, f, . . .) = f∞.

For such a policy we might write

Ft(π, x) = c(x, f(x)) + E[Ft+1(π, x1) | xt = x, ut = f(x)]

or Ft+1 = L(f)Ft+1, where L(f) is the operator having action

L(f)φ(x) = c(x, f(x)) + E[φ(x1) | x0 = x, u0 = f(x)].

5.3 Characterization of the optimal policy

Negative programming is about maximizing non-positive rewards, r(x, u) ≤ 0, or min-
imizing non-negative costs, c(x, u) ≥ 0. The following theorem gives a necessary and
sufficient condition for a stationary policy to be optimal: namely, it must choose the
optimal u on the right hand side of the optimality equation. Note that in this theorem
we are requiring that the infimum over u is attained as a minimum over u (as would
be the case if we make the finite actions assumptions, F).

Theorem 5.2. Suppose D or N holds. Suppose π = f∞ is the stationary Markov policy
such that

f(x) = argmin
u

[c(x, u) + βE[F (x1) | x0 = x, u0 = u] .

Then F (π, x) = F (x), and π is optimal.

(i.e. u = f(x) is the value of u which minimizes the r.h.s. of the DP equation.)

20

Proof. The proof is really the same as the final part of proving Theorem 4.3. By
substituting the optimality equation into itself and using the fact that π specifies the
minimizing control at each stage,

F (x) = Eπ

[
s−1∑

t=0

βtc(xt, ut)

∣
∣
∣
∣
∣
x0 = x

]

+ βsEπ [F (xs)|x0 = x] . (5.1)

In case N we can drop the final term on the right hand side of (5.1) (because it is
non-negative) and then let s → ∞; in case D we can let s → ∞ directly, observing that
this term tends to zero. Either way, we have F (x) ≥ F (π, x).

A corollary is that if assumption F holds then an optimal policy exists. Neither
Theorem 5.2 or this corollary are true for positive programming (see Example 4.1).

5.4 Optimal stopping over a finite horizon

One way that the total-expected cost can be finite is if it is possible to enter a state
from which no further costs are incurred. Suppose u has just two possible values: u = 0
(stop), and u = 1 (continue). Suppose there is a termination state, say 0, that is entered
upon choosing the stopping action. Once this state is entered the system stays in that
state and no further cost is incurred thereafter. We let c(x, 0) = k(x) (stopping cost)
and c(x, 1) = c(x) (continuation cost). This defines a stopping problem.

Suppose that Fs(x) denotes the minimum total cost when we are constrained to stop
within the next s steps. This gives a finite-horizon problem with dynamic programming
equation

Fs(x) = min{k(x), c(x) + E[Fs−1(x1) | x0 = x, u0 = 1]} , (5.2)

with F0(x) = k(x), c(0) = 0.
Consider the set of states in which it is at least as good to stop now as to continue

one more step and then stop:

S = {x : k(x) ≤ c(x) + E[k(x1) | x0 = x, u0 = 1)]}.

Clearly, it cannot be optimal to stop if x 6∈ S, since in that case it would be strictly
better to continue one more step and then stop. If S is closed then the following
theorem gives us the form of the optimal policies for all finite-horizons.

Theorem 5.3. Suppose S is closed (so that once the state enters S it remains in S.)
Then an optimal policy for all finite horizons is: stop if and only if x ∈ S.

Proof. The proof is by induction. If the horizon is s = 1, then obviously it is optimal
to stop only if x ∈ S. Suppose the theorem is true for a horizon of s− 1. As above, if
x 6∈ S then it is better to continue for more one step and stop rather than stop in state
x. If x ∈ S, then the fact that S is closed implies x1 ∈ S and so Fs−1(x1) = k(x1). But
then (5.2) gives Fs(x) = k(x). So we should stop if s ∈ S.

The optimal policy is known as a one-step look-ahead rule (OSLA rule).

21

5.5 Example: optimal parking

A driver is looking for a parking space on the way to his destination. Each parking
space is free with probability p independently of whether other parking spaces are free
or not. The driver cannot observe whether a parking space is free until he reaches it.
If he parks s spaces from the destination, he incurs cost s, s = 0, 1, If he passes
the destination without having parked the cost is D. Show that an optimal policy is
to park in the first free space that is no further than s∗ from the destination, where s∗

is the greatest integer s such that (Dp+ 1)qs ≥ 1.

Solution. When the driver is s spaces from the destination it only matters whether
the space is available (x = 1) or full (x = 0). The optimality equation gives

Fs(0) = qFs−1(0) + pFs−1(1),

Fs(1) = min

{

s, (take available space)

qFs−1(0) + pFs−1(1), (ignore available space)

where F0(0) = D, F0(1) = 0.
Now we solve the problem using the idea of a OSLA rule. It is better to stop now

(at a distance s from the destination) than to go on and take the first available space
if s is in the stopping set

S = {s : s ≤ k(s− 1)}
where k(s − 1) is the expected cost if we take the first available space that is s − 1 or
closer. Now

k(s) = ps+ qk(s− 1),

with k(0) = qD. The general solution is of the form k(s) = −q/p+ s + cqs. So after
substituting and using the boundary condition at s = 0, we have

k(s) = − q

p
+ s+

(

D +
1

p

)

qs+1, s = 0, 1,

So
S = {s : (Dp+ 1)qs ≥ 1}.

This set is closed (since s decreases) and so by Theorem 5.3 this stopping set describes
the optimal policy.

We might let D be the expected distance that that the driver must walk if he takes
the first available space at the destination or further down the road. In this case,
D = 1 + qD, so D = 1/p and s∗ is the greatest integer such that 2qs ≥ 1.

22

6 Optimal Stopping Problems

More on stopping problems and their solution.

6.1 Bruss’s odds algorithm

A doctor, using a special treatment, codes 1 for a successful treatment, 0 otherwise. He
treats a sequence of n patients and wants to minimize any suffering, while achieving
a success with every patient for whom that is possible. Stopping on the last 1 would
achieve this objective, so he wishes to maximize the probability of this.

Solution. Suppose Xk is the code of the kth patient. Assume X1, . . . , Xn are indepen-
dent with pk = P (Xk = 1). Let qk = 1−pk and rk = pk/qk. Bruss’s odds algorithm
sums the odds from the sth event to the last event (the nth)

Rs = rs + · · ·+ rn

and finds the greatest s, say s∗, for which Rs ≥ 1. We claim that by stopping the
first time that code 1 occurs amongst patients {s∗, s∗+1, . . . , n}, the doctor maximizes
probability of stopping on the last patient who can be successfully treated.

To prove this claim we just check optimality of a OSLA-rule. The stopping set is

S = {i : qi+1 · · · qn > (pi+1qi+2qi+3 · · · qn) + (qi+1pi+2qi+3 · · · qn)
+ · · ·+ (qi+1qi+2qi+3 · · · pn)}

= {i : 1 > ri+1 + ri+2 + · · ·+ rn}
= {s∗, s∗ + 1, . . . , n}.

Clearly the stopping set is closed, so the OSLA-rule is optimal. The probability of
stopping on the last 1 is (qs∗ · · · qn)(rs∗ + · · ·+ rn) and (by solving a little optimization
problem) this is always ≥ 1/e = 0.368, provided R1 ≥ 1.

We can use the odds algorithm to re-solve the secretary problem. Code 1 when a
candidate is better than all who have been seen previously. Our aim is to stop on the
last candidate coded 1. We proved previously that X1, . . . , Xh are independent and
P (Xt = 1) = 1/t. So ri = (1/t)/(1− 1/t) = 1/(t− 1). The algorithm tells us to ignore
the first s∗ − 1 candidates and the hire the first who is better than all we have seen
previously, where s∗ is the greatest integer s for which

1

s− 1
+

1

s
+ · · ·+ 1

h− 1
≥ 1

(

≡ the least s for which
1

s
+ · · ·+ 1

h− 1
≤ 1

)

.

We can also solve a ‘groups’ version of the secretary problem. Suppose we see
h groups of candidates, of sizes n1, . . . , nh. We wish to stop with the group that
contains the best of all the candidates. Then p1 = 1, p2 = n2/(n1 + n2), . . . , ph =
nh/(n1 + · · · + nh). The odds algorithm tells us to stop if group i contains the best
candidate so far and i ≥ s∗, where s∗ is the greatest integer such that

ns
∑s−1

i=1 ni

+
ns+1
∑s

i=1 ni
+ · · ·+ nh

∑h−1
i=1 ni

≥ 1.

23

6.2 Example: Stopping a random walk

indexstopping a random walk Suppose that xt follows a random walk on {0, . . . , N}.
At any time t we may stop the walk and take a positive reward r(xt). In states 0 and
N we must stop. The aim is to maximize Er(xT).

Solution. The dynamic programming equation is

F (0) = r(0), F (N) = r(N)

F (x) = max
{
r(x), 1

2F (x − 1) + 1
2F (x+ 1)

}
, 0 < x < N.

We see that

(i) F (x) ≥ 1
2F (x− 1) + 1

2F (x+ 1), so F (x) is concave.

(ii) Also F (x) ≥ r(x).

We say F is a concave majorant of r.

In fact, F can be characterized as the smallest concave majorant of r. For suppose
that G is any other concave majorant of r.

Starting with F0 = 0, we have G ≥ F0. So we can prove by induction that

Fs(x) = max
{
r(x), 1

2Fs−1(x− 1) + 1
2Fs−1(x− 1)

}

≤ max
{
r(x), 1

2G(x− 1) + 1
2G(x + 1)

}

≤ max {r(x), G(x)}
≤ G(x).

Theorem 4.3 tells us that Fs(x) → F (x) as s → ∞. Hence F ≤ G.
A OSLA rule is not optimal here. The optimal rule is to stop iff F (x) = r(x).)

6.3 Optimal stopping over the infinite horizon

Consider now a general stopping problem over the infinite-horizon with k(x), c(x) as
previously, and with the aim of minimizing total expected cost. Let Fs(x) be the infimal
cost given that we are required to stop by the sth step. Let F (x) be the infimal cost
when all that is required is that we stop eventually. Since less cost can be incurred if
we are allowed more time in which to stop, we have

Fs(x) ≥ Fs+1(x) ≥ F (x).

Thus by monotone convergence Fs(x) tends to a limit, say F∞(x), and F∞(x) ≥ F (x).

Example 6.1. Consider the problem of stopping a symmetric random walk on the
integers, where c(x) = 0, k(x) = exp(−x). The policy of stopping immediately, say π,
has F (π, x) = exp(−x), and since e−x is a convex function this satisfies the infinite-
horizon optimality equation,

F (x) = min{exp(−x), (1/2)F (x− 1) + (1/2)F (x+ 1)}.

24

However, π is not optimal. The random walk is recurrent, so we may wait until reaching
as large an integer as we like before stopping; hence F (x) = 0. Thus we see two things:

(i) It is possible that F∞ > F . This is because Fs(x) = e−x, but F (x) = 0.

(ii) Theorem 4.2 is not true for negative programming. Policy π has F (π, x) = e−x

and this satisfies the optimality equation. Yet π is not optimal.

Remark. In Theorem 4.3 we had F∞ = F , but for that theorem we assumed F0(x) =
k(x) = 0 and Fs(x) was the infimal cost possible over s steps, and thus Fs ≤ Fs+1 (in
the N case). However, Example 6.1 k(x) > 0 and Fs(x) is the infimal cost amongst the
set of policies that are required to stop within s steps. Now Fs(x) ≥ Fs+1(x).

The following lemma gives conditions under which the infimal finite-horizon cost
does converge to the infimal infinite-horizon cost.

Lemma 6.2. Suppose all costs are bounded as follows.

(a) K = sup
x

k(x) < ∞ (b) C = inf
x
c(x) > 0. (6.1)

Then Fs(x) → F (x) as s → ∞.

Proof. Suppose π is an optimal policy for the infinite horizon problem and stops at the
random time τ . It has expected cost of at least (s + 1)CP (τ > s). However, since it
would be possible to stop at time 0 the cost is also no more than K, so

(s+ 1)CP (τ > s) ≤ F (x) ≤ K.

In the s-horizon problem we could follow π, but stop at time s if τ > s. This implies

F (x) ≤ Fs(x) ≤ F (x) +KP (τ > s) ≤ F (x) +
K2

(s+ 1)C
.

By letting s → ∞, we have F∞(x) = F (x).

Note that the problem posed here is identical to one in which we pay K at the start
and receive a terminal reward r(x) = K − k(x).

Theorem 6.3. Suppose S is closed and (6.1) holds. Then an optimal policy for the
infinite horizon is: stop if and only if x ∈ S.

Proof. By Theorem 5.3 we have for all finite s,

Fs(x)
= k(x) x ∈ S,
< k(x) x 6∈ S.

Lemma 6.2 gives F (x) = F∞(x).

25

6.4 Sequential Probability Ratio Test

A statistician wishes to decide between two hypotheses, H0 : f = f0 and H1 : f = f1
on the basis of i.i.d. observations drawn from a distribution with density f . Ex ante he
believes the probability that Hi is true is pi (where p0 + p1 = 1). Suppose that he has
the sample x = (x1, . . . , xn). The posterior probabilities are in the likelihood ratio

ℓn(x) =
f1(x1) · · · f1(xn)

f0(x1) · · · f0(xn)

p1
p0

.

Suppose it costs γ to make an observation. Stopping and declaring Hi true results in
a cost ci if wrong. This leads to the optimality equation for minimizing expected cost

F (ℓ) = min

{

c0
ℓ

1 + ℓ
, c1

1

1 + ℓ
,

γ +
ℓ

1 + ℓ

∫

F (ℓf1(y)/f0(y))f1(y)dy +
1

1 + ℓ

∫

F (ℓf1(y)/f0(y))f0(y)dy

}

Taking H(ℓ) = (1 + ℓ)F (ℓ), the optimality equation can be rewritten as

H(ℓ) = min

{

c0ℓ, c1, (1 + ℓ)γ +

∫

H(ℓf1(y)/f0(y))f0(y)dy

}

.

We have a very similar problem to that of searching for a moving object. The state is
ℓn. We can stop (in two ways) or continue by paying for another observation, in which
case the state makes a random jump to ℓn+1 = ℓnf1(x)/f0(x), where x is a sample
from f0. We can show that H(·) is concave in ℓ, and that therefore the optimal policy
can be described by two numbers, a∗0 < a1∗: If ℓn ≤ a∗0, stop and declare H0 true; If
ℓn ≥ a∗1, stop and declare H1 true; otherwise take another observation.

6.5 Bandit processes

A bandit process is a special type of MDP in which there are just two possible actions:
u = 0 (freeze) or u = 1 (continue). The control u = 0 produces no reward and the state
does not change (hence the term ‘freeze’). Under u = 1 we obtain a reward r(xt) and
the state changes, to xt+1, according to the Markov dynamics P (xt+1 | xt, ut = 1).

A simple family of alternative bandit processes (SFABP) is a collection of n
such bandit processes. At each time t = 0, 1, . . . we must select exactly one bandit to
receive continuation, while all others are frozen.

This is a rich modelling framework. With it we can model questions like this:

• Which of n drugs should we give to the next patient?

• Which of n jobs should we work on next?

• When of n oil fields should we explore next?

26

6.6 Example: Two-armed bandit

Consider a family of two alternative bandit processes. Bandit process B1 is trivial:
it stays in the same state and always produces known reward λ at each step that it
is continued. Bandit process B2 is nontrivial. It starts in state x(0) and evolves as a
Markov chain when it is continued and produces a state-dependent reward. The state of
B2 is what’s important. Starting B2 in state x(0) = x we have the optimality equation

F (x) = max

{

λ

1− β
, r(x) + β

∑

y

P (x, y)F (y)

}

= max

{

λ

1− β
, sup

τ>0
E

[
τ−1∑

t=0

βtr(x(t)) + βτ λ

1− β

∣
∣
∣ x(0) = x

]}

.

The left hand choice within max{·, ·} corresponds to continuing B1. The right hand
choice corresponds to continuing B2 for at least one step and then switching to B1 a
some later step, τ . Notice that once we switch to B1 we will never wish switch back to
B2 because things remain the same as when we first switched away from B2.

We are to choose the stopping time τ so as to optimally switch from continuing
B2 to continuing B1. Because the two terms within the max{·, ·} are both increasing
in λ, and are linear and convex, respectively, there is a unique λ, say λ∗, for which they
are equal. This is

λ∗ = sup

{

λ :
λ

1− β
≤ sup

τ>0
E

[
τ−1∑

t=0

βtr(x(t)) + βτ λ

1− β

∣
∣
∣ x(0) = x

]}

. (6.2)

Of course this λ∗ depends on x(0). We denote its value as G(x). After a little algebra

G(x) = sup
τ>0

E
[
∑τ−1

t=0 βtr(x(t)
∣
∣
∣ x(0) = x

]

E
[
∑τ−1

t=0 βt
∣
∣
∣ x(0) = x

] .

G is called a Gittins index.

So we now have the complete solution to the two-armed bandit problem. If
G(x(0)) ≤ G then it is optimal to continue B1 forever. If G(x(0)) > G then it is
optimal to continue B2 until the first time τ at which G(x(τ)) ≤ G.

6.7 Example: prospecting

We run a business that returns R0 per day. We are considering making a change
that might produce a better return of R1 per day. Initially we know only that R1 is
distributed U [0, 1]. To trial this method for one day will cost c1, and at the end of this

27

day we will know R1. The Gittins index for the new method is G1 such that

G1

1− β
= −c1 + E[R1] +

β

1− β
Emax {G1, R1}

= −c1 + 1/2 +
β

1− β

[
∫ G1

0

G1dr +

∫ 1

G1

rdr

]

.

For β = 0.9 and c1 = 1 this gives G1 = 0.5232. So it is worth conducting the trial only
if R0 = G0 ≤ 0.5232.

Now suppose that there is also a second method we might try. It produces reward
R2, which is ex ante distributed U [0, 2] and costs c2 = 3 to trial. Its Gittins index is

G2

1− β
= −c2 + E[R2] +

β

1− β
Emax {G2, R2}

= −c2 + 1 +
β

1− β

[
∫ G2

0

G2
1
2dr +

∫ 2

G2

r 1
2dr

]

.

For c2 = 3 this gives G2 = 0.8705. Recall G0 = R0. Suppose G0 < G1. Since
G2 > G1 > G0 we might conjecture the following is optimal.

We start by trialing method 2. If R2 > G1 = 0.5232 stop and use method 2
thereafter. Otherwise, we trial method 1 and then, having learned all of R0, R1, R2, we
pick the method that produces the greatest return and use that method thereafter.

However, this solution only a conjecture. We will prove it is optimal using the
Gittins index theorem.

28

7 Bandit Processes and the Gittins Index

The multi-armed bandit problem. Bandit processes. Gittins index theorem.

7.1 Index policies

Recall the single machine scheduling example in §3.2 in which n jobs are to be
processed successively on one machine. Job i has a known processing time ti, assumed
to be a positive integer. On completion of job i a positive reward ri is obtained. We
used an interchange argument to show that total discounted reward obtained from the
n jobs is maximized by the index policy of always processing the uncompleted job of
greatest index, computed as riβ

ti(1− β)/(1− βti).
Notice that if we were allowed to interrupt the processing a job before finishing, so

as to carry out some processing on a different job, this would be against the advice of
the index policy. For the index, riβ

ti(1− β)/(1 − βti), increases as ti decreases.

7.2 Multi-armed bandit problem

A multi-armed bandit is a slot-machine with multiple arms. The arms differ in the
distributions of rewards that they pay out when pulled. An important special case
is when arm i is a so-called Bernoulli bandit, with parameter pi. We have already
met this as the drug-testing model in §4.6. Such an arm pays £1 with probability
pi, and £0 with probability 1 − pi; this happens independently each time the arm is
pulled. If there are n such arms, and a gambler knows the true values of p1, . . . , pn, then
obviously he maximizes his expected reward by always pulling the arm of maximum
pi. However, if he does not know these values, then he must choose each successive
arm on the basis of the information he has obtained by playing, updated in a Bayesian
manner on the basis of observing the rewards he has obtained on previous pulls. The
aim in the multi-armed bandit problem (MABP) is to maximize the expected total
discounted reward.

More generally, we consider a problem of controlling the evolution of n indepen-
dent reward-producing Markov processes decision processes. The action space of each
process contains just two controls, which cause the process to be either ‘continued’ or
‘frozen’. At each instant (in discrete time) exactly one of these so-called bandit pro-
cesses is continued (and reward from it obtained), while all the other bandit processes
are frozen. The continued process can change state; but frozen processes do not change
state. Reward is accrued only from the bandit process that is continued. This creates
what is termed a simple family of alternative bandit processes (SFABP). The
word ‘simple’ means that all the n bandit processes are available at all times.

Let x(t) = (x1(t), . . . , xn(t)) be the states of the n bandits. Let it denote the bandit
process that is continued at time t under some policy π. In the language of Markov
decision problems, we wish to find the value function:

F (x) = sup
π

E

[
∞∑

t=0

rit(xit(t))β
t

∣
∣
∣
∣
∣
x(0) = x

]

,

29

where the supremum is taken over all policies π that are realizable (or non-anticipatory),
in the sense that it depends only on the problem data and x(t), not on any information
which only becomes known only after time t.

Setup in this way, we have an infinite-horizon discounted-reward Markov decision
problem. It therefore has a deterministic stationary Markov optimal policy. Its dynamic
programming is

F (x) = max
i:i∈{1,...,n}






ri(x) + β

∑

y∈Ei

Pi(xi, y)F (x1, . . . , xi−1, y, xi+1, . . . , xn)






. (7.1)

7.3 Gittins index theorem

Remarkably, the problem posed by a SFABP (or a MABP) can be solved by an index
policy. That is, we can compute a number (called an index), separately for each bandit
process, such that the optimal policy is always to continue the bandit process having
the currently greatest index.

Theorem 7.1 (Gittins Index Theorem). The problem posed by a SFABP, as setup
above, is solved by always continuing the process having the greatest Gittins index,
which is defined for bandit process i as

Gi(xi) = sup
τ>0

E
[
∑τ−1

t=0 βtri(xi(t))
∣
∣
∣ xi(0) = xi

]

E
[
∑τ−1

t=0 βt
∣
∣
∣ xi(0) = xi

] , (7.2)

where τ is a stopping time constrained to take a value in the set {1, 2, . . .}.
The Index Theorem above is due to Gittins and Jones, who had obtained it by

1970, and presented it in 1972. The solution of the MABP impressed many experts
as surprising and beautiful. Peter Whittle describes a colleague of high repute, asking
another colleague ‘What would you say if you were told that the multi-armed bandit
problem had been solved?’ The reply was ‘Sir, the multi-armed bandit problem is not of
such a nature that it can be solved ’.

The optimal stopping time τ in (7.2) is τ = min{t : Gi(xi(t)) ≤ Gi(xi(0)), τ > 0},
that is, τ is the first time at which the process reaches a state whose Gittins index is
no greater than Gittins index at xi(0).

Examining (7.2), we see that the Gittins index is the maximal possible quotient of
a numerator that is ‘expected total discounted reward over τ steps’, and denominator
that is ‘expected total discounted time over τ steps’, where τ is at least 1 step. Notice
that the Gittins index can be computed for all states of Bi as a function only of the
data ri(·) and Pi(· , ·). That is, it can be computed without knowing anything about
the other bandit processes.

In the single machine scheduling example of §7.1, the optimal stopping time on
the right hand side of (7.2) is τ = ti, the numerator is riβ

ti and the denominator is
1 + β + · · ·+ βti−1 = (1 − βti)/(1− β). Thus, Gi = riβ

ti(1 − β)/(1 − βti). Note that
Gi → ri/ti as β → 1.

30

7.4 Calibration

An alternative characterization of Gi(xi) is the one in (6.2)

Gi(xi) = sup

{

λ :
λ

1− β
≤ sup

τ>0
E

[
τ−1∑

t=0

βtri(xi(t)) + βτ λ

1− β

∣
∣
∣xi(0) = xi

]}

. (7.3)

That is, we consider a simple family of two bandit processes: bandit process Bi and a
calibrating bandit process, say Λ, which pays out a known reward λ at each step it
is continued. The Gittins index of Bi is the value of λ for which we are indifferent as
to which of Bi and Λ to continue initially. Notice that once we decide to switch from
continuing Bi to continuing Λ, at time τ , then information about Bi does not change
and so it must be optimal to stick with continuing Λ ever after.

7.5 Proof of the Gittins index theorem

Various proofs have been given of the index theorem, all of which are useful in developing
insight about this remarkable result. The following one is due to Weber (1992).

Proof of Theorem 7.1. We start by considering a problem in which only bandit process
Bi is available. Let us define the fair charge, γi(xi), as the maximum amount that an
agent would be willing to pay per step if he must continue Bi for one more step, and
then stop whenever he likes thereafter. This is

γi(xi) = sup

{

λ : 0 ≤ sup
τ>0

E

[
τ−1∑

t=0

βt
(

ri(xi(t))− λ
) ∣
∣
∣xi(0) = xi

]}

. (7.4)

Notice that (7.3) and (7.4) are equivalent and so γi(xi) = Gi(xi). Notice also that the
time τ will be the first time that Gi(xi(τ)) < Gi(xi(0)).

We next define the prevailing charge for Bi at time t as gi(t) = mins≤t γi(xi(s)).
So gi(t) actually depends on xi(0), . . . , xi(t) (which we omit from its argument for
convenience). Note that gi(t) is a nonincreasing function of t and its value depends
only on the states through which bandit i evolves. The proof of the Index Theorem is
completed by verifying the following facts, each of which is almost obvious.

(i) Suppose that in the problem with n available bandit processes, B1, . . . , Bn, the
agent not only collects rewards, but also pays the prevailing charge of whatever
bandit that he chooses to continue at each step. Then he cannot do better than
just break even (i.e. expected value of rewards minus prevailing charges is 0).

This is because he could only make a strictly positive profit (in expected value) if
this were to happens for at least one bandit. Yet the prevailing charge has been
defined in such a way that he can only just break even.

(ii) If he always continues the bandit of greatest prevailing charge then he will inter-
leave the n nonincreasing sequences of prevailing charges into a single nonincreas-
ing sequence of prevailing charges and so maximize their discounted sum.

31

(iii) Using this strategy he also just breaks even; so this strategy, (of always continuing
the bandit with the greatest gi(xi)), must also maximize the expected discounted
sum of the rewards can be obtained from this SFABP.

7.6 Example: Weitzman’s problem

‘Pandora’ has n boxes, each of which contains an unknown prize. Ex ante the prize in
box i has a value with probability distribution function Fi. She can learn the value of
the prize by opening box i, which costs her ci to do. At any stage she may stop and
take as her reward the maximum of the prizes she has found. She wishes to maximize
the expected value of the prize she takes, minus the costs of opening boxes.

Solution. This problem is the ‘prospecting’ problem we already considered in §6.7. It
can be modelled in terms of a SFABP. Box i is associated with a bandit process Bi,
which starts in state 0. The first time it is continued there is a cost ci, and the state
becomes xi, chosen by the distribution Fi. At all subsequent times that it is continued
the reward is r(xi) = (1 − β)xi, and the state remains xi. We wish to maximize the
expected value of

−
τ∑

t=1

βt−1cit +max{r(xi1), . . . , r(xiτ)}
∞∑

t=τ

βt

where we open boxes i1, . . . , iτ and then take the best prize thereafter. In the limit as
β → 1 this objective corresponds to that of Weitzman’s problem, namely,

−
τ∑

t=1

cit +max{xi1 , . . . , xiτ }

and so we can find the solution using the Gittins index theorem.
The Gittins index of an opened box is r(xi). The index of an unopened box i is the

solution to
Gi

1− β
= −ci +

β

1− β
Emax{r(xi), Gi}

or, by setting gi = G/(1 − β), and letting β → 1, we get an index that is the solution
of gi = −ci + Emax{xi, gi}.

For example, if Fi is a two point distribution with xi = 0 or xi = ri, with probabil-
ities 1− pi and pi, then gi = −ci + (1− pi)gi + piri =⇒ gi = ri − ci/pi.

Pandora’s optimal strategy is thus: Open boxes in decreasing order of gi until first
reaching a point that a revealed prize is greater than all gi of unopened boxes.

32

8 Applications of Bandit Processes

We consider some applications and generalizations to tax problems, job scheduling and branch-

ing bandits.

8.1 Forward induction policies

If we put τ = 1 on the right hand side of (7.2) then it evaluates to Eri(xi(t)). If
we use this as an index for choosing between projects, we have a myopic policy or
one-step-look-ahead policy. The Gittins index policy generalizes the idea of a one-
step-look-ahead policy, since it looks-ahead by some optimal time τ , so as to maximize,
on the right hand side of (7.2), a measure of the rate at which reward can be accrued.
This defines a so-called forward induction policy.

8.2 Example: playing golf with more than one ball

A golfer is playing with n balls. The balls are at positions x1, . . . , xn. If he plays ball
i it will next land at location y, where P (xi, y) is known. He wishes to minimize the
expected number of shots required to get one ball in the hole (location 0).

Solution. To represent this as a SFABP we shall set rewards and costs all 0, except
that a reward R is obtained by continuing a bandit that is in state 0. So if some
bandit reaches state 0, say with the golfer’s tth shot, he will continue to play it there,
obtaining reward (βt + βt+1 + · · ·)R. Suppose the golfer pays at the start a ‘green fee’
of R/(1− β). Then he will be trying to maximize

− R

1− β
+ (βt + βt+1 + · · ·)R = −(1 + β + · · ·+ βt−1)R

which tends to −tR as β → 1. So he will be minimizing the expected number of shots
needed to sink a ball. Locations are ordered by their Gittins indices. Location 0 has
the greatest index, namely G0 = R/(1− β). The golfer should always play the ball in
location having greatest Gittins index.

Remark. We can reprise a proof of the index theorem, but working it for this golfing
problem. Suppose the golfer is playing with just one ball, which is in location xi. The
golfer faces a cost of 1 for each shot he takes until the ball is sunk. So to motivate
him to play, we offer a prize g(xi) which he wins if he plays at least one more shot and
eventually sinks the ball. However, he may still quit if subsequently the ball lands in a
bad place and the offered prize is no longer sufficiently motivating. If, however, that ever
happens, we will increase the offered prize, so that it again becomes just advantageous
for him to keep playing. This defines an nondecreasing sequence of offered prizes for
ball i. Notice that they are defined independently of the other balls.

Now he plays with n balls. To each ball we attach an offered prize, just as above.
It is a function of the ball’s location, just as if he were playing only with that ball.

33

The key idea is that with these offered prizes the golfer can keep playing until some
ball is sunk, and he will just break even. He is guaranteed to collect the least prize
at the time a ball is finally sunk if he follows the policy of always playing the ball for
which the least prize if offered. But the prizes were invented to make the game is ‘just
fair’, and so in minimizing the value of the prize obtained when a ball is sunk this
policy must also minimize the expected number of shots required until a ball is sunk.
The prize g(xi) is of course the Gittins index for location xi.

8.3 Target processes

The ‘problem above is different to our original set up of a SFABP problem. The golfing
problem ends once one of the balls reaches the hole, and there is no discounting. The
first issue we have modelled by allowing play to continue forever but making sure that
it is optimal to keep playing the ball that is already in the hole, gaining R each time.

To introduce discounting we might take P (x, 0) = 1 − β for all x. We also might
easily generalize to there being a cost c(x) for playing a ball in location x. The problem
is now one of seeking to minimize

E

[
∞∑

t=0

βtc(xit(t))− (1 − β)
R

1− β
− β(1 − β)

R

1− β
− β2(1− β)

R

1− β
− · · ·

]

= E

[
τ−1∑

t=0

βtc(xit(t))

]

− R

1− β
,

where it is the ball played at time t and xit(t) is its state. Ignoring the term of
−R/(1−β), the objective function now looks exactly like one with which we are familiar.

The golfing problem is an example of a so-called target process. The aim is
to control a SFABP in such as way as to minimize the expected cost incurred until
such time as one of the bandits achieves some objective (such as landing in a certain
state). For example, we might be viewing apartments in two neighborhoods, seeing
their ‘values’ as two i.i.d. sequences of variables X1, X2, . . . ∼ F , and Y1, Y2, . . . ∼ G,
but with F and G unknown. We wish to minimize the expected number of samples
required to find one (a Xt or Yt) that takes a value ≥ T , for some given target T .

8.4 Bandit superprocesses

Suppose that a ball in location x can be played with a choice of golf clubs. If club
a ∈ A(x), is used then x → y with probability Pa(x, y). Now the golfer must choose,
not only which ball to play, but with which club to play it. Under a condition, an index
policy is again optimal. He should play the ball with least prevailing prize, choosing
the club from A that is optimal if that ball were the only ball present.

However, the condition for this policy to be optimal quite demanding. Recall that
we defined g(x) as a prize that the golfer could obtain by playing the ball for at least
one more shot. The required condition is that whatever size of prize we offer, the golfer
will optimally choose the same club.

34

8.5 Example: single machine stochastic scheduling

A collection of n jobs is to be processed on a single machine. They have unknown
processing times, but we know how much processing each has already received, say
x1, . . . , xn, units respectively. The probability that job i of age xi will complete when
it is next serviced is h(xi), the hazard rate. We wish to maximize the expected value
of
∑

i riβ
ti , where ti is the time at which job i completes, (0 < β < 1).

Solution. The jobs can be viewed as bandit processes. In computing the index we
think about processing the job τ times, or until it completes, whichever comes first.

G(xi) = sup
τ>0

∑τ−1
t=0 βtrih(xi + t)

∏t−1
s=0(1− h(xi + s))

∑τ−1
t=0 βt

∏t−1
s=0(1− h(xi + s))

.

There are two special cases for which it is easy to see what to do.

• h(x) decreasing. Here τ = 1 and G(xi) = rih(xi).

We should always work on the job with the greatest index. Notice that this policy will
be preemptive. We may wish to leave a job before it is finished.

• h(x) increasing. Here τ = ∞.

We should always work on the job with the greatest index and then continue processing
it until it is complete. This policy will be nonpreemptive. Notice that as β → 1, G
tends to the ri/ETi, where Ti is the remaining processing time of job i.

Let Ci be the time that job i is completed. Notice also that setting α = 1− β,

∑

i

riβ
Ci =

∑

i

ri(1− α)Ci =
∑

i

ri − α
∑

i

riCi + o(α).

So in the limit β → 1 we are solving a problem of minimizing
∑

i riECi, which is
the expected value of a weighted sum of the completion times. This is known as the
weighted flow time.

It might be more natural to replace ri with ci since we are seeking to minimize a
cost. In the case that hazard rates are constant, but differ from job to job, say hi = µi

then jobs have processing times that are geometrically distributed and ETi = 1/µi and
the prescription is to process jobs in decreasing order of the index ci/ETi = ciµi. This
is the famous so-called cµ-rule.

8.6 Calculation of the Gittins index

We can compute the Gittins indices in the following way. The input is the data of ri(·)
and Pi(·, ·). If the state space of Bi is finite, say Ei = {1, . . . , ki}, then the Gittins
indices can be computed in an iterative fashion. First we find the state of greatest
index, say 1 such that 1 = argmaxj ri(j). Having found this state we find the state of
second-greatest index. If this is state j, then Gi(j) is computed in (7.2) by taking τ to

35

be the first time that the state is not 1. This means that the second-best state is the
state j which maximizes

E[ri(j) + βri(1) + · · ·+ βτ−1ri(1)]

E[1 + β + · · ·+ βτ−1]
,

where τ is the time at which, having started at xi(0) = j, we have xi(τ) 6= 1. One
can continue in this manner, successively finding states, and their Gittins indices, in
decreasing order of their indices. If Bi moves on a finite state space of size ki then its
Gittins indices (one for each of the ki states) can be computed in time O(k3i).

If the state space of a bandit process is infinite, as in the case of the Bernoulli
bandit, there may be no finite calculation by which to determine the Gittins indices for
all states. In this circumstance, we can approximate the Gittins index using something
like the value iteration algorithm. Essentially, one solves a problem of maximizing right
hand side of (7.2), subject to τ ≤ N , where N is large.

8.7 Branching bandits

Consider a queue on n jobs. Job i has a deterministic processing time ti and a reward
ri is obtained on completion. If we process the jobs in order 1, 2, . . . , n the completion
time of job i is Ci = t1 + · · ·+ ti and the discounted sum of rewards is

r1β
C1 + r2β

C2 + · · ·+ rkβ
Cn . (8.1)

Notice that if we put β = 1 the above is independent of the order in which the processing
is scheduled so the problem of optimal scheduling is vacuous. However, we can divide
(8.1) by 1− β, subtract it from (r1 + · · ·+ rn)/(1− β), and then let β → 1 we get

r1C1 + r2C2 + · · ·+ rnCn

which is a ri-weighted sum of the completion times. It is now a non-vacuous problem
to minimize this, which is done by always processing the job for which the index ri/ti =
limβ→1(1 − β)riβ

ti/(1 − βti) is greatest. This reprises our finding at the end of §8.5.
We call this a tax problem (because the uncompleted jobs are taxed.)

Now we consider a problem in which the number of bandits is not fixed. Suppose
the bandits are jobs of k different types and we start with ni jobs of type i. Processing
a job of type i takes time ti and at the end of this processing a random number of
new jobs arrive. Let’s suppose that the number of newly arriving type j is distributed
as a Poisson random variable with mean λjti. We pay a holding cost of ri per job of
type i that is in the system and wish to minimize the average holding cost. This is an
example of what is called a branching bandit and the Gittins index theorem can be
shown to hold.

Suppose that r1/t1 > · · · > rn/tn. The Gittins indices can be computed in the
manner of §8.6. It is easy to see that as long as there is at least one type 1 job in the
system then it should be processed. Suppose we have emptied the system of type 1

36

jobs and are trying to discover which job type is of next greatest priority. If we process
a job of type i then upon its completion we should next process all jobs of type 1 that
have newly arrived until such point that the system is again cleared of all type 1 jobs.
The expected number of jobs of type 1 that we will need to clear is proportional to ti,
say αti, the Gittins index is therefore (in the undiscounted case)

Gi =
ri + (αti)r1
ti + (αti)t1

=
ri/ti + αr1
1 + αt1

.

This is an increasing function of ri/ti, and so it is greatest for i = 2. So job type 2
has second greatest priority. Continuing in this way we see that the average waiting
cost in a M/G/1 queue is minimized by always processing the job of greatest ri/ti.
The Gittins indices are different to those in the problem with no arrivals, but they are
ordered the same.

8.8 Example: Searching for a single object

An object is hidden in one of n boxes. Ex ante, it is in box i with probability pi (where
these sum to 1). The probability that a search in box i finds the object if it is there is
qi. We wish to minimize the expected number of searches needed to find the object.

Solution. This is not obviously a bandit problem. Looking box i and not finding the
object changes all the posterior probabilities (indeed pi → (1 − qi)pi/(1 − qipi) and
pj → pj/(1 − qipi), j 6= i). So we do not see a ‘freezing’ of the states of the bandits
(boxes) that are not searched.

However, consider a different, discounted-reward problem, in which there are no
costs, but we receive a reward of βT /(1−β) if the object is found at time T . Note that

(1 + β + β2 + · · ·)− βT

1− β
= 1 + β + · · ·+ βT−1 → T, as β → 1.

So in the limit β → 1 the problem of maximizing the expected value of the reward
βT /(1 − β) that we obtain when the object is found at time T , is the same as the
problem of minimizing ET .

Now a policy is just a sequence in which we will search the boxes. If the kth
search of box i occurs at time tk this produces expected reward in the new problem
of pi(1 − qi)

k−1qiβ
tk , i.e. the probability the object is in box i and found on the kth

search. So the problem is now the same as that for a SFABP in which the kth time that
Bi is continued we get reward of pi(1− qi)

k−1qi. This is decreasing in k, which means
that the index for Bi when it has been searched k − 1 times is simply pi(1 − qi)

k−1qi
(as we will take τ = 1 in (7.2)). When the boxes has been searched k1, . . . , kn times
the posterior probabilities are p′i ∝ pi(1 − qi)

ki . Thus the index of Bi is proportional
to p′iqi, where p′i(k1, . . . , kn) is the posterior probability that the object is in box i

Thus we have proved that a myopic policy is optimal: always search next the box
for which p′i(k1, . . . , kn)qi is greatest. (Actually, this is a rather complicated way to
prove this fact. Instead we prove it using an interchange argument.)

37

9 Average-cost Programming

The average-cost optimality equation. Policy improvement algorithm.

9.1 Average-cost optimality equation

Suppose that for a stationary Markov policy π, the following limit exists:

λ(π, x) = lim
t→∞

1

t
Eπ

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

.

We might expect there to be a well-defined notion of an optimal average cost, λ(x) =
infπ λ(π, x), and that under appropriate assumptions, λ(x) = λ should not depend on
x. Moreover, a reasonable guess is that

Fs(x) = sλ+ φ(x) + ǫ(s, x),

where ǫ(s, x) → 0 as s → ∞. Here φ(x) + ǫ(s, x) reflects a transient due to the initial
state. Suppose that the state space and action space are finite. From the optimality
equation for the finite horizon problem we have

Fs(x) = min
u

{c(x, u) + E[Fs−1(x1) | x0 = x, u0 = u]}. (9.1)

So by substituting Fs(x) ∼ sλ+ φ(x) into (9.1), we obtain

sλ+ φ(x) ∼ min
u

{c(x, u) + E[(s− 1)λ+ φ(x1) | x0 = x, u0 = u]}

which suggests that the average-cost optimality equation should be:

λ+ φ(x) = min
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]}. (9.2)

Theorem 9.1. Suppose there exists a constant λ and bounded function φ satisfying
(9.2). Let π be the policy which in each state x chooses u to minimize the right hand
side. Then λ is the minimal average-cost and π is the optimal stationary policy.

Proof. Suppose u is chosen by some policy π′. By repeated substitution of (9.2) into
itself we have

φ(x) ≤ −tλ+ Eπ′

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπ′ [φ(xt) | x0 = x].

with equality if π′ = π. Divide this by t and let t → ∞. Boundedness of φ ensures that
(1/t)Eπ′ [φ(xt) | x0 = x] → 0. So we obtain

0 ≤ −λ+ lim
t→∞

1

t
Eπ′

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

,

with equality if π′ = π.

38

So an average-cost optimal policy can be found by looking for a bounded solution
to (9.2). Notice that if φ is a solution of (9.2) then so is φ+(a constant), because the (a
constant) will cancel from both sides of (9.2). Thus φ is undetermined up to an additive
constant. In searching for a solution to (9.2) we can therefore pick any state, say x̄,
and arbitrarily take φ(x̄) = 0. The function φ is called the relative value function.

9.2 Example: admission control at a queue

Each day a consultant is presented with the opportunity to take on a new job. The
jobs are independently distributed over n possible types and on a given day the offered
type is i with probability ai, i = 1, . . . , n. Jobs of type i pay Ri upon completion.
Once he has accepted a job he may accept no other job until that job is complete. The
probability that a job of type i takes k days is (1− pi)

k−1pi, k = 1, 2, Which jobs
should the consultant accept?

Solution. Let 0 and i denote the states in which he is free to accept a job, and in
which he is engaged upon a job of type i, respectively. Then (9.2) is

λ+ φ(0) =

n∑

i=1

aimax[φ(0), φ(i)],

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

Taking φ(0) = 0, these have solution φ(i) = Ri − λ/pi, and hence

λ =

n∑

i=1

aimax[0, Ri − λ/pi].

The left hand side is increasing in λ and the right hand side is decreasing λ. Hence
there is a root, say λ∗, and this is the maximal average-reward. The optimal policy
takes the form: accept only jobs for which piRi ≥ λ∗.

9.3 Value iteration bounds

Value iteration in the average-cost case is based upon the idea that Fs(x) − Fs−1(x)
approximates the minimal average-cost for large s. For the rest of this lecture we
suppose the state space is finite.

Theorem 9.2. Define

ms = min
x

{Fs(x) − Fs−1(x)}, Ms = max
x

{Fs(x) − Fs−1(x)}. (9.3)

Then ms ≤ λ ≤ Ms, where λ is the minimal average-cost.

39

Proof. Suppose π = f∞ is the average-cost optimal policy over the infinite horizon,
taking u = f(x), with average-cost λ. Then

Fs−1(x) +ms ≤ Fs−1(x) + [Fs(x) − Fs−1(x)]

= Fs(x)

≤ c(x, f(x)) + E[Fs−1(x1) | x0 = x, u0 = f(x)].

We substitute this into itself t− 1 times to get

Fs−1(x) ≤ −mst+ Eπ

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπ[Fs−1(xt) | x0 = x].

Divide by t and let t → ∞ to get ms ≤ λ. A bound λs ≤ Ms is found similarly using

Fs−1(x) ≥ −Ms + c(x, u) + E[Fs−1(x1) | x0 = x, u0 = fs(x)].

≥ −Mst+ Eπs

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

+ Eπs
[Fs−1(xt) | x0 = x].

This justifies use of a value iteration algorithm in which we calculate Fs until
Ms −ms ≤ ǫms. At that point the stationary policy f∞

s achieves an average-cost that
is within ǫ× 100% of optimal.

9.4 Policy improvement algorithm

In the average-cost case a policy improvement algorithm is be based on the follow-
ing observations. Suppose that for a policy π = f∞, we have that λ, φ solve

λ+ φ(x) = c(x, f(x0)) + E[φ(x1) | x0 = x, u0 = f(x0)],

and there exists a policy π1 = f∞
1 such that

λ+ φ(x) ≥ c(x, f1(x0)) + E[φ(x1) | x0 = x, u0 = f1(x0)], (9.4)

for all x, and with strict inequality for some x (and thus f1 6= f). Then following the
lines of proof in Theorems 9.1 and 9.2 (repeatedly substituting (9.4) into itself),

λ ≥ lim
t→∞

1

t
Eπ1

[
t−1∑

τ=0

c(xτ , uτ)

∣
∣
∣
∣
∣
x0 = x

]

. (9.5)

So π1 is at least as good as π. If there is no π1 then π satisfies (9.2) and so π is optimal.
This justifies the following policy improvement algorithm

40

(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞
s−1 determine φ, λ to solve

λ+ φ(x) = c(x, fs−1(x)) + E[φ(x1) | x0 = x, u0 = fs−1(x)].

This gives a set of linear equations, and so is intrinsically easier to solve than (9.2).
The average-cost of πs−1 is λ.

(2) Now determine the policy πs = f∞
s from

fs(x) = argmin
u

{c(x, u) + E[φ(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. If πs = πs−1 then we have a solution
to (9.2) and so πs−1 is optimal. Otherwise πs is a new policy. By the calculation in
(9.5) this has an average-cost no more than λ, so πs is at least as good as πs−1, We
now return to step (1) with s := s+ 1.

If both the action and state spaces are finite then there are only a finite number
of possible stationary policies and so the policy improvement algorithm must find an
optimal stationary policy in finitely many iterations. By contrast, the value iteration
algorithm only obtains increasingly accurate approximations of λ∗.

Example 9.3. Consider again the example of §9.2. Let us start with a policy π0 which
accept only jobs of type 1. The average-cost of this policy can be found by solving

λ+ φ(0) = a1φ(1) +

n∑

i=2

aiφ(0),

λ+ φ(i) = (1− pi)φ(i) + pi[Ri + φ(0)], i = 1, . . . , n.

The solution is λ = a1p1R1/(a1 + p1), φ(0) = 0, φ(1) = p1R1/(a1 + p1), and φ(i) =
Ri − λ/pi, i ≥ 2. The first use of step (1) of the policy improvement algorithm will
create a new policy π1, which improves on π0, by accepting jobs for which φ(i) =
max{φ(0), φ(i)}, i.e. for which φ(i) = Ri − λ/pi > 0 = φ(0).

If there are no such i then π0 is optimal. So we may conclude that π0 is optimal if
and only if piRi ≤ a1p1R1/(a1 + p1) for all i ≥ 2.

Policy improvement in the discounted-cost case.

In the case of strict discounting the policy improvement algorithm is similar:

(0) Choose an arbitrary stationary policy π0. Set s = 1.

(1) For stationary policy πs−1 = f∞
s−1 determine G to solve

G(x) = c(x, fs−1(x)) + βE[G(x1) | x0 = x, u0 = fs−1(x)].

(2) Now determine the policy πs = f∞
s from

fs(x) = argmin
u

{c(x, u) + βE[G(x1) | x0 = x, u0 = u]},

taking fs(x) = fs−1(x) whenever this is possible. Stop if fs = fs−1. Otherwise return
to step (1) with s := s+ 1.

41

10 Continuous-time Markov Decision Processes

Control problems in a continuous-time stochastic setting. Markov jump processes when the

state space is discrete. Uniformization

10.1 Stochastic scheduling on parallel machines

A collection of n jobs is to be processed on a single machine. They have processing
times X1, . . . , Xn, which are ex ante distributed as independent exponential random
variables, Xi ∼ E(λi) and EXi = 1/λi, where λ1, . . . , λn are known.

If jobs are processed in order 1, 2, . . . , n, they finished in expected time 1/λ1+ · · ·+
1/λn. So the order of processing does not matter.

But now suppose there are m (≥ 2) identical machines working in parallel. Let Ci

be the completion time of job i.

• maxi Ci is called the makespan (the time when all jobs are complete).

• ∑i Ci is called the flow time (sum of completion times).

Suppose we wish to minimize the expected makespan. We can find the optimal
order of processing by stochastic dynamic programming. But now we are in continuous
time, t ≥ 0. So we need the important facts:

(i) min(Xi, Xj) ∼ E(λi + λj); (ii) P (Xi < Xj | min(Xi, Xj) = t) = λi/(λi + λj).

Suppose m = 2. The optimality equations are

F ({i}) = 1

λi

F ({i, j}) = 1

λi + λj
[1 + λiF ({j}) + λjF ({i})]

F (S) = min
i,j∈S

1

λi + λj
[1 + λiF (Si) + λjF (Sj)],

where S is a set of uncompleted jobs, and we use the abbreviated notation Si = S \{i}.
It is helpful to rewrite the optimality equation. Let Λ =

∑

i λi. Then

F (S) = min
i,j∈S

1

Λ



1 + λiF (Si) + λjF (Sj) +
∑

k 6=i,j

λkF (S)





= min
ui∈[0,1],i∈S,∑

i
ui≤2

1

Λ

[

1 + ΛF (S) +
∑

i

uiλi(F (Si)− F (S))

]

This is helpful, because in all equations there is now the same divisor, Λ. An event
occurs after a time that is exponentially distributed with parameter Λ, but with proba-
bility λk/Λ this is a ‘dummy event’ if k 6= i, j. This trick is known as uniformization.
Having set this up we might also then say let Λ = 1.

42

We see that it is optimal to start by processing the two jobs in S for which δi(S) :=
λi(F (Si)− F (S)) is least.

Theorem 10.1.
(a) Expected makespan is minimized by LHR.

(b) Expected flow time is minimized by HHR.

(c) E[C(n−m+1)] (expected time there is first an idle machine) is minimized by LHR.

Proof. We prove only (a), and for simplicity assume m = 2 and λ1 < · · · < λn. We
would like to prove that for all i, j ∈ S ⊆ {1, . . . , n} that

i < j ⇐⇒ δi(S) < δj(S) (except possibly if both i and j

are the jobs that would be processed by the optimal policy).
(10.1)

This would mean that jobs should be started in the order 1, 2, . . . , n.

Let π be LLR. Take an induction hypothesis that (10.1) is true and that F (S) =
F (π, S) when S is a strict subset of {1, . . . , n}. Now consider S = {1, . . . , n}. We
examine F (π, S), and δi(π, S), under the conjectured optimal policy π. Let Sk denote
S \ {k}. For i ≥ 3,

F (π, S) =
1

λ1 + λ2
[1 + λ1F (S1) + λ2F (S2)]

F (π, Si) =
1

λ1 + λ2
[1 + λ1F (S1i) + λ2F (S2i)]

=⇒ δi(π, S) =
1

λ1 + λ2
[λ1δi(S

1) + λ2δi(S
2)], i ≥ 3. (10.2)

If for some 3 ≤ i < j we were to have δi(π, S) > δj(π, S) then this would require that
either δi(S

1) > δj(S
1) or δi(S

2) > δj(S
2). But our inductive hypothesis for (10.1) rules

these out.

Similarly, we can compute δ1(π, S).

F (π, S) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S2) + λ3F (π, S)]

F (π, S1) =
1

λ1 + λ2 + λ3
[1 + λ1F (S1) + λ2F (S12) + λ3F (S13)]

=⇒ δ1(π, S) =
1

λ1 + λ2 + λ3
[λ2δ1(S

2) + λ3δ1(π, S) + λ1δ3(S
1)]

=
1

λ1 + λ2
[λ1δ3(S

1) + λ2δ1(S
2)]. (10.3)

By comparing (10.2) and (10.3) we see that we could only have δi(S) < δ1(S) for i ≥ 3
if at least one of δi(S

1) < δ3(S
1) or δi(S

2) < δ1(S
2) is true. These are ruled out by our

inductive hypothesis. Similarly, we cannot have δi(S) < δ2(S) for i ≥ 3.

43

This completes a step of a step of an inductive proof by showing that (10.1) is true
for S, and that F (S) = F (π, S). We only need to check the base of the induction. This
is provided by the simple calculation

δ1({1, 2}) = λ1(F ({2})− F ({1, 2})) = λ1

[
1

λ2
− 1

λ1 + λ2

(

1 +
λ1

λ2
+

λ2

λ1

)]

= − λ2

λ1 + λ2
≤ δ2({1, 2}).

The proof of (b) is very similar, except that the inequality in (10.1) should be
reversed. The base of the induction comes from δ1({1, 2}) = −1.

The proof of (c) is also similar. The base of the induction is provided by δ1({1, 2}) =
λ1(0 − 1/(λ1 + λ2)). Since we are seeking to maximize EC(n−m+1) we should process
jobs for which δi is greatest, i.e., least λi. The problem in (c) is known as the Lady’s
nylon stocking problem. We think of a lady (having m = 2 legs) who starts with n
stockings, wears two at a time, each of which may fail, and she wishes to maximize the
expected time until she has only one good stocking left to wear.

10.2 Controlled Markov jump processes

The above is an example of a controlled Markov jump process, which evolves in
continuous time within a discrete state space. In general:

• The state is i. We choose some control, say u.

• After a time that is exponentially distributed with parameter qi(u) =
∑

j 6=i qij(u),
(i.e. having mean 1/qi(u)), the state jumps.

• Until the jump occurs cost accrues at rate c(i, u).

• The jump is to state j (6= i) with probability qij(u)/qi(u).

The infinite-horizon optimality equation is

F (i) = min
u







1

qi(u)



c(i, u) +
∑

j

qij(u)F (j)










.

We can use the uniformization trick, picking a B such that qi(u) ≤ B for all i, u.

F (i) = min
u







1

B



c(i, u) + (B − qi(u))F (i) +
∑

j

qij(u)F (j)










.

We now have something that looks exactly like a discrete-time optimality equation

F (i) = min
u






c̄(i, u) +

∑

j

pij(u)F (j)







44

where c̄(i, u) = c(i, u)/B, pij(u) = qij(u)/B, j 6= i, and Pii(u) = 1− qi(u)/B.
This is great! It means we can use all the methods and theorems that we have

developed previously for solving discrete-time dynamic programming problems.
We can also introduce discounting by imagining that there is an ‘exponential clock’

of rate α which takes the state to a place where no further cost or reward is obtained.
This leads to an optimality equation of the form

F (i) = min
u






c̄(i, u) + β

∑

j

pij(u)F (j)






,

where β = B/(B + α), c̄(i, u) = c(i, u)/(B + α), and pij(u) is as above.

10.3 Example: admission control at a queue

Consider a queue in which the number of customers waiting may be 0, 1, There is
a constant service rate µ (meaning that the service times of customers are distributed
E(µ), and arrival rate u, where u is controllable between 0 and a maximum value M .
Let c(x, u) = ax − Ru. This corresponds to paying a holding cost a per unit time
for each customer in the queue and receiving a reward R at the point that each new
customer is admitted (and therefore incurring reward at rate Ru when the arrival rate is
u). Suppose there is discounting at rate α. The problem is one of choosing 0 ≤ ut ≤ M
to minimize

E

[∫ ∞

0

(axt −Rut)e
−αtdt

]

.

Let us take B = α+M + µ, and without loss of generality assume B = 1.
After uniformization the discounted-cost optimality equation will look like

F (0) = inf
u∈[0,M]

{−Ru+ β[uF (1) + (M − u)F (j − 1)]}

F (x) = inf
u∈[0,M]

{ax−Ru+ β[uF (x+ 1) + µF (x− 1) + (M − u)F (x)]}, x = 1, 2, . . .

So we can see that the optimal control is bang-bang, taking u = 0 or u = M as the
coefficient of u, namely −R+ F (x + 1)− F (x), is postive or negative. One can set up
a value iteration form of this, i.e.

Fk+1(0) = inf
u∈[0,M]

{−Ru+ β[uFk(1) + (M − u)Fk(j − 1)]}

Fk+1(x) = inf
u∈[0,M]

{ax−Ru+ β[uFk(x+ 1) + µFk(x− 1) + (M − u)Fk(x)]}, x = 1, 2, . . .

and then prove by induction that Fk(x) is concave in x. This means that there exists
a threshold rule such that the optimal policy will be of the form:

u =

{

0

M
as x

≥
<

x∗.

45

Time-average cost optimality. The optimality equation is

φ(0) + γ = inf
u∈[0,M]

[−Ru+ uφ(1) + (µ+M − u)φ(0)],

= inf
u∈[0,M]

[u{−R+ φ(1)− φ(0)} + (µ+M)φ(0)],

φ(x) + γ = inf
u∈[0,M]

[ax− Ru+ uφ(x+ 1) + µφ(x− 1) + (M − u)φ(x)],

= inf
u∈[0,M]

[ax+ u{−R+ φ(x + 1)− φ(x)} + µφ(x− 1) +Mφ(x)], x > 0.

Thus u should be chosen to be 0 or 1 as −R+ φ(x+ 1)− φ(x) is positive or negative.
Let us consider what happens under the policy that take u = M for all x. The

relative costs for this policy, say f , are given by

f(x) + γ = ax−Rλ+Mf(x+ 1) + µf(x− 1), x > 0.

The solution to the homogeneous part of this recursion is of the form f(x) = d11
x +

d2(µ/M)x. Assuming M < µ and we desire a solution for f that does not grow
exponentially, we take d2 = 0 and so the solution is effectively the solution to the
inhomogeneous part, i.e.

f(x) =
ax(x+ 1)

2(µ−M)
, γ =

aM

µ−M
−MR,

Applying the idea of policy improvement, we conclude that a better policy is to take
u = 0 (i.e. don’t admit a customer) if −R+ f(x+ 1)− f(x) > 0, i.e. if

(x+ 1)a

µ−M
−R > 0.

Further policy improvement would probably be needed to reach the optimal policy.
However, this policy already exhibits an interesting property: it rejects customers for
smaller queue length x than does a policy which rejects a customer if and only if

(x+ 1)a

µ
−R > 0.

This second policy is optimal if one is purely concerned with whether or not an in-
dividual customer that joins when there are x customers in front of him will show a
profit on the basis of the difference between the reward R and his expected holding
cost (x+1)a/µ. This example exhibits the difference between individual optimality
(which is myopic) and social optimality. The socially optimal policy is more reluc-
tant to admit customers because it anticipates that more customers are on the way;
thus it feels less badly about forgoing the profit on a customer that presents himself
now, recognizing that admitting such a customer can cause customers who are admitted
after him to suffer greater delay. As expected, the policies are nearly the same if the
arrival rate λ is small.

46

11 Restless Bandits

11.1 Examples

Again, we start with a family of n alternative Markov decision processes. Given their
states at time t, say x1(t), . . . , xn(t), we are to choose actions u1(t), . . . , un(t) to apply
at time t. As in the multi-armed bandit problem, we suppose that there are just two
available actions, so ui(t) ∈ {0, 1}. We generalize the SFABP set up in two ways.

Our first generalization is to require that at each time t exactly m (< n) of the
bandits be given the ‘active’ action ui = 1.

Our second generalization is that the ‘passive’ action u = 0 no longer freezes a
bandit; instead, the state evolves, but differently from its continuation under u = 1.

Example 11.1. Suppose the state of a bandit is a measure of its vigour. The active
and passive actions correspond to notions of work and rest. Performance is positively
related to vigour (or lack of fatigue), which increases with rest and decreases with
work. For example, suppose that x takes values in {1, . . . , k}. If the active action
u = 1 is applied to a bandit in state x, then there accrues an immediate reward of
r(x), increasing in x, but vigour decreases to max{x− 1, 1}. The passive action u = 0
produces no reward, but vigour increases to min{x+ 1, k}.

Example 11.2. The active and passive actions might correspond to notions of ‘obser-
vation’ and ‘no observation’. Suppose that each bandit is in one of two conditions: 0
and 1, associated with being ‘bad’ or ‘good’, respectively. It moves back and forth be-
tween these two conditions independently of any actions applied by the decision-maker,
according to a 2-state Markov chain. Each bandit is now a POMDP. So far as the
decision-maker is concerned the state of the bandit is the probability that it is in good
condition. Under the action u = 1 the condition is observed, and if this is found to be
i then x(t + 1) = pi1. Moreover, if the condition is good then a reward is obtained.
Under the action u = 0 the underlying condition of the process is not observed, and so,
in a Bayesian manner, x(t+ 1) = x(t)p11 + (1− x(t))p01. No reward is obtained.

Example 11.3. The active and passive actions correspond to running the process at
different speeds. For example, suppose for 0 < ǫ < 1,

P (j|i, 0) =
{

ǫP (j|i, 1), i 6= j

(1− ǫ) + ǫP (i|i, 1), i = j

Thus a bandit which is operated continuously with u = 1 has the same stationary
distribution as one that is operated continuously with u = 0. But the process moves
faster when u = 1.

47

11.2 Whittle index policy

Let Ω = {(u1, . . . , un) : ui ∈ {0, 1} for all i, and
∑

i ui(t) = m}. The optimality
equation is

F (x) = max
u∈Ω

{
∑

i

r(xi, ui) + β
∑

y1,...,yn

F (y1, . . . , yn)
∏

i

P (yi |xi, ui)

}

.

Let us focus upon average reward (i.e. the limit as β → 1). This is attractive because
performance does not depend on the initial state. Assuming that the n bandits are
statistically equivalent it is plausible that, under an optimal policy, bandit i will be
given the action ui = 1 for precisely a fraction m/n of the time. This motivates interest
in an upper bound on the maximal average reward that can be obtained by considering
a single bandit and asking how it should be controlled if we wish to maximize the
average reward obtained from that bandit, subject to a relaxed constraint that ui = 1
is employed for a fraction of exactly m/n of the time.

So consider a stationary Markov policy for operating a single restless bandit. Let
zux be the proportion of time that the bandit is in state x and that under this policy
the action u is taken. An upper bound for our problem can be found from a linear
program in variables {zux : x ∈ E, u ∈ {0, 1}}:

maximize
∑

x,u

r(x, u)zux (11.1)

subject to
∑

x,u

zux = 1 (11.2)

∑

x

z0x ≥ 1−m/n (11.3)

∑

u

zux =
∑

y,u

zuyP (x | y, u), for all x (11.4)

zux ≥ 0, for all x, u. (11.5)

Here (11.4) are equations that determine the stationary probabilities. Notice that we
have put an inequality in (11.3). Let us justify this by making the assumption that
action u = 1 (which we call the active action is in some sense better than u = 0
(which we call the passive action. So if constraint (11.3) did not exist then we would
wish to take u = 1 in all states. At optimality (11.3) will hold with equality.

The optimal value of the dual LP problem is equal to g, where this can be found
from the average reward dynamic programming equation

φ(x) + g = max
u∈{0,1}

{

r(x, u) + λ(1 − u) +
∑

y

φ(y)P (y |x, u(x))
}

. (11.6)

48

Here λ and φ(x) are the Lagrange multipliers for constraints (11.3) and (11.4), respec-
tively. The multiplier λ is positive and may be interpreted as a subsidy for taking the
passive action. It is interesting to see how (11.6) can be obtained from (11.1)–(11.4).
However, we might have simply taken as our starting point a problem of maximizing
average reward when there is a subsidy for taking the passive action.

In general, the solution of (11.6) partitions the state space E into three sets, E0, E1

and E01, where, respectively the optimal action is u = 0, u = 1, or some randomization
between both u = 0 and u = 1. Let us avoid uninteresting pathologies by supposing
that the state space is finite, and that every pure policy gives rise to a Markov chain
with one recurrent class. Then the set E01, where there is randomization, need never
contain more than 1 state, a fact that is known for general Markov decision processes
with constraints.

It is reasonable to expect that as the subsidy λ increases in (11.6) the set of states
E0 (in which u = 0 is optimal) should increase monotonically. This need not happen
in general. However, if it does then we say the bandit is indexable. Whittle defines
as an index the least value of the subsidy λ such that u = 0 is optimal. We call
this the Whittle index, denoting it W (·), where W (x) = inf{λ : x ∈ E0(λ)}. It
can be used to define a heuristic policy (the Whittle index policy) in which, at
each instant, one engages m bandits with the greatest indices, i.e. those that are the
last to leave the set E1 as the subsidy for the passive action increases. The Whittle
index extends the Gittins optimal policy for classical bandits; Whittle indices can be
computed separately for each bandit; they are the same as the Gittins index in the case
that u = 0 is a freezing action, so that P (j|i, 0) = δij .

11.3 Whittle indexability

The discussion so far begs two questions: (i) under what assumptions is a restless
bandit indexable, and (ii) how good is the Whittle index policy? Might it be optimal,
or very nearly optimal as n becomes large?

Interestingly, there are special classes of restless bandit for which one can prove
indexability. Bandits of the type in Example 11.2 are indexable. The dual-speed
bandits in Example 11.3 are indexable. A restless bandit is also indexable if the passive
action transition probabilities, P (j | i, 0), depend only on j (the destination state).

11.4 Fluid models of large stochastic systems

It is often interesting to think about problems in some ‘large N ’ limit. Consider, for
example, N identical independently running single server queues, of type M/M/1, each
with its own Poisson arrival stream of rate λ and server of rate µ. The probability that
a given queue has i customers is πi = ρi(1−ρ) where ρ = λ/µ. The queues are running
independently and so we would expect the number of them that have i customers to
be Nπi. Suppose we start off with Nxi(0) of the queues having i customers, where
∑

i xi(0) = 1. Since N is large, transitions will be happening very fast, and so using

49

the law of large numbers we expect to see

d

dt
x0(t) = µx1(t)− λx0(t)

d

dt
xi(t) = λxi−1(t) + µxi+1(t)− (λ+ µ)xi(t).

We have replaced our stochastic system by a deterministic fluid approximation. (There
are theorems which talk about the convergence when N → ∞.) These differential
equation will produce a trajectory xi(t) → πi as t → ∞.

The same things happens even if we link the behaviour of the queues. Suppose we
have total processing effort Nµ. Rather than place µ per queue, as above, we now
decide to allocate 2µ to all queues having more than the median number of customers.
Suppose

∑j−1
i=1 xi(t)+αxj(t) = 0.5, so queues with ≤ j customers are not served, those

with ≥ j +1 are served, and some service (1−α)xj(t)µ effort is wasted. Now the fluid
approximation is

d

dt
x0(t) = µx1(t)− λx0(t)

d

dt
xi(t) = λxi−1(t)− λxi(t), 0 < i ≤ j − 1

d

dt
xj(t) = λxj−1(t) + 2µxj+1(t)− λxj(t)

d

dt
xk(t) = λxk−1(t) + 2µxk+1(t)− (λ+ 2µ)xk(t), k ≥ j + 1.

The appropriate set of differential equations will of course change depending upon which
j is the median queue size. There will still be convergence to some equilibrium point
(which we might hope will have a smaller average queue size.)

11.5 Asymptotic optimality

We now turn to the question of optimality or near optimality of the Whittle index

policy. Taking m = αn, let R
(n)
W (α), R

(n)
opt(α) and r(α) denote, respectively, the average

reward that is obtained from n restless bandits under the Whittle index policy, under
an optimal policy, and from a single bandit under the relaxed policy (that the bandit
receive the action u = 1 for a fraction α of the time). Then

R
(n)
W (α) ≤ R

(n)
opt(α) ≤ nr(α).

It is plausible that the Whittle index policy should be asymptotically optimal as

n becomes large, in the sense that r(α) − R
(n)
W (α)/n → 0 as n → ∞. This is true

if certain differential equations have an asymptotically stable equilibrium point (i.e.
a point to which they converge from any starting state). These are the differential
equations which describe a fluid approximation to the stochastic process of the bandit
states evolving under the Whittle index policy.

50

Suppose bandits move on a state space of size k and let zi(t) be the proportion of
the bandits in state i. The ‘fluid approximation’ for large n is given by piecewise linear
differential equations, of the form:

dz

dt
= A(z)x+ b(z),

where A(z) and b(z) are constants within k polyhedral regions which partition the
positive orthant of Rk. For example for k = 2,

dzi
dt

=
∑

j

qji(z)zj −
∑

j

qij(z)zi

dz1
dt

=

{ −(q012 + q021)z1 + (q012 − q112)ρ+ q021 , z1 ≥ ρ

−(q112 + q121)z1 − (q021 − q121)ρ+ q021 , z1 ≤ ρ

It turns out that there are examples of dual-speed restless bandits (needing k > 3) in
which the differential equations have an asymptotically stable equilibrium cycle (rather
than a stable equilibrium point), and this can lead to suboptimality of the Whittle
index policy. However, in examples, the suboptimality was never found to be more
than about one part in 104.

Theorem 11.4. If bandits are indexable, and the fluid model has an asymptotically
stable equilibrium point, then the Whittle index heuristic is asymptotically optimal, —
in the sense that the reward per bandit tends to the reward that is obtained under the
relaxed policy.

Here is an example where the Whittle index does not quite provide asymptotically
optimal performance.

(

q
0

ij

)

=











−2 1 0 1

2 −2 0 0

0 56 −

113

2

1

2

1 1 1

2
−

5

2











,
(

q
1

ij

)

=











−2 1 0 1

2 −2 0 0

0 7

25
−

113

400

1

400

1 1 1

2
−

5

2











r0 = (0, 1, 10, 10) , r1 = (10, 10, 10, 0) , ρ = 0.835

51

0.10

0.16

0.32

0.42

z1

z2

z3

z4

t →

a = 1

a = 0

a = 0/1

Equilibrium point is (z̄1, z̄2, z̄3, z̄4) = (0.409, 0.327, 0.100, 0.164). z̄1 + z̄2 + z̄3 = 0.836.
The equilibrium is a cycle. Relaxed policy obtains average reward 10 per bandit.
Heuristic obtains only 9.9993 per bandit.

It is tempting to try to generalize the idea of a Whittle index for restless bandits to
problems with a discounted reward criterion, starting with the appropriate functional
equation in place of and adding a subsidy for use of the passive action. However, there
is no asymptotic optimality result for this case that is analogous to the result of for the
average reward case. The use of discounted versions of Whittle indices can actually end
up recommending the worst of all priority policies, and a payoff that is very far from
the optimum. This is because the identity of the optimal priority policy can critically
depend on the starting state of the n restless bandits, whereas the ordering of Whittle
indices is calculated without reference to the starting state.

52

12 Sequential Assignment and Allocation Problems

Having met the Secretary problem, Multi-armed bandit problem, etc., we now turn to some

other very well-known and interesting problems that I have personally enjoyed.

12.1 Sequential stochastic assignment problem

Derman, Lieberman and Ross (1974) defined the following sequential stochastic
assignment problem (SSAP). It has been applied in many contexts, including kidney
transplantation, aviation security, buying decisions in supply chains, and real estate.

There are n workers available to perform n jobs. First job 1 appears, followed by
job 2, etc. Associated with the jth job is a random variable Xj which takes the value
xj . X1, . . . , Xn are i.i.d. random variables with distribution function G. If a ‘perfect’
worker is assigned to the value xj job, a reward xj is obtained. However, none of the
workers is perfect, and whenever the ith worker is assigned to any type xj job, the
(expected) reward is given by pixj , where 0 < pi < 1 is a known constant. After a
worker is assigned, he is unavailable for future assignments. The problem is to assign
the n workers to the n jobs so as to maximize the total expected reward. A policy is a
rule for assigning workers to jobs. Let random variable ij be the worker (identified by
number) assigned to the jth arriving job. The expected reward to be maximized is

n∑

j=1

E[pijXj].

The optimal policy is given by the following theorem. The surprise is that the
thresholds αi,n are independent of the p’s.

Theorem 12.1. For each n > 1, there exist numbers a0,n > a1,n > a2,n > · · · > an,n =
0 such that whenever there are n stages to go and p1 > · · · > pn then the optimal choice
in the initial stage is to use pi if the random variable X1 is contained in the interval
(ai−1,n, ai,n]. The ai,n depend on G but are independent of the pi.

Furthermore ai,n is the expected value, in an n− 1 stage problem, of the quantity to
which the ith largest p is assigned (assuming an optimal policy is followed), and

F (p1, . . . , pn−1) =

n−1∑

i=1

piai,n, p1 > · · · > pn−1.

Proof. The proof is by induction. Assuming it is true for n− 1, we have for n,

F (p1 . . . , pn | x) = max
i

{xpk + F (p1, . . . , pk−1, pk+1, . . . , pn)}

= max
k







k−1∑

j=1

pjaj,n + pkx+

n∑

j=k+1

pjaj−1,n






.

53

We use the Hardy-Littlewood rearrangement inequality, which says that if
a < A and b < B then ab+ AB > aB + bA. That is, it is best to match smallest with
smallest, largest with largest.

Suppose X1 = x1 and {a1,n, . . . , ai−1,n, x1, ai,n, . . . , an−1,n} is a decreasing se-
quence. Then the optimum matching of these numbers against the decreasing numbers
{p1, p2, . . . , pn}, is to form the sum of the products obtained by matching, for each j, the
jth largest of {a1,n, . . . , ai−1,n, x1, ai,n, . . . , an−1,n} with jth largest of {p1, p2, . . . , pn},
which means that x1 should be matched with pi. Notice that ak,n+1 is the expected
value of the X that gets matched to pk. This value does not depend on the values of
the pis.

We could implement the optimal strategy by offering each job to the workers in
decreasing order of their p values. Worker i will accept the job if workers 1, . . . , i − 1
reject it, and then X ≥ ai,n, since the jobs is worth is as much to him as he would expect
to get if he forgoes it and then faces a n− 1 stage problem (where his expected match
is ai,n). This is nice. We can obtain the socially optimal allocation by presenting the
workers with a problem that they each solve from an individually optimal viewpoint.

12.2 Sequential allocation problems

Groundwater Management Burt (1965). Each day water is to be pumped from
an aquifer, and replenished by a random amount of rainfall Rt. The aim is to maximize
an expected sum of utilities

∑
a(yt) minus pumping cost

∑
c(xt, yt).

F (x, s) = max
y∈[0,x]

{a(y)− c(x, y) + βEF (x− y +Rs, s− 1)}

F (x, 0) = 0. x is level of water in an aquifer.

Here s = h− t is time-to-go.

Investment problem Derman, Lieberman and Ross (1975). With probability pt
there is an opportunities to invest part of ones capital at time t. The aim is maximize
the expected sum of

∑
a(yt).

F (x, s) = qsF (x, s− 1) + ps max
y∈[0,x]

{a(y) + F (x− y, s− 1)}

F (x, 0) = 0. x is remaining capital of dollars.

General fighter problem With probability pt there is an opportunity for a fighter
to shoot down an enemy plane. If m missiles are used then the enemy plane is destroyed
with probability a(m) and the fighter survives the dogfight with probability c(m). The
aim is to maximize the expected number of enemy planes destroyed.

F (n, s) = qsF (n, s− 1) + ps max
m∈{1,...,n}

{a(m) + c(m)F (n−m, s− 1)}

F (n, 0) = 0. n is remaining stock of missiles.

54

Bomber problem Klinger and Brown (1968). With probability pt a bomber must
defend itself against an attack and wishes to maximize the probability of reaching its
final target.

P (n, s) = P (survive to for s further distance)

= qsP (n, s− 1) + ps max
m∈{1,...,n}

c(m)P (n−m, s− 1)

P (n, 0) = 1. n is remaining stock of missiles. Typically, c(m) = 1− θm.

The bomber problem can also be posed in continuous time, as

P (n, t) = e−t +

∫ t

0

max
m∈{1,...,n}

c(m)P (n−m, s)e−(t−s) ds.

Intuitively obvious properties of an optimal policy are (for the bomber problem,
and other problems similarly)

(A) m(n, s) ց as s ր

(B) m(n, s) ր as n ր

(C) n−m(n, s) ր as n ր
Properties like these are sometimes quite easy to prove. Sometimes this is by a

value iteration approaching, proving that the value function has appropriate concavity
properties. Or sometimes an interhange arguments helps. Consider (C) for the Bomber
Problem. We shall assume that log c(m) is concave in m.

Proof of (C) of the Bomber Problem. Let

m(n, s) = arg max
m∈{1,...,n}

c(m)P (n−m, s− 1).

We wish to show that n−m(n, s− 1) is nondecreasing in n. Suppose this were not the
case. So perhaps m = m(n, s− 1) but m′ = m(n+ 1, s− 1) with n−m > n+ 1 −m′,
i.e., m′ > m+ 1. Consider the product of the survival probabilities

c(m)P (n−m, s− 1)× c(m′)P (n+ 1−m′, s− 1) (12.1)

Let m̄ = m′ − 1 and m̄′ = m + 1. This different choice of amounts to fire in state
(n, s− 1) and (n+ 1, s− 1) would have a product of survival probabilities

c(m̄))P (n− m̄, s− 1)× c(m̄′)P (n+ 1− m̄′, s− 1)

= c(m′ − 1)P (n+ 1−m′, s− 1)× c(m+ 1)P (n−m, s− 1) (12.2)

(12.2)− (12.1)

=
[

c(m+ 1)c(m′ − 1)− c(m)c(m′)
]

P (n−m, s− 1)P (n+ 1−m′, s− 1)

≥ 0,

55

since log c(m) is concave means that m′ > m+ 1 =⇒ c(m+ 1)

c(m)
>

c(m′)

c(m′ − 1)
.

Hence at least one of our original m and m′ must not have been optimal.

However (B) for the Bomber problem remains an unproven conjecture, as also is
(A) for the General fighter problem. It has been shown there are (B) is not true
for the Bomber problem if c(m) is an arbitrary concave function. However, opinion is
very divided about whether or not (B) might be true for the special concave function
c(m) = 1− θm. Very extensive computation have turned up no counterexample.

12.3 SSAP with arrivals

Suppose workers and jobs arrive according to Poisson processes with respective rates γ
and λ. The workers are identical with pi = 1 (the so-called house-selling case). Rewards
are exponentially discounted with rate α. Job values are i.i.d., say U [0, 1].

Suppose that an arriving job is offered to the workers in inverse order of their arrival
times; so the worker that arrived most recently has first right of refusal for jobs, and
workers try to maximize their own expected job values. The individually optimal (IO)
policy is the Nash equilibrium of a noncooperative game; that is, if all workers follow
the IO policy and each worker is trying to maximize its own expected job value, then
no worker will have incentive to deviate from the IO policy. Righter (2011) has shown
that the IO policy is unique and has proved the following.

Theorem 12.2. The IO policy is socially optimal (maximizing total discounted return).
Thus the socially optimal policy is a threshold policy.

A worker who is ith to be offered a job of value x should accept it iff x ≥ ti, where
t1 > t2 · · · and ti is the expected discounted job value that is allocated to worker i
under the IO policy. Use uniformization, so γ + λ + α = 1. This mean we can now
think of γ and λ as probabilities, and of our problem as taking place in discrete time.
The thresholds are given by thinking about worker i being indifferent between accepting
and rejecting a job:

ti = γ ti+1
︸ ︷︷ ︸

new worker arrives

+ λ
[

tiP (X < ti)
︸ ︷︷ ︸

new job assigned to

worker behind i

+E[X 1{ti≤X<ti−1}]
︸ ︷︷ ︸

new job assigned to

worker i

+ ti−1P (X ≥ ti−1)
︸ ︷︷ ︸

new job assigned to

worker ahead of i

]

.

Proof. We show that following the IO policy, starting with the first decision, is better
(for the sum of the worker’s obtained values) than following an arbitrary policy for the
first decision and then switching to the IO policy thereafter (call the latter policy π).
Essentially we are showing that the policy improvement algorithm cannot improve IO.

Suppose at the first decision, ti−1 > x ≥ ti but the job is assigned to no worker by
π, and the IO policy is used thereafter. Workers 1, 2, . . . , i − 1 and all future arriving

56

workers will have the same expected job value (EJV) under IO and π. Worker i would
have had x under IO, but will only get ti under π. Workers i+ 1, . . . , n will also have
greater EJVs from time 1 onward once i has been assigned a job, so for them also IO
is better than π. So the job should be assigned.

What if there are n workers present and x < tn? IO rejects the job. If a policy π
assigns the job to a worker, which we may take to be worker n, then all other workers
have the same EVJ under IO and π, but worker n is taking x, whereas under π his
EJV would be tn, which is greater. So π cannot be optimal.

12.4 SSAP with a postponement option

Consider now a SSAP with m perfect workers (pi = 1), and n (> m) jobs to be
presented sequentially, with i.i.d. values X1, . . . , Xn ∼ U [0, 1], and discounting. We no
longer demand that a job must be assigned or rejected upon first seeing its value. It
may be held in a queue, for possible assignment later. For a state in which there are
s = n− t jobs still to see, m workers still unassigned, and a queue holding jobs of values
x1 > · · · > xm (some of these can be 0) the optimality equations are

Fs,m(x1, . . . , xm) =

∫ 1

0

Gs,m(T (x, x1, . . . , xm)) dx

Gs,m(x1, . . . , xm) = max
i∈{0,...,m}







i∑

j=1

xj + βFs,m−i(xi+1, . . . , xm)






,

where T (x, x1, . . . , xm) is the vector formed from {x, x1, . . . , xm} by discarding the
smallest element and then rearranging the rest in decreasing order. We have written
the optimality equation in two parts. The first equation is about receiving the next
job. The second is about assigning jobs that are presently in the postponement queue.
Feng and Hartman (2012) have proved the following.

Theorem 12.3. An optimal policy is to assign the available job of greatest value, x,
iff x ≥ αm,s where the threshold αm,s depends on the numbers of unassigned workers,
m, and jobs left to see, s, but not on the values of the other jobs in the queue.

The final part of this statement is rather surprising. One might have expected that
it would be optimal to assign the jobs of greatest value if and only if it is greater than
some threshold, but where this is a complicated function of m, s and the values of the
other jobs that are in the queue and are available to be assigned later.

The proof is very complicated. It would be nice to find an simpler proof, perhaps by
thinking about re-casting the problem into one about individual optimality, as Righter
did with the arrivals case of the SSAP.

57

12.5 Stochastic knapsack and bin packing problems

Similar to the problems we have addressed thus far is the stochastic knapsack prob-
lem. It has been applied within the field of revenue management. The capacity of the
knapsack is a given amount of resource that can be used to fulfill customer demand
over a certain time frame. Some examples include: rooms in a hotel aimed at weekend
tourists, or seats on an airplane that must be sold before departure. Items of arrive
with random sizes Xi and values Ri. We wish to maximize the expected total value of
the items we can fit into a knapsack of size c.

For example, Coffman, Flatto, Weber (1987) have studied a stochastic bin packing
problem. Items of sizes X1, X2, . . . , Xn are encountered sequentially. These are i.i.d.
with distribution function G. We wish to maximize the expected number of items that
we can pack into a bin of size c. Each item must be accepted or rejected at the time it
is encountered.

Let x by the space that is left in the bin. The dynamic programming equation is

Fs(x) = (1−G(x))Fs−1(x) +

∫ x

0

max{Fs−1(x), 1 + Fs−1(x− y)}dG(y)

F0(x) = 0.

The optimal rule is to accept the sth to last item iff doing so would leave remaining
space in the bin of at least zs−1,x, where Fs−1(zs−1,x) + 1 = Fs−1(x).

58

13 LQ Regulation

Models with linear dynamics and quadratic costs in discrete and continuous time. Riccati

equation, and its validity with additive white noise. Linearization of nonlinear models.

13.1 The LQ regulation problem

As we have seen, the elements of a control optimization problem are specification of (i)
the dynamics of the process, (ii) which quantities are observable at a given time, and
(iii) an optimization criterion.

In the LQG model the plant equation and observation relations are linear, the
cost is quadratic, and the noise is Gaussian (jointly normal). The LQG model is
important because it has a complete theory and illuminates key concepts, such as
controllability, observability and the certainty-equivalence principle.

Begin with a model in which the state xt is fully observable and there is no noise.
The plant equation of the time-homogeneous [A,B, ·] system has the linear form

xt = Axt−1 +But−1, (13.1)

where xt ∈ R
n, ut ∈ R

m, A is n× n and B is n×m. The cost function is

C =
h−1∑

t=0

c(xt, ut) +Ch(xh), (13.2)

with one-step and terminal costs

c(x, u) = x⊤Rx+ u⊤Sx+ x⊤S⊤u+ u⊤Qu =

(
x
u

)⊤(
R S⊤

S Q

)(
x
u

)

, (13.3)

Ch(x) = x⊤Πhx. (13.4)

All quadratic forms are non-negative definite (� 0), and Q is positive definite (≻ 0).
There is no loss of generality in assuming that R, Q and Πh are symmetric. This is a
model for regulation of (x, u) to the point (0, 0) (i.e. steering to a critical value).

To solve the optimality equation we shall need the following lemma.

Lemma 13.1. Suppose x, u are vectors. Consider a quadratic form

(
x
u

)⊤(
Πxx Πxu

Πux Πuu

)(
x
u

)

.

Assume it is symmetric and Πuu > 0, i.e. positive definite. Then the minimum with
respect to u is achieved at

u = −Π−1
uuΠuxx,

and is equal to
x⊤
[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

59

Proof. Suppose the quadratic form is minimized at u. Then

(
x

u+ h

)⊤(
Πxx Πxu

Πux Πuu

)(
x

u+ h

)

= x⊤Πxxx+ 2x⊤Πxuu+ 2h⊤Πuxx+ 2h⊤Πuuu
︸ ︷︷ ︸

+u⊤Πuuu+ h⊤Πuuh.

To be stationary at u, the underbraced linear term in h⊤ must be zero, so

u = −Π−1
uuΠuxx,

and the optimal value is x⊤
[
Πxx −ΠxuΠ

−1
uuΠux

]
x.

Theorem 13.2. Assume the structure of (13.1)–(13.4). Then the value function has
the quadratic form

F (x, t) = x⊤Πtx, t ≤ h, (13.5)

and the optimal control has the linear form

ut = Ktxt, t < h.

The time-dependent matrix Πt satisfies the Riccati equation

Πt = fΠt+1, t < h, (13.6)

where Πh has the value given in (13.4), and f is an operator having the action

fΠ = R+A⊤ΠA− (S⊤ +A⊤ΠB)(Q +B⊤ΠB)−1(S +B⊤ΠA). (13.7)

The m× n matrix Kt is given by

Kt = −(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A), t < h. (13.8)

Proof. Assertion (13.5) is true at time h. Assume it is true at time t+ 1. Then

F (x, t) = inf
u

[
c(x, u) + (Ax +Bu)⊤Πt+1(Ax +Bu)

]

= inf
u

[(
x
u

)⊤(
R+A⊤Πt+1A S⊤ +A⊤Πt+1B
S +B⊤Πt+1A Q+B⊤Πt+1B

)(
x
u

)]

.

Lemma 13.1 shows the minimizer is u = Ktx, and gives the form of f .

60

13.2 The Riccati recursion

The backward recursion (13.6)–(13.7) is called the Riccati equation.

(i) Since the optimal control is linear in the state, say u = Kx, an equivalent expression
for the Riccati equation is

fΠ = inf
K

[
R+K⊤S + S⊤K +K⊤QK + (A+BK)⊤Π(A +BK)

]
.

(ii) The optimally controlled process obeys xt+1 = Γtxt. We call Γt the gain matrix
and it is given by

Γt = A+BKt = A−B(Q+B⊤Πt+1B)−1(S +B⊤Πt+1A).

(iii) S can be normalized to zero by choosing a new control u∗ = u + Q−1Sx, and
setting A∗ = A − BQ−1S, R∗ = R − S⊤Q−1S. So A∗x + Bu∗ = Ax + Bu and
c(x, u) = x⊤Rx+ u∗⊤Qu∗.

(iv) Similar results are true if xt+1 = Atxt+Btut+αt, where {αt} is a known sequence
of disturbances, and the aim is to track a sequence of values (x̄t, ūt), t = 0, . . . , h− 1,
so the cost is

c(x, u, t) =

(
x− x̄t

u− ūt

)⊤(
Rt S⊤

t

St Qt

)(
x− x̄t

u− ūt

)

.

13.3 White noise disturbances

Suppose the plant equation (13.1) is now

xt+1 = Axt +But + ǫt,

where ǫt ∈ R
n is vector white noise, defined by the properties Eǫ = 0, Eǫtǫ

⊤
t = N

and Eǫtǫ
⊤
s = 0, t 6= s. The dynamic programming equation is then

F (x, t) = inf
u

{
c(x, u) + Eǫ[F (Ax +Bu+ ǫ, t+ 1)]

}
,

with F (x, h) = x⊤Πhx. Try a solution F (x, t) = x⊤Πtx + γt. This holds for t = h.
Suppose it is true for t+ 1, then

F (x, t) = inf
u

{
c(x, u) + E(Ax+Bu+ ǫ)⊤Πt+1(Ax +Bu+ ǫ) + γt+1

}

= inf
u

{
c(x, u) + (Ax+Bu)⊤Πt+1(Ax+Bu)

+ 2Eǫ⊤Πt+1(Ax +Bu)
}
+ E

[
ǫ⊤Πt+1ǫ

]
+ γt+1

= inf
u

{
c(x, u) + (Ax+Bu)⊤Πt+1(Ax+Bu)

}
+ tr(NΠt+1) + γt+1,

where tr(A) means the trace of matrix A. Here we use the fact that

E
[
ǫ⊤Πǫ

]
= E




∑

ij

ǫiΠijǫj



 = E




∑

ij

ǫjǫiΠij



 =
∑

ij

NjiΠij = tr(NΠ).

61

Thus (i) Πt follows the same Riccati equation as before, (ii) the optimal control is
ut = Ktxt, and (iii)

F (x, t) = x⊤Πtx+ γt = x⊤Πtx+
h∑

j=t+1

tr(NΠj).

The final term can be viewed as the cost of correcting future noise. In the infinite
horizon limit of Πt → Π as t → ∞, we incur an average cost per unit time of tr(NΠ),
and a transient cost of x⊤Πx that is due to correcting the initial x.

13.4 LQ regulation in continuous-time

In continuous-time we take ẋ = Ax+Bu and cost

C =

∫ h

0

(
x
u

)⊤(
R S⊤

S Q

)(
x
u

)

dt+ (x⊤Πx)h.

We can obtain the continuous-time solution from the discrete time solution by moving
forward in time in increments of ∆. Make the following replacements.

xt+1 → xt+∆, A → I +A∆, B → B∆, R, S, Q → R∆, S∆, Q∆.

Then as before, F (x, t) = x⊤Πx, where Π obeys the Riccati equation

∂Π

∂t
+R+A⊤Π+ ΠA− (S⊤ +ΠB)Q−1(S +B⊤Π) = 0.

This is slightly simpler than the discrete time version. The optimal control is u(t) =
K(t)x(t), where K(t) = −Q−1(S +B⊤Π).

The optimally controlled plant equation is ẋ = Γ(t)x, where

Γ(t) = A+BK = A−BQ−1(S +B⊤Π).

13.5 Linearization of nonlinear models

Linear models are important because they arise naturally via the linearization of non-
linear models. Consider the state-structured nonlinear model:

ẋ = a(x, u).

Suppose x, u are perturbed from an equilibrium (x̄, ū) where a(x̄, ū) = 0. Let x′ = x− x̄
and u′ = u− ū. The linearized version is

ẋ′ = ẋ = a(x̄+ x′, ū+ u′) = Ax′ +Bu

where

Aij =
∂ai
∂xj

∣
∣
∣
∣
(x̄,ū)

, Bij =
∂ai
∂uj

∣
∣
∣
∣
(x̄,ū)

.

If (x̄, ū) is to be a stable equilibrium point then we must be able to choose a control
that can bring the system back to (x̄, ū) from any nearby starting point.

62

14 Controllability and Observability

Controllability in discrete and continuous time. Stabilizability.

14.1 Controllability and Observability

The discrete-time system [A,B, ·] is defined by the plant equation

xt = Axt−1 +But−1, (14.1)

The controllability question is: can we bring x to an arbitrary prescribed value by
some u-sequence?

The discrete-time system [A,B,C] is defined by (14.1) and observation relation

yt = Cxt−1. (14.2)

yt ∈ R
p is observed, but xt is not. C is p× n. The observability question is: can we

infer x0 from subsequent y values?

Definition 14.1. The [A,B, ·] system is r-controllable if one can bring it from an ar-
bitrary prescribed x0 to an arbitrary prescribed xr by some u-sequence u0, u1, . . . , ur−1.
A system of dimension n is controllable if it is r-controllable for some r

Definition 14.2. The [A,B,C] system s said to be r-observable if x0 can be inferred
from knowledge of the observations y1, . . . , yr and relevant control values u0, . . . , ur−2

for any initial x0. An n-dimensional system is observable if r-observable for some r.

The notion of observability stands in dual relation to that of controllability; a duality
that indeed persists throughout the subject.

14.2 Controllability

Example 14.3. Consider the case, (n = 2, m = 1),

xt =

(
a11 0
a21 a22

)

xt−1 +

(
1
0

)

ut−1.

This system is not 1-controllable. But

x2 −A2x0 = Bu1 +ABu0 =

(
1 a11
0 a21

)(
u1

u0

)

.

So it is 2-controllable if and only if a21 6= 0.

In general, by substituting the plant equation (14.1) into itself, we see that we must
find u0, u1, . . . , ur−1 to satisfy

∆ = xr −Arx0 = Bur−1 +ABur−2 + · · ·+Ar−1Bu0, (14.3)

for arbitrary ∆. In providing conditions for controllability we use the following theorem.

63

Theorem 14.4. (The Cayley-Hamilton theorem) Any n × n matrix A satisfies
its own characteristic equation. So that if

det(λI −A) =

n∑

j=0

ajλ
n−j

then
∑n

j=0 ajA
n−j = 0.

The implication is that I, A,A2, . . . , An−1 contains basis for Ar, r = 0, 1, We
are now in a position to characterize controllability.

Theorem 14.5. (i) The system [A,B, ·] is r-controllable iff the matrix

Mr =
[
B AB A2B · · · Ar−1B

]

has rank n, (ii) equivalently, iff the n× n matrix

MrM
⊤
r =

r−1∑

j=0

Aj(BB⊤)(A⊤)j

is nonsingular (or, equivalently, positive definite.) (iii) If the system is r-controllable
then it is s-controllable for s ≥ min(n, r), and (iv) a control transferring x0 to xr with

minimal cost
∑r−1

t=0 u⊤
t ut is

ut = B⊤(A⊤)r−t−1(MrM
⊤
r)−1(xr −Arx0), t = 0, . . . , r − 1.

Proof. (i) The system (14.3) has a solution for arbitrary ∆ iff Mr has rank n.

(ii) That is, iff there does not exist nonzero w such that w⊤Mr = 0. Now

∃w 6= 0 : w⊤Mr = 0 ⇐⇒ ∃w 6= 0 : w⊤MrM
⊤
r w = 0 ⇐⇒ MrM

⊤
r is not p.d.s.

(iii) The rank of Mr is non-decreasing in r, so if the system is r-controllable, it is
(r + 1)-controllable. By the Cayley-Hamilton theorem, the rank is constant for r ≥ n.

(iv) Consider the Lagrangian

r−1∑

t=0

u⊤
t ut + λ⊤

(

∆−
r−1∑

t=0

Ar−t−1But

)

,

giving

ut =
1
2B

⊤(A⊤)r−t−1λ.

Now we can determine λ from (14.3).

64

14.3 Controllability in continuous-time

Theorem 14.6. (i) The n dimensional system [A,B, ·] is controllable iff the matrix
Mn has rank n, or (ii) equivalently, iff

G(t) =

∫ t

0

eAsBB⊤eA
⊤s ds,

is positive definite for all t > 0. (iii) If the system is controllable then a control that

achieves the transfer from x(0) to x(t) with minimal control cost
∫ t

0
u⊤
s usds is

u(s) = B⊤eA
⊤(t−s)G(t)−1(x(t)− eAtx(0)).

Note that there is now no notion of r-controllability. However, G(t) ↓ 0 as t ↓ 0, so
the transfer becomes more difficult and costly as t ↓ 0.

14.4 Example: broom balancing

Consider the problem of balancing a broom in an upright position on your hand. By
Newton’s laws, the system obeys m(ü cos θ + Lθ̈) = mg sin θ.

mg

Lθ̈

xx

θ

uu

L

ü cos θ

mg sin θ

Figure 1: Force diagram for broom balancing

For small θ we have cos θ ∼ 1 and θ ∼ sin θ = (x− u)/L. So with α = g/L

ẍ = α(x − u),

equivalently,
d

dt

(
x
ẋ

)

=

(
0 1
α 0

)(
x
ẋ

)

+

(
0
−α

)

u.

Since
[
B AB

]
=

[
0 −α
−α 0

]

,

the system is controllable if θ is initially small.

65

14.5 Stabilizability

Suppose we apply the stationary closed-loop control u = Kx so that ẋ = Ax + Bu =
(A+BK)x. So with Γ = A+BK, we have

ẋ = Γx, xt = eΓtx0, where eΓt =

∞∑

j=0

(Γt)j/j!

Similarly, in discrete-time, we have can take the stationary control, ut = Kxt, so
that xt = Axt−1 +But−1 = (A+BK)xt−1. Now xt = Γtx0.

We are interested in choosing Γ so that xt → 0 and t → ∞.

Definition 14.7.
Γ is a stability matrix in the continuous-time sense if all its eigenvalues have

negative real part, and hence xt → 0 as t → ∞.

Γ is a stability matrix in the discrete-time sense if all its eigenvalues of lie strictly
inside the unit disc in the complex plane, |z| = 1, and hence xt → 0 as t → ∞.

The [A,B] system is said to stabilizable if there exists a K such that A + BK is
a stability matrix.

Note that ut = Kxt is linear and Markov. In seeking controls such that xt → 0 it
is sufficient to consider only controls of this type since, as we see in the next lecture,
such controls arise as optimal controls for the infinite-horizon LQ regulation problem.

14.6 Example: pendulum

Consider a pendulum of length L, unit mass bob and angle θ to the vertical. Suppose
we wish to stabilise θ to zero by application of a force u. Then

θ̈ = −(g/L) sin θ + u.

We change the state variable to x = (θ, θ̇) and write

d

dt

(
θ

θ̇

)

=

(

θ̇
−(g/L) sin θ + u

)

∼
(

0 1
−g/L 0

)(
θ

θ̇

)

+

(
0
1

)

u.

Suppose we try to stabilise with a control that is a linear function of only θ (not θ̇), so
u = Kx = (−κ, 0)x = −κθ. Then

Γ = A+BK =

(
0 1

−g/L 0

)

+

(
0
1

)
(
−κ 0

)
=

(
0 1

−g/L− κ 0

)

.

The eigenvalues of Γ are ±
√

−g/L− κ. So either −g/L − κ > 0 and one eigenvalue
has a positive real part, in which case there is in fact instability, or −g/L−K < 0 and
eigenvalues are purely imaginary, which means we will in general have oscillations. So
successful stabilization must be a function of θ̇ as well, (and this would come out of
solution to the LQ regulation problem.)

66

14.7 Example: satellite in a plane orbit

Consider a satellite of unit mass in a planar orbit and take polar coordinates (r, θ).

r̈ = rθ̇2 − c

r2
+ ur, θ̈ = −2ṙθ̇

r
+

1

r
uθ,

where ur and uθ are the radial and tangential components of thrust. If ur = uθ = 0
then there is a possible equilibrium in which the orbit is a circle of radius r = ρ,
θ̇ = ω =

√

c/ρ3 and ṙ = θ̈ = 0.
Consider a perturbation of this orbit and measure the deviations from the orbit by

x1 = r − ρ, x2 = ṙ, x3 = θ − ωt, x4 = θ̇ − ω.

Then, with n = 4, m = 2,

ẋ ∼







0 1 0 0
3ω2 0 0 2ωρ
0 0 0 1
0 −2ω/ρ 0 0







x+







0 0
1 0
0 0
0 1/ρ







(
ur

uθ

)

= Ax+Bu.

It is easy to check that M2 =
[
B AB

]
has rank 4 and that therefore the system is

controllable.

Suppose ur = 0 (radial thrust fails). Then

B =







0
0
0

1/ρ







M4 =
[
B AB A2B A3B

]
=







0 0 2ω 0
0 2ω 0 −2ω3

0 1/ρ 0 −4ω2/ρ
1/ρ 0 −4ω2/ρ 0






.

which is of rank 4, so the system is still controllable. We can change the radius by
tangential braking or thrust.

But if uθ = 0 (tangential thrust fails). Then

B =







0
1
0
0







M4 =
[
B AB A2B A3B

]
=







0 1 0 −ω2

1 0 −ω2 0
0 0 −2ω/ρ 0
0 −2ω/ρ 0 2ω3/ρ






.

Since (2ωρ, 0, 0, ρ2)M4 = 0, this is singular and has only rank 3. In fact, the uncontrol-
lable component is the angular momentum, 2ωρδr + ρ2δθ̇ = δ(r2θ̇)|r=ρ,θ̇=ω.

67

15 Observability and the LQG Model

LQ regulation problem over the infinite horizon. More on observability. Least squares estima-

tion and the LQG model.

15.1 Infinite horizon limits

Consider the time-homogeneous case and write the finite-horizon cost in terms of time
to go s. The terminal cost, when s = 0, is denoted F0(x) = x⊤Π0x. In all that follows
we take S = 0, without loss of generality.

Lemma 15.1. Suppose Π0 = 0, R � 0, Q � 0 and [A,B, ·] is controllable or stabiliz-
able. Then {Πs} has a finite limit Π.

Proof. Costs are non-negative, so Fs(x) is non-decreasing in s. Now Fs(x) = x⊤Πsx.
Thus x⊤Πsx is non-decreasing in s for every x. To show that x⊤Πsx is bounded we
use one of two arguments.

If the system is controllable then x⊤Πsx is bounded because there is a policy which,
for any x0 = x, will bring the state to zero in at most n steps and at finite cost and
can then hold it at zero with zero cost thereafter.

If the system is stabilizable then there is a K such that Γ = A+ BK is a stability
matrix. Using ut = Kxt, we have xt = Γtx and ut = KΓtx, so

Fs(x) ≤
∞∑

t=0

(x⊤
t Rxt + u⊤

t Qut) = x⊤

[
∞∑

t=0

(Γ⊤)t(R+K⊤QK)Γt

]

x < ∞.

Hence in either case we have an upper bound and so x⊤Πsx tends to a limit for
every x. By considering x = ej , the vector with a unit in the jth place and zeros
elsewhere, we conclude that the jth element on the diagonal of Πs converges. Then
taking x = ej + ek it follows that the off diagonal elements of Πs also converge.

Both value iteration and policy improvement are effective ways to compute the
solution to an infinite-horizon LQ regulation problem. Policy improvement goes along
the lines developed in Lecture 9.

15.2 Observability

From (14.1) and (14.2) we can determine yt in terms of x0 and subsequent controls:

xt = Atx0 +

t−1∑

s=0

AsBut−s−1,

yt = Cxt−1 = C

[

At−1x0 +

t−2∑

s=0

AsBut−s−2

]

.

68

Thus, if we define the ‘reduced observation’

ỹt = yt − C

[
t−2∑

s=0

AsBut−s−2

]

,

then x0 is to be determined from the system of equations

ỹt = CAt−1x0, 1 ≤ t ≤ r. (15.1)

By hypothesis, these equations are mutually consistent, and so have a solution; the
question is whether this solution is unique. This is the reverse of the situation for
controllability, when the question was whether the equation for u had a solution at all,
unique or not. Note that an implication of the system definition is that the property
of observability depends only on the matrices A and C; not upon B at all.

Theorem 15.2. (i) The system [A, · , C] is r-observable iff the matrix

Nr =










C
CA
CA2

...
CAr−1










has rank n, or (ii) equivalently, iff the n× n matrix

N⊤
r Nr =

r−1∑

j=0

(A⊤)jC⊤CAj

is nonsingular. (iii) If the system is r-observable then it is s-observable for s ≥
min(n, r), and (iv) the determination of x0 can be expressed

x0 = (N⊤
r Nr)

−1
r∑

j=1

(A⊤)j−1C⊤ỹj. (15.2)

Proof. If the system has a solution for x0 (which is so by hypothesis) then this solution
must is unique iff the matrix Nr has rank n, whence assertion (i). Assertion (iii) follows
from (i). The equivalence of conditions (i) and (ii) can be verified directly as in the
case of controllability.

If we define the deviation ηt = ỹt −CAt−1x0 then the equation amounts to ηt = 0,
1 ≤ t ≤ r. If these equations were not consistent we could still define a ‘least-squares’
solution to them by minimizing any positive-definite quadratic form in these deviations
with respect to x0. In particular, we could minimize

∑r−1
t=0 η⊤t ηt. This minimization

gives (15.2). If equations (15.1) indeed have a solution (i.e. are mutually consistent,
as we suppose) and this is unique then expression (15.2) must equal this solution; the
actual value of x0. The criterion for uniqueness of the least-squares solution is that
N⊤

r Nr should be nonsingular, which is also condition (ii).

69

We have again found it helpful to bring in an optimization criterion in proving (iv);
this time, not so much to construct one definite solution out of many, but to construct
a ‘best-fit’ solution where an exact solution might not have existed. This approach lies
close to the statistical approach necessary when observations are corrupted by noise.

15.3 Observability in continuous-time

Theorem 15.3. (i) The n-dimensional continuous-time system [A, · , C] is observable
iff the matrix Nn has rank n, or (ii) equivalently, iff

H(t) =

∫ t

0

eA
⊤sC⊤CeAs ds

is positive definite for all t > 0. (iii) If the system is observable then the determination
of x(0) can be written

x(0) = H(t)−1

∫ t

0

eA
⊤sC⊤ỹ(s) ds,

where

ỹ(t) = y(t)−
∫ t

0

CeA(t−s)Bu(s) ds.

15.4 Example: satellite in planar orbit

Recall the linearised equation ẋ = Ax, for perturbations of the orbit of a satellite, (here
taking ρ = 1), where







x1

x2

x3

x4







=







r − ρ
ṙ

θ − ωt

θ̇ − ω







A =







0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0







.

By taking C =
[
0 0 1 0

]
we see that the system is observable on the basis of

angle measurements alone, but not observable for C̃ =
[
1 0 0 0

]
, i.e. on the basis

of radius movements alone.

N4 =







0 0 1 0
0 0 0 1
0 −2ω 0 0

−6ω3 0 0 −4ω2







Ñ4 =







1 0 0 0
0 1 0 0

3ω2 0 0 2ω
0 −ω2 0 0







15.5 Imperfect state observation with noise

The full LQG model, whose description has been deferred until now, assumes linear
dynamics, quadratic costs and Gaussian noise. Imperfect observation is the most im-

70

portant point. The model is

xt = Axt−1 +But−1 + ǫt, (15.3)

yt = Cxt−1 + ηt, (15.4)

where ǫt is process noise. The state observations are degraded in that we observe only
the p-vector yt = Cxt−1 + ηt, where ηt is observation noise. Typically p < n. In this
[A,B,C] system A is n× n, B is n×m, and C is p× n. Assume

cov

(
ǫ
η

)

= E

(
ǫ
η

)(
ǫ
η

)⊤

=

(
N L
L⊤ M

)

and that x0 ∼ N(x̂0, V0). Let Wt = (Yt, Ut−1) = (y1, . . . , yt;u0, . . . , ut−1) denote the
observed history up to time t. Of course we assume that t, A, B, C, N , L, M , x̂0 and
V0 are also known; Wt denotes what might be different if the process were rerun.

Lemma 15.4. Suppose x and y are jointly normal with zero means and covariance
matrix

cov

[
x
y

]

=

[
Vxx Vxy

Vyx Vyy

]

.

Then the distribution of x conditional on y is Gaussian, with

E(x | y) = VxyV
−1
yy y, (15.5)

and
cov(x | y) = Vxx − VxyV

−1
yy Vyx. (15.6)

Proof. Both y and x− VxyV
−1
yy y are linear functions of x and y and therefore they are

Gaussian. From E
[
(x− VxyV

−1
yy y)y⊤

]
= 0 it follows that they are uncorrelated and

this implies they are independent. Hence the distribution of x − VxyV
−1
yy y conditional

on y is identical with its unconditional distribution, and this is Gaussian with zero
mean and the covariance matrix given by (15.6)

The estimate of x in terms of y defined as x̂ = Hy = VxyV
−1
yy y is known as the

linear least squares estimate of x in terms of y. Even without the assumption that
x and y are jointly normal, this linear function of y has a smaller covariance matrix
than any other unbiased estimate for x that is a linear function of y. In the Gaussian
case, it is also the maximum likelihood estimator.

71

16 Kalman Filter and Certainty Equivalence

The Kalman filter. Certainty equivalence. Separation principle. Hamilton-Jacobi-Bellman

equation. Harvesting fish.

16.1 The Kalman filter

Notice that both xt and yt can be written as a linear functions of the unknown noise
and the known values of u0, . . . , ut−1.

xt = Atx0 +At−1Bu0 + · · ·+But−1 +At−1ǫ0 + · · ·+Aǫt−1 + ǫt

yt = C
(

At−1x0 +At−2Bu0 + · · ·+But−2 +At−2ǫ0 + · · ·+Aǫt−2 + ǫt−1

)

+ ηt

Thus the distribution of xt conditional on Wt = (Yt, Ut−1) must be normal, with some
mean x̂t and covariance matrix Vt. Notice that Vt is policy independent (does not
depend on u0, . . . , ut−1).

The following theorem describes recursive updating relations for x̂t and Vt.

Theorem 16.1. (The Kalman filter) Suppose that conditional on W0, the initial
state x0 is distributed N(x̂0, V0) and the state and observations obey the recursions of
the LQG model (15.3)–(15.4). Then conditional on Wt, the current state is distributed
N(x̂t, Vt). The conditional mean and variance obey the updating recursions

x̂t = Ax̂t−1 +But−1 +Ht(yt − Cx̂t−1), (16.1)

where the time-dependent matrix Vt satisfies a Riccati equation

Vt = gVt−1, t < h,

where V0 is given, and g is the operator having the action

gV = N +AV A⊤ − (L +AV C⊤)(M + CV C⊤)−1(L⊤ + CV A⊤). (16.2)

The p×m matrix Ht is given by

Ht = (L +AVt−1C
⊤)(M + CVt−1C

⊤)−1. (16.3)

Compare this to the very similar statement of Theorem 13.2. Notice that (16.2)
computes Vt forward in time (Vt = gVt−1), whereas (13.7) computes Πt backward in
time (Πt = fΠt+1).

Proof. The proof is by induction on t. Consider the moment when ut−1 has been
determined but yt has not yet observed. The distribution of (xt, yt) conditional on
(Wt−1, ut−1) is jointly normal with means

E(xt | Wt−1, ut−1) = Ax̂t−1 +But−1,

E(yt | Wt−1, ut−1) = Cx̂t−1.

72

Let ∆t−1 = x̂t−1 − xt−1, which by an inductive hypothesis is N(0, Vt−1). Consider the
innovations

ξt = xt − E(xt | Wt−1, ut−1) = xt − (Ax̂t−1 +But−1) = ǫt −A∆t−1,

ζt = yt − E(yt | Wt−1, ut−1) = yt − Cx̂t−1 = ηt − C∆t−1.

Conditional on (Wt−1, ut−1), these quantities are normally distributed with zero means
and covariance matrix

cov

[
ǫt −A∆t−1

ηt − C∆t−1

]

=

[
N +AVt−1A

⊤ L+AVt−1C
⊤

L⊤ + CVt−1A
⊤ M + CVt−1C

⊤

]

=

[
Vξξ Vξζ

Vζξ Vζζ

]

.

Thus it follows from Lemma 15.4 that the distribution of ξt conditional on knowing
(Wt−1, ut−1, ζt), (which is equivalent to knowing Wt), is normal with mean VξζV

−1
ζζ ζt

and covariance matrix Vξξ − VξζV
−1
ζζ Vζξ. These give (16.1)–(16.3).

16.2 Certainty equivalence

We say that a quantity a is policy-independent if Eπ(a | W0) is independent of π.

Theorem 16.2. Suppose LQG model assumptions hold. Then (i) the value function
is of the form

F (Wt) = x̂⊤
t Πtx̂t + · · · (16.4)

where x̂t is the linear least squares estimate of xt whose evolution is determined by the
Kalman filter in Theorem 16.1 and ‘+ · · · ’ indicates terms that are policy independent;
(ii) the optimal control is given by

ut = Ktx̂t,

where Πt and Kt are the same matrices as in the full information case of Theorem 13.2.

It is important to grasp the remarkable fact that (ii) asserts: the optimal control
ut is exactly the same as it would be if all unknowns were known and took values equal
to their linear least square estimates (equivalently, their conditional means) based upon
observations up to time t. This is the idea known as certainty equivalence. As we
have seen in the previous section, the distribution of the estimation error x̂t − xt does
not depend on Ut−1. The fact that the problems of optimal estimation and optimal
control can be decoupled in this way is known as the separation principle.

Proof. The proof is by backward induction. Suppose (16.4) holds at t. Recall that

x̂t = Ax̂t−1 +But−1 +Htζt, ∆t−1 = x̂t−1 − xt−1.

73

Then with a quadratic cost of the form c(x, u) = x⊤Rx+ 2u⊤Sx+ u⊤Qu, we have

F (Wt−1) = min
ut−1

E [c(xt−1, ut−1) + x̂tΠtx̂t + · · · | Wt−1, ut−1]

= min
ut−1

E

[

c(x̂t−1 −∆t−1, ut−1)

+ (Ax̂t−1 +But−1 +Htζt)
⊤Πt(Ax̂t−1 +But−1 +Htζt)

+ · · ·
∣
∣
∣Wt−1, ut−1

]

(16.5)

= min
ut−1

[
c(x̂t−1, ut−1) + (Ax̂t−1 +But−1)

⊤Πt(Ax̂t−1 +But−1)
]
+ · · · ,

where we use the fact that, conditional on Wt−1, ut−1, the quantities ∆t−1 and ζt have
zero means and are policy independent. So when we evalute (16.5) the expectations
of all terms which are linear in these quantities are zero, like E[u⊤

t−1S∆t−1], and the
expectations of all terms which are quadratic in these quantities, like E[∆⊤

t−1R∆t−1],
are policy independent (and so may be included as part of + · · ·).

16.3 The Hamilton-Jacobi-Bellman equation

In continuous time the plant equation is,

ẋ = a(x, u, t).

Consider a discounted cost of

C =

∫ h

0

e−αtc(x, u, t) dt+ e−αhC(x(h), h).

The discount factor over δ is e−αδ = 1− αδ + o(δ). So the optimality equation is,

F (x, t) = inf
u

[
c(x, u, t)δ + e−αδF (x+ a(x, u, t)δ, t+ δ) + o(δ)

]
.

By considering the term of order δ in the Taylor series expansion we obtain,

inf
u

[

c(x, u, t)− αF +
∂F

∂t
+

∂F

∂x
a(x, u, t)

]

= 0, t < h, (16.6)

with F (x, h) = C(x, h). In the undiscounted case, we simply put α = 0. Notice that in
(17.9) we have α = 0 and the term of ∂F

∂t disappears because h = ∞.

Equation (16.6) is called the Hamilton-Jacobi-Bellman equation (HJB). Its
heuristic derivation we have given above is justified by the following theorem. It can be
viewed as the equivalent, in continuous time, of the backwards induction that we use
in discrete time to verify that a policy is optimal because it satisfies the the dynamic
programming equation.

74

Theorem 16.3. Suppose a policy π, using a control u, has a value function F which
satisfies the HJB equation (16.6) for all values of x and t. Then π is optimal.

Proof. Consider any other policy, using control v, say. Then along the trajectory defined
by ẋ = a(x, v, t) we have

− d

dt
e−αtF (x, t) = e−αt

[

c(x, v, t)−
(

c(x, v, t) − αF +
∂F

∂t
+

∂F

∂x
a(x, v, t)

)]

≤ e−αtc(x, v, t).

The inequality is because the term round brackets is nonnegative. Integrating this
inequality along the v path, from x(0) to x(h), gives

F (x(0), 0)− e−αhC(x(h), h) ≤
∫ h

t=0

e−αtc(x, v, t) dt.

Thus the v path incurs a cost of at least F (x(0), 0), and hence π is optimal.

16.4 Example: LQ regulation

The undiscounted continuous time DP equation for the LQ regulation problem is

0 = inf
u

[
x⊤Rx+ u⊤Qu+ Ft + F⊤

x (Ax +Bu)
]
.

Suppose we try a solution of the form F (x, t) = x⊤Π(t)x, where Π(t) is a symmetric ma-
trix. Then Fx = 2Π(t)x and the optimizing u is u = − 1

2Q
−1B⊤Fx = −Q−1B⊤Π(t)x.

Therefore the DP equation is satisfied with this u if

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x,

where we use the fact that 2x⊤ΠAx = x⊤ΠAx+x⊤A⊤Πx. This must hold for all x. So
we have a solution to the HJB equation if Π(t) satisfies the Riccati differential equation

R +ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt
= 0,

with a given boundary value for Π(h).

16.5 Example: harvesting fish

A fish population of size x obeys the plant equation,

ẋ = a(x, u) =

{
a(x) − u x > 0,
a(x) x = 0.

The function a(x) reflects the facts that the population can grow when it is small,
but is subject to environmental limitations when it is large. It is desired to maximize

the discounted total harvest
∫ T

0 ue−αt dt, subject to 0 ≤ u ≤ umax, where umax is the
greatest possible fishing rate.

75

Solution. The DP equation (with discounting) is

sup
u

[

u− αF +
∂F

∂t
+

∂F

∂x
[a(x)− u]

]

= 0, t < T.

Since u occurs linearly with the maximization we again have a bang-bang optimal
control, of the form

u =





0
undetermined

umax



 for Fx





>
=
<



 1.

Suppose F (x, t) → F (x) as T → ∞, and ∂F/∂t → 0. Then

sup
u

[

u− αF +
∂F

∂x
[a(x) − u]

]

= 0. (16.7)

Let us make a guess that F (x) is concave, and then deduce that

u =





0
undetermined, but effectively a(x̄)

umax



 for x





<
=
>



 x̄. (16.8)

Clearly, x̄ is the operating point. We suppose

ẋ =

{
a(x) > 0, x < x̄
a(x)− umax < 0, x > x̄.

We say that there is chattering about the point x̄, in the sense that u will switch
between its maximum and minimum values either side of x̄, effectively taking the value
a(x̄) at x̄. To determine x̄ we note that

F (x̄) =

∫ ∞

0

e−αta(x̄)dt = a(x̄)/α. (16.9)

So from (16.7) and (16.9) we have

Fx(x) =
αF (x) − u(x)

a(x)− u(x)
→ 1 as x ր x̄ or x ց x̄. (16.10)

For F to be concave, Fxx must be negative if it exists. So we must have

Fxx =
αFx

a(x)− u
−
(

αF − u

a(x)− u

)(
a′(x)

a(x)− u

)

=

(
αF − u

a(x)− u

)(
α− a′(x)

a(x)− u

)

≃ α− a′(x)

a(x)− u(x)

76

where the last line follows because (16.10) holds in a neighbourhood of x̄. It is required
that Fxx be negative. But the denominator changes sign at x̄, so the numerator must
do so also, and therefore we must have a′(x̄) = α.

We now have the complete solution. The control in (16.8) has a value function F
which satisfies the HJB equation.

xx̄

a(x)

umax

α = a′(x̄)

u = a(x̄)

Figure 2: Growth rate a(x) subject to environment pressures

Notice that we sacrifice long term yield for immediate return. If the initial popula-
tion is greater than x̄ then the optimal policy is to fish at rate umax until we reach x̄
and then fish at rate u = a(x̄). As α ր a′(0), x̄ ց 0. If α ≥ a′(0) then it is optimal to
wipe out the entire fish stock.

Finally, it would be good to verify that F (x) is concave, as we conjectured from the
start. To see this, suppose x > x̄. Then

F (x) =

∫ T

0

umaxe
−αtdt+

∫ ∞

T

a(x̄)e−αtdt

= a(x̄)/α+ (umax − a(x̄))
(
1− e−αT

)
/α

where T = T (x) is the time taken for the fish population to decline from x to x̄, when
ẋ = a(x)− umax. Now

T (x) = δ + T (x+ (a(x) − umax)δ) =⇒ 0 = 1 + (a(x)− umax)T
′(x)

=⇒ T ′(x) = 1/(umax − a(x))

So F ′′(x) has the same sign as that of

d2

dx2

(
1− e−αT

)
= −αe−αT (α− a′(x))

(umax − a(x))2
,

which is negative, as required, since α = a′(x̄) ≥ a′(x), when x > x̄. The case x < x̄ is
similar.

77

17 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle. Optimization of consumption. Parking a rocket car. Adjoint

variables as Lagrange multipliers.

17.1 Example: optimization of consumption

Suppose that given x(0), κ and T , all positive, we wish to choose u(t) to maximize
∫ T

0

log u(t) dt+ κ logx(T), subject to ẋ(t) = ax(t) − u(t), 0 ≤ t ≤ T.

Solution. Try using a Lagrange multiplier λ(t) for the constraint ẋ(t) = ax(t)− u(t).
The Lagrangian is

L = κ logx(T) +

∫ T

0

[log u− λ(ẋ − (ax− u))]dt

Now use integration by parts, and define H(x, u, λ) = log u+ λ(ax− u).

L = κ logx(T)− λ(t)x(t)
∣
∣
∣

T

0
+

∫ T

0

[log u+ λ̇x+ λ(ax− u)]dt

= [κ logx(T)− λ(T)x(T)] + λ(0)x(0) +

∫ T

0

[λ̇x+H(x, u, λ)]dt

For L to be stationary with respect to both x(t) and u(t), at every point within the
integrand, we need

λ̇+
∂

∂x
H(x, u, λ) = 0 =⇒ λ̇ = −aλ

∂

∂u
H(x, u, λ) = 0 =⇒ u = 1/λ,

and so λ(t) = λ(0)e−at, u(t) = λ(0)−1eat and ẋ(t) = ax(t) − λ(0)−1eat.
If the value of x(T) is prescribed (and < eaTx(0) so u need not be negative), then

we can solve this differential equation for x, choosing λ(0) so that x(t) takes prescribed
values x(0) and x(T) at t = 0 and T . We get (after some algebra)

u(t) =

(
x(0)− x(T)e−aT

(T − t)x(0)− x(T)e−aT

)

x(t).

If the value of x(T) is free, then stationarity of L with respect to x(T) requires
κ/x(T)− λ(T) = 0 which (after some algebra) implies λ(0) = (κ+ T)/x(0) and

u(t) =
1

T + κ
x(0)eat =

1

(T − t) + κ
x(t). (17.1)

If a > 1/(κ + T) the trajectory is one in which x(t) is initially increasing and then
decreasing; otherwise x(t) is decreasing. The optimal ‘inheritance’ left at T is

x(T) =
κ

κ+ T
x(0)eaT .

78

17.2 Heuristic derivation of Pontryagin’s maximum principle

Pontryagin’s maximum principle (PMP) states a necessary condition that must
hold on an optimal trajectory. It is a calculation for a fixed initial value of the state,
x(0). In comparison, the dynamic programming approach is a calculation for a general
initial value of the state. Thus, when PMP is useful, it finds an open-loop prescription
of the optimal control, whereas dynamic programming is useful for finding a closed-loop
prescription. PMP can be used as both a computational and analytic technique (and
in the second case can solve the problem for general initial value.)

We begin by considering a time-homogeneous formulation, with plant equation ẋ =
a(x, u) and instantaneous cost c(x, u). The trajectory is to be controlled until it reaches
some stopping set S, where there is a terminal costK(x). As in (16.6) the value function
F (x) obeys the a dynamic programming equation (without discounting)

inf
u∈U

[

c(x, u) +
∂F

∂x
a(x, u)

]

= 0, x 6∈ S, (17.2)

with terminal condition

F (x) = K(x), x ∈ S. (17.3)

Define the adjoint variable

λ = −Fx. (17.4)

This is a column n-vector, and is to be regarded as a function of time as the state
moves along the optimal trajectory. The proof that Fx exists in the required sense is
actually a tricky technical matter. We also define the Hamiltonian

H(x, u, λ) = λ⊤a(x, u)− c(x, u), (17.5)

a scalar, defined at each point of the path as a function of the current x, u and λ.

Theorem 17.1. (PMP) Suppose u(t) and x(t) represent the optimal control and state
trajectory. Then there exists an adjoint trajectory λ(t) such that together u(t), x(t) and
λ(t) satisfy

ẋ = Hλ, [= a(x, u)] (17.6)

λ̇ = −Hx, [= −λ⊤ax + cx] (17.7)

and for all t, 0 ≤ t ≤ T , and all feasible controls v,

H(x(t), v, λ(t)) ≤ H(x(t), u(t), λ(t)), (17.8)

i.e. the optimal control u(t) is the value of v maximizing H((x(t), v, λ(t)).

‘Proof.’ Our heuristic proof is based upon the DP equation; this is the most direct
and enlightening way to derive conclusions that may be expected to hold in general.

79

Assertion (17.6) is immediate, and (17.8) follows from the fact that the minimizing
value of u in (17.2) is optimal. Assuming u is the optimal control we have from (17.2)
in incremental form as

F (x, t) = c(x, u)δ + F (x+ a(x, u)δ, t+ δ) + o(δ).

Now use the chain rule to differentiate with respect to xi and this yields

d

dxi
F (x, t) = δ

d

dxi
c(x, u) +

∑

j

∂

∂xj
F (x+ a(x, u)δ, t+ δ)

d

dxi
(xj + aj(x, u)δ)

=⇒ −λi(t) = δ
dc

dxi
− λi(t+ δ)− δ

∑

j

λj(t+ δ)
daj
dxi

+ o(δ)

=⇒ d

dt
λi(t) =

dc

dxi
−
∑

j

λj(t)
daj
dxi

which is (17.7).

Notice that (17.6) and (17.7) each give n equations. Condition (17.8) gives a further
m equations (since it requires stationarity with respect to variation of them components
of u.) So in principle these equations, if nonsingular, are sufficient to determine the
2n+m functions u(t), x(t) and λ(t).

17.3 Example: parking a rocket car

A rocket car has engines at both ends. Initial position and velocity are x1(0) and x2(0).

0 x1

x2

By firing the rockets (causing acceleration of u in the forward or reverse direction) we
wish to park the car in minimum time, i.e. minimize T such that x1(T) = x2(T) = 0.
The dynamics are ẋ1 = x2 and ẋ2 = u, where u is constrained by |u| ≤ 1.

Let F (x) be minimum time that is required to park the rocket car. Then

F (x1, x2) = min
−1≤u≤1

{

δ + F (x1 + x2δ, x2 + uδ)
}

.

By making a Taylor expansion and then letting δ → 0 we find the HJB equation:

0 = min
−1≤u≤1

{

1 +
∂F

∂x1
x2 +

∂F

∂x2
u

}

(17.9)

80

with boundary condition F (0, 0) = 0. We can see that the optimal control will be a
bang-bang control with u = − sign(∂F

∂x2
) and so F satisfies

0 = 1 +
∂F

∂x1
x2 −

∣
∣
∣
∣

∂F

∂x2

∣
∣
∣
∣
.

Now let us tackle the same problem using PMP. We wish to minimize

C =

∫ T

0

1 dt

where T is the first time at which x = (0, 0). For dynamics if ẋ1 = x2, ẋ2 = u, |u| ≤ 1,
the Hamiltonian is

H = λ1x2 + λ2u− 1,

which is maximized by u = sign(λ2). The adjoint variables satisfy λ̇i = −∂H/∂xi, so

λ̇1 = 0, λ̇2 = −λ1. (17.10)

Suppose that at termination λ1 = α, λ2 = β. Then in terms of time to go we can
compute

λ1 = α, λ2 = β + αs.

These reveal the form of the solution: there is at most one change of sign of λ2 on the
optimal path; u is maximal in one direction and then possibly maximal in the other.

From (17.2) or (17.9) we see that the maximized value of H must be 0. So at
termination (when x2 = 0), we conclude that we must have |β| = 1. We now consider
the case β = 1. The case β = −1 is similar.

If β = 1, α ≥ 0 then λ2 = 1 + αs ≥ 0 for all s ≥ 0 and

u = 1, x2 = −s, x1 = s2/2.

In this case the optimal trajectory lies on the parabola x1 = x2
2/2, x1 ≥ 0, x2 ≤ 0. This

is half of the switching locus x1 = ±x2
2/2 (shown dotted in Figure 3). Notice that

the path is sensitive to the initial conditions. Consider a and b, just either side of the
switching locus. From a we take first u = 1 then u = −1. From b we first take u = −1,
then u = 1.

If β = 1, α < 0 then u = −1 or u = 1 as the time to go is greater or less than
s0 = 1/|α|. In this case,

u = −1, x2 = (s− 2s0), x1 = 2s0s− 1
2s

2 − s20, s ≥ s0,
u = 1, x2 = −s, x1 = 1

2s
2, s ≤ s0.

The control rule expressed as a function of s is open-loop, but in terms of (x1, x2) and
the switching locus, it is closed-loop.

81

a

b

x1

x2

u = 1

u = −1
switching locus

Figure 3: Optimal trajectories for parking a rocket car. Notice that the trajectories
starting from two nearby points, a and b, are qualitatively different.

17.4 Adjoint variables as Lagrange multipliers

We have already seen in §17.1 that it is possible to think of λ(t) as a Lagrange multiplier
for the constraint ẋ = a(x, u) (at time t). Consider the Lagrangian

L = −K(x(T)) +

∫ T

0

[
−c− λ⊤(ẋ− a)

]
dt.

This is to be maximized over (x, u, λ) paths having the property that x(t) first enters
the set S at time T . We integrate λ⊤ẋ by parts to obtain

L = −K(x(T))− λ(T)⊤x(T) + λ(0)⊤x(0) +

∫ T

0

[

λ̇⊤x+ λ⊤a− c
]

dt.

We now think about varying both x(t) and u(t), but without regard to the constraint
ẋ = a(x, u). The quantity within the integral must be stationary with respect to
x = x(t) and hence λ̇+ λ⊤ax − cx = 0 =⇒ λ̇ = −Hx, i.e. (17.7).

If x(T) is unconstrained then the Lagrangian must also be stationary with respect
to small variations in x(T) that are in a direction σ such that x(T) + ǫσ is in the
stopping set (or within o(ǫ) of it), and this gives (Kx(x(T)) + λ(T))⊤σ = 0, i.e. the
so-called transversality conditions, which we will say more about in (18.1).

It is good to have this alternative viewpoint, but it is informal and less easy to
rigorise than the ‘proofs’ of in §17.2, and §18.1

82

18 Using Pontryagin’s Maximum Principle

Transversality conditions. Examples with Pontryagin’s maximum principle.

18.1 Transversality conditions

In (17.2) we see that H must be maximized to 0. We can make this a generally valid
assertion, and also say some things about the terminal value of λ(T) (the so-called
transversality conditions.)

Theorem 18.1. (i) H = 0 on the optimal path. (ii) The terminal condition

(λ+Kx)
⊤σ = 0 (18.1)

holds at the terminal x for all σ such that x+ ǫσ is within o(ǫ) of the termination point
of a possible optimal trajectory for all sufficiently small positive ǫ.

‘Proof.’ Assertion (i) follows from (17.2). To see (ii), suppose that x is a point at
which the optimal trajectory first enters S. Then x ∈ S and so F (x) = K(x). Suppose
x+ ǫσ + o(ǫ) ∈ S. Then

0 = F (x+ ǫσ + o(ǫ))−K(x+ ǫσ + o(ǫ))

= F (x)−K(x) + (Fx(x)−Kx(x))
⊤σǫ + o(ǫ)

Together with F (x) = K(x) this gives (Fx − Kx)
⊤σ = 0. Since λ = −Fx we get

(λ+Kx)
⊤σ = 0.

18.2 Example: use of transversality conditions

Suppose ẋ1 = x2, ẋ2 = u, x(0) = (0, 0), u is unconstrained, and we wish to minimize

C = −x1(1) +

∫ 1

0

1
2u(t)

2 dt.

Here K(x) = −x1(1). The Hamiltonian is

H(x, u, λ) = λ1x2 + λ2u− 1
2u

2,

which is maximized at u(t) = λ2(t). Now λ̇i = −∂H/∂xi gives

λ̇1 = 0, λ̇2 = −λ1.

The terminal x is unconstrained so in the transversality condition of (λ+Kx)
⊤σ = 0,

σ is arbitrary and so we also have

λ1(1)− 1 = 0, λ2(1) = 0.

Thus the solution must be λ1(t) = 1 and λ2(t) = 1 − t. The optimal control is
u(t) = 1− t.

Note that there is often more than one way to set up a control problem. In this

problem, we might have takenK = 0, but included a cost of−
∫ 1

0
x2 dt = −x1(1)+x1(0).

83

18.3 Example: insects as optimizers

A colony of insects consists of workers and queens, of numbers w(t) and q(t) at time t.
If a time-dependent proportion u(t) of the colony’s effort is put into producing workers,
(0 ≤ u(t) ≤ 1, then w, q obey the equations

ẇ = auw − bw, q̇ = c(1− u)w,

where a, b, c are constants, with a > b. The function u is to be chosen to maximize the
number of queens at the end of the season. Show that the optimal policy is to produce
only workers up to some moment, and produce only queens thereafter.

Solution. In this problem the Hamiltonian is

H = λ1(auw − bw) + λ2c(1 − u)w

and K(w, q) = −q. The adjoint equations and transversality conditions give

−λ̇1 = Hw = λ1(au− b) + λ2c(1− u)

−λ̇2 = Hq = 0
,

λ1(T) = −Kw = 0
λ2(T) = −Kq = 1

,

So λ2(t) = 1 for all t. Since H is maximized by u so

u =
0
1

if ∆(t) := λ1a− c
<
>

0.

Since ∆(T) = −c, we must have u(T) = 0. If t is a little less than T , λ1 is small and
u = 0 so the equation for λ1 is

λ̇1 = λ1b− c. (18.2)

As long as λ1 is small, λ̇1 < 0. Therefore as the remaining time s increases, λ1(s)
increases, until such point that ∆(t) = λ1a−c ≥ 0. The optimal control becomes u = 1
and then λ̇1 = −λ1(a − b) < 0, which implies that λ1(s) continues to increase as s
increases, right back to the start. So there is no further switch in u.

The point at which the single switch occurs is found by integrating (18.2) from t to
T , to give λ1(t) = (c/b)(1− e−(T−t)b) and so the switch occurs where λ1a− c = 0, i.e.
(a/b)(1− e−(T−t)b) = 1, or

tswitch = T + (1/b) log(1− b/a).

Experimental evidence suggests that social insects do closely follow this policy and
adopt a switch time that is nearly optimal for their natural environment.

18.4 Problems in which time appears explicitly

Thus far, c(·), a(·) and K(·) have been function of (x, u), but not t. Sometimes we
wish to solve problems in t appears, such as when ẋ = a(x, u, t). We can cope with this

84

generalization by the simple mechanism of introducing a new variable that equates to
time. Let x0 = t, with ẋ0 = a0 = 1.

Having been augmented by this variable, the Hamiltonian gains a term and becomes

H̃ = λ0a0 +H = λ0a0 +
n∑

i=1

λiai − c

where λ0 = −Ft and a0 = 1. Theorem 18.1 says that H̃ must be maximized to 0.
Equivalently, on the optimal trajectory,

H(x, u, λ) =

n∑

i=1

λiai − c must be maximized to − λ0.

Theorem 17.1 still holds. However, to (17.7) we can now add

λ̇0 = −Ht = ct − λat, (18.3)

and transversality condition

(λ +Kx)
⊤σ + (λ0 +Kt)τ = 0, (18.4)

which must hold at the termination point (x, t) if (x + ǫσ, t + ǫτ) is within o(ǫ) of the
termination point of an optimal trajectory for all small enough positive ǫ.

We can now understand what to do with various types of time-dependacy and ter-
minal conditions on x(T) and/or T . For example, we can draw the following inferences.

(i) If K is time-independent (so Kt = 0) and the terminal time T is unconstrained
(so τ is arbitrary) then the transversality condition implies λ0(T) = 0. Since H
is always maximized to −λ0(t) it must be maximized to 0 at T .

(ii) If a, c are only functions of (x, u) then λ̇0 = ct − λ⊤at = 0, and so λ0(t) is
constant on the optimal trajectory. Since H is always maximized to −λ0(t) it
must be maximized to a constant on the optimal trajectory.

(iii) If both (i) and (ii) are true then H is maximized to 0 along the entire optimal
trajectory. We had this in the problem of parking in minimal time, §17.3.

18.5 Example: monopolist

Miss Prout holds the entire remaining stock of Cambridge elderberry wine for the
vintage year 1959. If she releases it at rate u (in continuous time) she realises a unit
price p(u) = (1 − u/2), for 0 ≤ u ≤ 2 and p(u) = 0 for u ≥ 2. She holds an amount x
at time 0 and wishes to release it in a way that maximizes her total discounted return,
∫ T

0
e−αtup(u) dt, (where T is unconstrained.)

85

Solution. Notice that t appears in the cost function. The plant equation is ẋ = −u
and the Hamiltonian is

H(x, u, λ) = e−αtup(u)− λu = e−αtu(1− u/2)− λu.

Note that K = 0. Maximizing with respect to u and using λ̇ = −Hx gives

u = 1− λeαt, λ̇ = 0, t ≥ 0,

so λ is constant. The terminal time is unconstrained so the transversality condition gives
λ0(T) = −Kt|t=T = 0. Therefore, since we require H to be maximized to −λ0(T) = 0
at T , we have u(T) = 0, and hence

λ = e−αT , u = 1− e−α(T−t), t ≤ T,

where T is then the time at which all wine has been sold, and so

x =

∫ T

0

u dt = T −
(
1− e−αT

)
/α.

Thus u is implicitly a function of x, through T .

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

x(t)

u(t)

Figure 4: Trajectories of x(t), u(t), for α = 1.

The optimal value function is

F (x) =

∫ T

0

(u− u2/2)e−αt dt =
1

2

∫ T

0

(
e−αt − eαt−2αT

)
dt =

(
1− e−αT

)2

2α
.

18.6 Example: neoclassical economic growth

Suppose x is the existing capital per worker and u is consumption of capital per worker.
The plant equation is

ẋ = f(x)− γx− u, (18.5)

where f(x) is production per worker (which depends on capital available to the worker),
and −γx represents depreciation of capital. We wish to choose u to maximize

∫ T

t=0

e−αtg(u)dt,

86

where g(u) measures utility and T is prescribed.

Solution. This is really the same as the fish harvesting example in §16.5, with a(x) =
f(x)− γx. So let us take

ẋ = a(x)− u. (18.6)

It is convenient to take
H = e−αt [g(u) + λ(a(x) − u)]

so including a discount factor in the definition of u, corresponding to expression of F
in terms of present values. Here λ is a scalar. Then g′(u) = λ (assuming the maximum
is at a stationary point), and

d

dt

(
e−αtλ

)
= −Hx = −e−αtλa′(x) (18.7)

or
λ̇(t) = (α − a′(x))λ(t). (18.8)

From g′(u) = λ we have g′′(u)u̇ = λ̇ and hence from (18.8) we obtain

u̇ =
1

σ(u)
[a′(x)− α], (18.9)

where

σ(u) = −g′′(u)

g′(u)

is the elasticity of marginal utility. Assuming g is strictly increasing and concave we
have σ > 0. So (x, u) are determined by (18.6) and (18.9). An equilibrium solution at
x̄, ū is determined by

ū = a(x̄) a′(x̄) = α,

These give the balanced growth path; interestingly, it is independent of g.

This provides an example of so-called turnpike theory. For sufficiently large T the
optimal trajectory will move from the initial x(0) to within an arbitrary neighbourhood
of the balanced growth path (the turnpike) and stay there for all but an arbitrarily small
fraction of the time. As the terminal time becomes imminent the trajectory leaves the
neighbourhood of the turnpike and heads for the terminal point x(T) = 0.

87

19 Controlled Diffusion Processes

Control problems in a continuous-time, continuous state space, stochastic setting.

19.1 The dynamic programming equation

The DP equation in incremental form is

F (x, t) = inf
u
{c(x, u)δt+ E[F (x(t+ δt), t+ δt) | x(t) = x, u(t) = u)]}.

If appropriate limits exist then this can be written in the limit δt ↓ 0 as

inf
u
[c(x, u) + Ft(x, t) + Λ(u)F (x, t)] = 0.

Here Λ(u) is the operator defined by

Λ(u)φ(x) = lim
δt↓0

[
E[φ(x(t + δt)) | x(t) = x, u(t) = u]− φ(x)

δt

]

(19.1)

or

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

the conditional expectation of the ‘rate of change’ of φ(x) along the path. The operator
Λ converts a scalar function of state, φ(x), to another such function, Λφ(x). However, its
action depends upon the control u, so we write it as Λ(u). It is called the infinitesimal
generator of the controlled Markov process. Equation (19.1) is equivalent to

E[φ(x(t + δt) | x(t) = x, u(t) = u] = φ(x) + Λ(u)φ(x)δt + o(δt).

This equation takes radically different forms depending upon whether the state space
is discrete or continuous. Both are important.

If the state space is discrete we have the Markov jump process of Lecture 9. In this
case Λ(u)φ(i) =

∑

j qij(u)[φ(j) − φ(i)]. Now we turn to the case of continuous state
space.

19.2 Diffusion processes and controlled diffusion processes

The Wiener process {B(t)}, is a scalar process for which B(0) = 0, the increments
in B over disjoint time intervals are statistically independent and B(t) is normally
distributed with zero mean and variance t. (‘B’ stands for Brownian motion. It can
be understood as a δ → 0 limit of a symmetric random walk in which steps ±

√
δ are

made at times δ, 2δ,) The specification is internally consistent because, for example,

B(t) = B(t1) + [B(t)−B(t1)]

and for 0 ≤ t1 ≤ t the two terms on the right-hand side are independent normal
variables of zero mean and with variance t1 and t− t1 respectively.

88

If δB is the increment of B in a time interval of length δt then

E(δB) = 0, E[(δB)2] = δt, E[(δB)j] = o(δt), for j > 2,

where the expectation is one conditional on the past of the process. Note that since

E[(δB/δt)2] = O
[
(δt)−1

]
→ ∞,

the formal derivative ǫ = dB/dt (continuous-time ‘white noise’) does not exist in a
mean-square sense, but expectations such as

E

[{∫

α(t)ǫ(t)dt

}2
]

= E

[{∫

α(t)dB(t)

}2
]

=

∫

α(t)2dt

make sense if the integral is convergent.
Now consider a stochastic differential equation

δx = a(x, u)δt+ g(x, u)δB,

which we shall write formally as

ẋ = a(x, u) + g(x, u)ǫ.

This, as a Markov process, has an infinitesimal generator with action

Λ(u)φ(x) = lim
δt↓0

E

[
φ(x(t + δt))− φ(x)

δt

∣
∣
∣
∣
x(t) = x, u(t) = u

]

= φxa+
1
2φxxg

2

= φxa+
1
2Nφxx,

where N(x, u) = g(x, u)2. So this controlled diffusion process has DP equation

inf
u

[
c+ Ft + Fxa+ 1

2NFxx

]
= 0, (19.2)

and in the vector case

inf
u

[
c+ Ft + F⊤

x a+ 1
2 tr(NFxx)

]
= 0.

19.3 Example: noisy LQ regulation in continuous time

The dynamics are

δx = Axδt+Bu δt+N1/2δB

ẋ = Ax+Bu+N1/2ǫ.

89

The dynamic programming equation is

inf
u

[
x⊤Rx+ u⊤Qu+ Ft + F⊤

x (Ax+Bu) + 1
2 tr(NFxx)

]
= 0.

In analogy with the discrete and deterministic continuous cases that we have considered
previously, we try a solution of the form,

F (x, t) = x⊤Π(t)x + γ(t).

This leads to the same Riccati equation as in Section 16.4,

0 = x⊤

[

R+ΠA+A⊤Π−ΠBQ−1B⊤Π+
dΠ

dt

]

x,

and also, as in Section 13.3,

dγ

dt
+ tr(NΠ(t)) = 0, giving γ(t) =

∫ T

t

tr(NΠ(τ)) dτ.

19.4 Example: passage to a stopping set

Consider a problem of movement on the unit interval 0 ≤ x ≤ 1 in continuous time,
ẋ = u + ǫ, where ǫ is white noise of power v. The process terminates at time T when
x reaches one end or the other of the the interval. The cost is made up of an integral

term 1
2

∫ T

0
(L + Qu2)dt, penalising both control and time spent, and a terminal cost

which takes the value C0 or C1 according as termination takes place at 0 or 1.
Show that in the deterministic case v = 0 one should head straight for one of

the termination points at a constant rate and that the value function F (x) has a
piecewise linear form, with possibily a discontinuity at one of the boundary points if
that boundary point is the optimal target from no interior point of the interval.

Show, in the stochastic case, that the dynamic programming equation with the
control value optimized out can be linearised by a transformation F (x) = α logφ(x) for
a suitable constant α, and hence solve the problem.

Solution. In the deterministic case the optimality equation is

inf
u

[
L+Qu2

2
+ u

∂F

∂x

]

= 0, 0 < x < 1, (19.3)

with boundary conditions F (0) = C0, F (1) = C1. If one goes (from x) for x = 0 at
speed w one incurs a cost of C0 + (x/2w)(L +Qw2) with a minimum over w value of
C0 + x

√
LQ. Indeed (19.3) is solved by

F (x) = min
[

C0 + x
√

LQ,C1 + (1− x)
√

LQ
]

.

The minimizing option determines the target and the optimal w is
√

L/Q.

90

In the stochastic case

inf
u

[
L+Qu2

2
+ u

∂F

∂x
+

v

2

∂2F

∂x2

]

= 0.

So u = −Q−1Fx and

L−Q−1

(
∂F

∂x

)2

+ v
∂2F

∂x2
= 0.

Make the transform F (x) = −Qv logφ(x) so φ(x) = e−F (x)/Qv. Then the above equa-
tion simplifies to

Qv2
∂2φ

∂x2
− Lφ = 0,

with solution
φ(x) = k1 exp

(x

v

√

L/Q
)

+ k2 exp
(

−x

v

√

L/Q
)

.

We choose the constants k1, k2 to meet the two boundary conditions on F .

0 0.2 0.4 0.6 0.8
1

1

1.2

1.4

1.6

1.8

2.0

2.2

v = 1

v = 2

v = 0.5

v = 0.25

v = 0.125

Figure 5: F (x) against x for the passage to a stopping set

The figure shows the solution for L = 1, Q = 4, C0 = 1, C1 = 1.5 and v = 0.125, 0.25,
0.5, 1, 2 and the deterministic solution.

Notice that for these parameter choices the presence of noise actually reduces cost.
This is because we are nearly indifferent as to which endpoint we hit, and L is small
relative to Q. So it will be good to keep u small and let the noise do most of the work
in bringing the state to an endpoint.

91

20 Risk-sensitive Optimal Control

A brief presentation of some ideas of Peter Whittle. Recapitulation of LQG model,
certainty-equivalence and the maximum principle, but now with risk-sensitivity.

20.1 Whittle risk sensitivity

Consider a control problem in which the expected cost under policy π is EπC. Whittle
has proposed that one can model sensitivity to variability in the cost with the criterion

γπ(θ) = −θ−1 log
[
Eπ

(
e−θC

)]
.

Since the exponential function is convex, Jensen’s inequality tells us that Eπ

(
e−θC

)
≥

e−θEπC , and so we see that γπ(θ) is less, equal or greater than Eπ(C) as θ is positive,
zero or negative. Observe also that

γπ(θ) = −θ−1 log
[

Eπ

(

e−θEπC−θ(C−EπC)
)]

= EπC − 1
2θ varπ(C) + · · ·

So the variance of C enters as a first order term in θ. When θ is positive, zero or
negative we are correspondingly risk-seeking, risk-neutral or risk-averse.

The LQG model with cost function γπ(C), and C a quadratic, is quite naturally
given the acronym of LEQG (EQ meaning exponential of a quadratic).

20.2 The felicity of LEQG assumptions

Recall the discrete-time LQG state-structured model in which

xt = Axt−1 +But−1 + ǫt

yt = Cxt−1 + ηt

The noise terms are Gaussian, and initial information is x0 ∼ N(x̂0, V0). The cost
function is

C(X,U) = 1
2

t−1∑

0

(x⊤
t Rxt + u⊤

t Qut) +
1
2x

⊤
h Πhxh,

in which it is now convenient to supply an extra factor of 1/2.
Under the LQG assumptions we have available to us many facts about least square

estimation, maximum likelihood, partitioning of sums of squares, Gauss-Markov the-
orem, Shur-inverses, and so on. We now briefly summarise some of these and recall
results from previous lectures.

Firstly, recall that it is frequently useful to partition a quadratic form Q, in vectors
x ∈ R

n and u ∈ R
m, as

Q(x, u) = 1
2

(
x
u

)⊤(
Πxx Πxu

Πux Πuu

)(
x
u

)

= 1
2

(

u−Π−1
uuΠuxx

)⊤

Πuu

(

u−Π−1
uuΠuxx

)

+ 1
2x

⊤
(

Πxx −ΠxuΠ
−1
uuΠux

)

x. (20.1)

92

We are of course assuming that Π is symmetric and Πuu ≻ 0. Equation (20.1) shows
that Q is minimized with respect to u by ū = Π−1

uuΠuxx, with the minimized value
Q(x, ū) = x⊤

(
Πxx − ΠxuΠ

−1
uuΠux

)
x. We have already used this in Lecture 13 to see

that the optimal control for LQ regulation takes the form ut = Ktxt and to derive the
Riccati equation Πt−1 = fΠt.

A second crucial fact is obtained by writing h = u− ū, and using (20.1) to give
∫

u

e−Q(x,u)du = e−Q(x,ū)

∫

u

e−
1
2h

⊤Πuuhdu = e−Q(x,ū)(det(Πuu)(2π))
m/2

= e− infu Q(x,u)(det(Πuu)(2π))
m/2. (20.2)

The second integral can be evaluated by inspection if the reader remembers the form
of the density function of a multivariate Gaussian u ∼ N(ū,Π−1

uu). The usefulness of
(20.2) comes from noting that the dependence on x of the left-hand and right-hand
sides is the same. This is also true in the more natural circumstance that the roles of
u and x are interchanged, and we seek a control u which extremizes the expectation of
exp(−θC) over a random x, for which exp(−Q(x, u)) provides the x-dependent part of
the Gaussian joint density function.

This is our third key fact: that exponentials of quadratics appear within the LEQG
model in two ways. They appear in the cost exp(−θC), and also through the Gaussian
joint density functions of unknown variables. If (x, u) are jointly Gaussian then their
density function is proportional to exp(−Q(x, u)), where Q is written in terms of the
inverse of the covariance matrix V ,

Q(x, u) = 1
2

(
x
u

)⊤(
Vxx Vxu

Vux Vuu

)−1(
x
u

)

.

The conditional mean and covariance matrix of x given u are

E(x | u) = VxuV
−1
uu u

cov(x | u) = Vxx − VxuV
−1
uu Vux = S̃.

We had this as Lemma 15.4 when we derived the Kalman filter, (a recursive method
of finding the parameters of the conditional distribution of xt given Wt). We needed
the fact that the conditional mean of ξt (= xt − Ax̂t − But−1) given ηt (= yt − Cx̂t)
is a linear function of ηt and its conditional covariance matrix does not depend on the
actual value of ηt.

As an aside, we remark that it is sometimes helpful to rewrite Q using the matrix
S̃ = Vxx − VxuV

−1
uu Vux, which is called the Shur-complement of Vuu in V . We might

let Π = V −1, in which case the following identity can be verified:
(
Πxx Πxu

Πux Πuu

)

=

(
S̃−1 −S̃−1VxuV

−1
uu

V −1
uu VuxS̃

−1 V −1
uu − V −1

uu VuxS̃
−1VxuV

−1
uu

)

.

This helps to explain why the equations that specify optimal controls (Lecture 13)
are so similar to those which specify optimal estimates (Lecture 15). We are equally
content to compute quantities of interest from either blocks in V or in V −1.

93

20.3 A risk-sensitive certainty-equivalence principle

Using the facts in §20.2 we can now address the problem of minimizing the risk-sensitive
objective γπ(θ). Let us present and then explain the following.

Eπ

[
e−θC | Wt

]
=

∫

e−θ(C+θ−1D)d�. (20.3)

The cost C is quadratic in X,U . Given Wt, some constituent variables are known
and others are unknown. Past controls are known, and future controls are not yet
known. In the case of imperfect observation, X may never be known. The expectation
is being taken under policy π with respect to all the unknown variables, denoted here
by �. This expectation is computed by integrating exp(−θC) against the appropriate
Gaussian density. Thus D (which Whittle calls the discrepancy) is essentially the
quadratic form required to express the joint density function of all variables (both
known and unknown) in terms of their covariance matrix.

Now we use the key fact (20.2) to write

γπ(θ) = −θ−1 log
[

e−θ inf�(C+θ−1D)
]

+ · · · (20.4)

where + · · · denotes policy independent terms (which depend on V0, N, L,M,Πh, R,Q).
The nature of a risk-sensitive certainly-equivalence principle (RSCEP) is now

clear. If at time t we are wishing to optimally choose ut, then this can be viewed as a
two-stage process. The first stage is to minimize the stress, defined as S = C + θ−1D,
over all the unknown variables (the ensemble we are denoting as �), but excluding
U . The LQG assumptions guarantee that these values will be linear functions of U .
The second stage is to substitute these values into S and then minimize the resulting
(quadratic) function of U . The Kalman filter expresses calculations of the first stage in
a recursive manner. The second stage is simply a noiseless LQ regulation problem.

It is worth reflecting carefully on what (20.4) is saying. In the terms of our familar
notation, we are minimizing S over unknowns amongst X,Y and U . If we minimize
over U first, then the optimizing U values will be linear function of X,Y , and we can
subsequently minimize over these. By conducting the minimization in this sequence ut

can be chosen in full knowledge of Wt. Indeed, it looks as if we are allowed precognition
when choosing ut: potentially ut can be a function of a future observable, such as yτ
for τ > t or even of an unobservable, such as x0. But now think about minimizing S
with respect to X,Y before U . Now it is clear that U is no more than the sequence
of controls that is optimal for the certainty-equivalent scenario that is obtained by
replacing unknowns by their maximum likelhood estimates. This provides the risk-
sensitive certainly-equivalence principle described above.

The special case as θ → 0 deserves comment. Now the term of θ−1D overwhem-
ingly dominates S and so the first stage is to minimize D, which means replacing all
unknowns with their maximum likelihood estimates, equivalently their means condi-
tional on the values of the known variables. Then we solve the regulation problem
under the assumption that these are the true values of the unknowns. In particular we

94

will estimate all future noise variables as 0. Having estimated all other unknowns, we
must conclude that ut = Ktx̂t, where Kt is the same matrix we would have used in the
noiseless and full-information case. This is an alternative proof of Theorem 16.2, and
in some respects a much cleaner and revealing one.

It is perhaps interesting to note that if one were to take all the following matrices
which feature in the discrete-time LGQ model, namely R,S,Q, L,M,N, V0,Πh, and
scale them by the same factor, then all estimates of unknowns do not change, and Πt

and Vt are simply scaled by the same factor.

We finish this section with a quote from Whittle, who writes

The RSCEP is in danger of being one of those pieces of work which is rejected for
a time as odd and then is no sooner accepted than it is dismissed as trivial.

My personal view is that the reader who thinks at all deeply about (20.2) and (20.4)
is unlikely to dismiss the RSCEP.

20.4 Large deviations

In the remainder of this chapter we will do no more than provide a few broad-brush
hints about the way in which the theory of risk-sensitive control can be developed.

The RSCEP depends crucially on the fact that (20.2) turns the calculation of an
expectation into a calculation of a path maximum likelihood. This is true only under
LEQG assumptions. However, the theory of large deviations provides something
very similar that can be applied more generally.

Suppose we have N copies of a stochastic path. Think, for example, of N i.i.d.
random walks. The ith copy has xi

t = xi
t−1 + ǫit, t = 0, . . . , h, with xi

0 = 0. Let

Zt = (1/N)
∑N

i=1 x
i
t. The strong law of large numbers tells us that {Zt, t = 0, . . . , h}

tends to the zero path almost surely as N → ∞. We have already met this type of fluid
model for a stochastic systems in §11.4.

Suppose we wish to evaluate E[e−θC(Z) | G], where cost C is a function of the
path, and G is an event, like ‘the path of Z ends near Zh = 0, but Zt ≥ 2 for some
t along the way’. It is a part of large deviation theory to say that if such an unlikely
event G occurs (which means a deviation from the zero path) then it is overwhemingly
most likely to occur in whatever way is most likely amongst possible ways that it could
occur. In our example, this would mean making a straight-line path from 0 to 2 over
[0, h/2] and then another straight-line path from 2 to 0 over [h/2, h]. If this path is χ̄,
then E[e−θC(Z) | G] is essentially e−θC(χ̄). We have again turned the calculation of an
expectation into a calculation of a path maximum likelihood. Moreover, if we introduce
controls into our problem, then the calculation of the an optimal policy can be found
by minimizing a stress of the form C(χ)+θ−1D(χ). Once again we can compute this in
stages, first with respect to unknown state and noise variables, and then with respect
to controls. This means that a RSCEP can be valid outside the LEQG setting.

95

20.5 A risk-sensitive maximum principle

In §17.1 we used a Lagrange multiplier viewpoint to understand Pontyagin’s maximum
principle. We augmented the objective function by λ⊤(ẋ − a(x, u)) and then freely
optimized over u and x.

Consider again the LEQG model, with full state observation, so ẋ = Ax + Bu +
ǫ. It is now plausible that we should add to the stress, S = C + θ−1D, a further
term of λ⊤(ẋ − Ax − Bu − ǫ). The discrepancy part of this, θ−1D, already contains
(1/2)θ−1ǫ⊤Nǫ, and so minimizing with respect to ǫ gives ǫ = θNλ. After extremizing
out ǫ we are left to extremize the path integral

∫ h

0

[
c(x, u) + λ⊤(ẋ−Ax−Bu)− 1

2θλ
⊤Nλ

]
dt+ Ch(xh).

We can, as before integrate by parts to find a differential equation that λ must satisfy.
We can also use the fact the dual variable λmust extremize the integrand in the opposite
direction that in which we extremize with respect to x, u.

20.6 Example: risk-sensitive optimization of consumption

There is not space to continue with more theory. We simply conclude by returning to
the example we studied in §17.1, namely the problem of maximizing consumption over
a lifetime, but now with noise in the growth rate of capital:

ẋ = ax− u+ ǫ.

Let us take as a heuristic, which is motivated by the large deviations argument, that
we should look at minimizing

∫ T

0

[
− logu+ λ(ẋ − (ax− u))− 1

2θNλ2
]
dt− log x(T).

If θ > 0 we minimize with respect to x, u, and maximize with respect to λ. Thus
u = −1/λ, λ̇ = −aλ, and ẋ− ax− u = θNλ. As before, with x(T) unconstrained, this
gives λ(t) = λ(0)e−at, λ(T) = κ/x(T). So

eat
d

dt
(xe−at) +

1

λ(0)
eat = θNλ(0)e−at

=⇒ x(T)e−aT − x(0) +
1

λ(0)
T = θNλ(0)

1

2a
(1 − e−2aT)

=⇒ (κ+ T)u(0)− x(0) =
θN

2au
(1− e−2aT).

For θ = 0 this gives the risk-neutral answer of (17.1). For θ > 0 the individual should
consume at a greater rate than he would do if risk-neutral, because he is optimistic
that the noise will work in his favour.

96

Now consider what happens if ẋ = ax− u, but the lifetime T is uncertain. Let the
remaining lifetime be y, with ẏ = −1 + ǫ. The path integral is now

∫ τ

0

[
− log u+ λ2(ẏ + 1) + λ1(ẋ− (ax− u))− 1

2θNλ2
2

]
dt− log xτ ,

where τ is the first time that y = 0. The solution is u = x/(κ + s), where s is the
effective remaining life, which is related to x, y by

y2 − s2 = 2θNs2
(

1− a(κ+ s) + log

(
κ+ s

x

))

.

For a given y, this exhibits the interesting property that if x is large enough that the
term in round brackets is negative, then s > y. In this case the individual is optimistic
of a long life, and has sufficient capital to believe he can build it up, while consuming
more slowly than if he were not optimistic. But if x is small then s < y. Having only
little capital, there is not much time to build it up, and so he optimistically takes the
view that his life will be short (!), and that it is best to consume what little he has at
a faster rate than he would if he was certain that his remaining life were to be y.

97

Index

active action, 48
adjoint variable, 79
asymptotically optimal, 50
average cost, 38
average reward, 48

bandit process, 26, 29
bang-bang control, 6, 76, 81
Bellman equation, 3
Bernoulli bandit, 29
bin packing problem, 58
bound, 48
branching bandit, 36
broom balancing, 65
Brownian motion, 88
Bruss’s odds algorithm, 23

calibrating bandit process, 31
certainty equivalence, 73
chattering, 76
closed-loop, 3, 79
cµ-rule, 35
completion time, 42
concave majorant, 24
control theory, 1
control variable, 2
controllability, 63
controllable, 63
controlled diffusion process, 88, 89

decomposable cost, 4
deterministic stationary Markov policy,

20, 30
diffusion process, 88
discount factor, 9
discounted programming, 11
discounted-cost criterion, 9
discrepancy, 94
discrete-time, 2
dual LP, 48
dynamic programming equation, 3, 48

exploration and exploitation, 18

fair charge, 31
feedback, 3
finite actions, 15
flow time, 42
forward induction policy, 33

gain matrix, 61
gambling, 15
Gittins index, 27, 30
golf with more than one ball, 33

Hamilton-Jacobi-Bellman equation, 74
Hamiltonian, 79
Hardy-Littlewood rearrangement inequal-

ity, 54
harvesting fish, 75
hazard rate, 35
holding cost, 45

index policy, 29, 30
indexable, 49
individual optimality, 46
infinitesimal generator, 88
innovations, 73
insects as optimizers, 84
interchange argument, 10

job scheduling, 9

knapsack problem, 58

Lady’s nylon stocking problem, 44
Lagrange multipliers, 49
linear least squares estimate, 71
linear program, 48
LQG model, 59

makespan, 42
Markov decision problem, 5
Markov decision process, 4, 5
Markov dynamics, 4

98

Markov jump process, 44
Markov policy, 20
monotone operator, 10
multi-armed bandit, 29
multi-armed bandit problem, 18, 29
myopic policy, 18, 33

negative programming, 11
nonpreemptive, 35

observability, 63
observable, 63
one-step look-ahead rule, 21, 33
open-loop, 3, 79
optimality equation, 3
optimization of consumption, 5, 78, 96
optimization over time, 1

parking a rocket car, 80
parking problem, 22
partially observable Markov decision pro-

cess, 19, 47
passive action, 48
perfect state observation, 4
pharmaceutical trials, 17
plant equation, 3
policy, 3
policy improvement algorithm, 40
Pontryagin’s maximum principle, 79
positive programming, 11
preemptive, 35
prevailing charge, 31
principle of optimality, 1, 2

queueing control, 39, 45

r-controllable, 63
r-observable, 63
regulation, 59
relative value function, 39
Riccati equation, 60, 61, 72, 75
risk-sensitive certainly-equivalence princi-

ple, 94

search for a moving object, 16

secretary problem, 7, 23
selling an asset, 12
separable cost function, 3
separation principle, 73
sequential stochastic assignment problem,

53
Shur-complement, 93
simple family of alternative bandit pro-

cesses, 26, 29
social optimality, 46
stability matrix, 66
stabilizable, 66
state variable, 3
stochastic differential equation, 89
stochastic scheduling, 35, 42
stopping problem, 21
stopping time, 27, 30
stress, 94
successive approximation, 15
switching locus, 81

target process, 34
tax problem, 36
threshold rule, 45
time horizon, 2
time to go, 5
time-homogeneous, 5, 10
transversality conditions, 82, 83
turnpike theory, 87
two-armed bandit, 27
two-armed bandit problem, 18

uniformization, 42, 44

value function, 6
value iteration, 15
value iteration algorithm, 40
value iteration bounds, 39

weighted flow time, 35
Weitzman’s problem, 32
white noise, 61
Whittle index, 49
Whittle index policy, 49
Wiener process, 88

99

	Table of Contents
	Dynamic Programming
	Control as optimization over time
	The principle of optimality
	Example: the shortest path problem
	The optimality equation
	Markov decision processes

	Examples of Dynamic Programming
	Example: optimization of consumption
	Example: exercising a stock option
	Example: secretary problem

	Dynamic Programming over the Infinite Horizon
	Discounted costs
	Example: job scheduling
	The infinite-horizon case
	The optimality equation in the infinite-horizon case
	Example: selling an asset

	Positive Programming
	Example: possible lack of an optimal policy.
	Characterization of the optimal policy
	Example: optimal gambling
	Value iteration
	Example: search for a moving object
	Example: pharmaceutical trials

	Negative Programming
	Example: a partially observed MDP
	Stationary policies
	Characterization of the optimal policy
	Optimal stopping over a finite horizon
	Example: optimal parking

	Optimal Stopping Problems
	Bruss's odds algorithm
	Example: Stopping a random walk
	Optimal stopping over the infinite horizon
	Sequential Probability Ratio Test
	Bandit processes
	Example: Two-armed bandit
	Example: prospecting

	Bandit Processes and the Gittins Index
	Index policies
	Multi-armed bandit problem
	Gittins index theorem
	Calibration
	Proof of the Gittins index theorem
	Example: Weitzman's problem

	Applications of Bandit Processes
	Forward induction policies
	Example: playing golf with more than one ball
	Target processes
	Bandit superprocesses
	Example: single machine stochastic scheduling
	Calculation of the Gittins index
	Branching bandits
	Example: Searching for a single object

	Average-cost Programming
	Average-cost optimality equation
	Example: admission control at a queue
	Value iteration bounds
	Policy improvement algorithm

	Continuous-time Markov Decision Processes
	Stochastic scheduling on parallel machines
	Controlled Markov jump processes
	Example: admission control at a queue

	Restless Bandits
	Examples
	Whittle index policy
	Whittle indexability
	Fluid models of large stochastic systems
	Asymptotic optimality

	Sequential Assignment and Allocation Problems
	Sequential stochastic assignment problem
	Sequential allocation problems
	SSAP with arrivals
	SSAP with a postponement option
	Stochastic knapsack and bin packing problems

	LQ Regulation
	The LQ regulation problem
	The Riccati recursion
	White noise disturbances
	LQ regulation in continuous-time
	Linearization of nonlinear models

	Controllability and Observability
	Controllability and Observability
	Controllability
	Controllability in continuous-time
	Example: broom balancing
	Stabilizability
	Example: pendulum
	Example: satellite in a plane orbit

	Observability and the LQG Model
	Infinite horizon limits
	Observability
	Observability in continuous-time
	Example: satellite in planar orbit
	Imperfect state observation with noise

	Kalman Filter and Certainty Equivalence
	The Kalman filter
	Certainty equivalence
	The Hamilton-Jacobi-Bellman equation
	Example: LQ regulation
	Example: harvesting fish

	Pontryagin's Maximum Principle
	Example: optimization of consumption
	Heuristic derivation of Pontryagin's maximum principle
	Example: parking a rocket car
	Adjoint variables as Lagrange multipliers

	Using Pontryagin's Maximum Principle
	Transversality conditions
	Example: use of transversality conditions
	Example: insects as optimizers
	Problems in which time appears explicitly
	Example: monopolist
	Example: neoclassical economic growth

	Controlled Diffusion Processes
	The dynamic programming equation
	Diffusion processes and controlled diffusion processes
	Example: noisy LQ regulation in continuous time
	Example: passage to a stopping set

	Risk-sensitive Optimal Control
	Whittle risk sensitivity
	The felicity of LEQG assumptions
	A risk-sensitive certainty-equivalence principle
	Large deviations
	A risk-sensitive maximum principle
	Example: risk-sensitive optimization of consumption

	Index

