On Statistical and Causal Models Associated with Acyclic Directed Mixed Graphs

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

January 14, 2025 @ Online Causal Inference Seminar

Working paper available at arXiv:2501.03048.

Clarifies and extends (hopefully) the paper by Thomas S. Richardson et al. (2023). "Nested Markov Properties for Acyclic Directed Mixed Graphs". In: *The Annals of Statistics* 51.1, pp. 334–361.

Acyclic directed mixed graphs (ADMGs)

- ▶ ADMGs have directed edges (\longrightarrow), bidirected edges (\leftrightarrow), and no directed cycles.
- First used by Sewall Wright a century ago in genetics. Stayed popular in economics (e.g. instrumental variable methods) and social science (e.g. LISREL).

 $Z \longrightarrow X \xrightarrow{\longleftarrow} Y$

ADMGs play a critical role in modern causal inference, but a fundamental question is unclear:

What is "'the" ADMG model (statistical or causal)?

This is a tricky question about when we think a mathematical definition is "good".

Two general arguments

Equivalence When many definitions motivated by apparently different considerations are equivalent to each other, they may describe a natural mathematical concept.

Examples: \mathbb{N} , M-matrices, Hammersley-Clifford (factorization \Leftrightarrow Markov).

Completion When there is a natural definition for a smaller class of objects, we may try to find a "completion" of that definition to a larger class of objects.

Examples: \mathbb{R} (via Cauchy sequences or Dedekind cuts), Lebesgue measure.

Outline of this talk

- 1. A survey of different interpretations of ADMGs and their relations.
 - A negative answer solely using the **Equivalence argument**.
- 2. Completeness of graphical statistical models wrt latent variable explanations.
 - A positive answer using the **Equivalence** and **Completion** arguments.
- 3. Causal ADMG model and the nested Markov property.
- 4. Discussion: DAG (model) is a special ADMG (model).

Notation

Probability and statistics

- ▶ P (a probability distribution), \mathbb{P} (a collection of P, aka a statistical model).
- ▶ $\mathbb{V} = \mathbb{V}_1 \times \cdots \times \mathbb{V}_d$: a finite-dimensional product measure space.
- ▶ $\mathbb{P}(\mathbb{V})$: all probability distributions on \mathbb{V} (with a density function).

Graphs

- $\mathbb{G}^*_A(V)$: all ADMGs with vertex set $V = \{V_1, \ldots, V_d\}$ (acyclic = no directed cycles).
- $\mathbb{G}^*_{\mathsf{B}}(V)$: the subclass of all bidirected graphs.
- $\mathbb{G}^*_{\mathsf{DA}}(V)$: the subclass of all DAGs.

Walks

- ▶ ----- means a walk (sequence of connected edges) with no colliders (like $\leftrightarrow V_j \leftarrow -$).
- ▶ Half arrowhead means unrestricted status: \leftrightarrow = \rightarrow or \leftrightarrow .
- ▶ not $J \leftrightarrow K \models L$ means J and K are m-separated by L (* means ≥ 0 colliders).

Marginalization

Consider $J = V_{\mathcal{J}} \subseteq V$.

• Product spaces: margin_J(
$$\mathbb{V}$$
) = $\mathbb{V}_{\mathcal{J}} = \prod_{j \in \mathcal{J}} \mathbb{V}_j$.

Probability distributions: margin_J(P) returns the marginal distribution of J under P.
 Graphs: margin_J: G^{*}_A(V) → G^{*}_A(J), G → G', where

$$V_j \longrightarrow V_k \text{ in } G' \iff P[V_j \dashrightarrow V_k \mid J \text{ in } G] \neq \emptyset,$$

$$V_j \longleftrightarrow V_k \text{ in } G' \iff P[V_j \nleftrightarrow V_k \mid J \text{ in } G] \neq \emptyset,$$

where P means the set of corresponding paths.

Ancestral subsets

• $J \subseteq V$ is ancestral in G if it contains all its ancestors:

$$\{V_k \in V : V_k \dashrightarrow J \text{ in } G\} \subseteq J.$$

• If J is ancestral, then margin_J(G) = G_J is the subgraph of G restricted to J.

Outline

Different interpreations

Completeness

Causal model

Conclusions

Ovewview of statistical models associated with ADMG

- 1. Global Markov (GM).
- 2. Unconditional Markov (UM).
- 3. Ordered local Markov (LM): see the paper.
- 4. Nested Markov (NM).
- 5. Augmentation (A) criterion (generalizes moralization): see the paper.
- 6. Pairwise expansion (PE), clique expansion (CE), noise expansion (NE).
- 7. Nonparametric equations (E).
- 8. Factorization (F)/exogenous factorization (EF): applies to DAGs/unconfounded ADMGs.

Global Markov (GM) and unconditional Markov (UM)

For $G \in \mathbb{G}^*_A(V)$, define

 $\mathbb{P}_{\mathsf{GM}}(\mathsf{G},\mathbb{V}) = \{\mathsf{P} \in \mathbb{P}(\mathbb{V}) : \mathsf{not} \ J \nleftrightarrow \ast \nleftrightarrow \kappa \downarrow L \text{ in } \mathsf{G} \Longrightarrow J \perp K \mid L \text{ under } \mathsf{P} \text{ for all disjoint } J, K, L \subset V \}.$

• Every m-separation in G implies a conditional independence in P.

 $\mathbb{P}_{\mathsf{UM}}(\mathsf{G},\mathbb{V}) = \{\mathsf{P} \in \mathbb{P}(\mathbb{V}) : \text{not } J \nleftrightarrow K \text{ in } \mathsf{G} \Longrightarrow J \perp K \text{ under } \mathsf{P} \text{ for all disjoint } J, K \subset V\}.$

Every unconditional m-separation in G implies a marginal independence in P.

Pairwise (PE), clique (CE), and noise (NE) expansions

For $\mathsf{G}\in \mathbb{G}^*_\mathsf{A}(V)$,

- ▶ expand_P(G) replaces a bidirected edge $V_j \longleftrightarrow V_k$ with $V_j \longleftarrow E_{jk} \longrightarrow V_k$.
- ▶ expand_C(G) replaces a bidirected clique $C \subseteq V$ (meaning $V_j \leftrightarrow V_k$ for all $V_j, V_k \in C$) with $E_C \longrightarrow V_j, V_j \in C$.
- ▶ expand_N(G) replaces a bidirected edge $V_j \leftrightarrow V_k$ with $V_j \leftarrow E_j \leftrightarrow E_k \longrightarrow V_k$.

The corresponding statistical models are defined as

$$\begin{split} \mathbb{P}_{\mathsf{PE}}(\mathsf{G},\mathbb{V}) &= \mathsf{margin}_{V}\left(\mathbb{P}_{\mathsf{GM}}\big(\mathsf{expand}_{\mathsf{P}}(\mathsf{G}),\mathbb{V}\times[0,1]^{|\,\mathcal{B}\,|}\big)\right),\\ \mathbb{P}_{\mathsf{CE}}(\mathsf{G},\mathbb{V}) &= \mathsf{margin}_{V}\left(\mathbb{P}_{\mathsf{GM}}\big(\mathsf{expand}_{\mathsf{C}}(\mathsf{G}),\mathbb{V}\times[0,1]^{|\mathcal{C}(\mathsf{G})|}\big)\right),\\ \mathbb{P}_{\mathsf{NE}}(\mathsf{G},\mathbb{V}) &= \mathsf{margin}_{V}\left(\mathbb{P}_{\mathsf{GM}}\big(\mathsf{expand}_{\mathsf{N}}(\mathsf{G}),\mathbb{V}\times[0,1]^{|\,\mathcal{V}\,|}\big)\right). \end{split}$$

Nonparametric equations (E)

For $G \in \mathbb{G}^*_A(V)$, $\mathbb{P}_E(G, \mathbb{V})$ collects all $P \in \mathbb{P}(\mathbb{V})$ such that the following has P-probability 1:

$$V_j = f_j(V_{\mathrm{pa}_G(j)}, E_j), \ j \in [d],^1$$
 (1)

where

$$V_{\mathcal{J}} \nleftrightarrow V_{\mathcal{K}}$$
 in $G \Longrightarrow E_{\mathcal{J}} \perp E_{\mathcal{K}}$ under Q , for all disjoint $\mathcal{J}, \mathcal{K} \subset [d]$. (2)

Remarks

- ▶ (1) only uses \longrightarrow and (2) only uses \longleftrightarrow in G.
- Closely related to Pearl's semi-Markovian (causal) model that does not write down (2).

¹Parent set $pa_{\mathsf{G}}(j) = \{k \in [d] : V_k \longrightarrow V_j \text{ in } \mathsf{G}\}.$

The nested Markov property means the fixed probability distribution is global Markov wrt the fixed graph along all fixable sequences (Richardson et al. 2023).

- ▶ This is closely related to (nonparametric) causal identification.
- Fixability of a vertex $V_j \in V$ and the fixing operator fix_{V_i} will be defined later.

Relations between ADMG models: the **Equivalence** argument **fails**.

```
Theorem 1.1 (General ADMGs)
For G \in \mathbb{G}^*_{\Delta}(V), we have (\Rightarrow means \subseteq and \Leftrightarrow means = for corresponding statistical models)
           Pairwise expansion (PE)
            Clique expansion (CE)
            Noise expansion (NE) \iff Nonparametric equation (E)
                       ∜
            Nested Markov (NM)
         Ordered local Markov (LM) \iff Global Markov (GM) \iff Augmentation (A)
                       1
         Unconditional Markov (UM)
```

Most of these are trivial or known. The most nontrivial is NE ⇒ NM (end of talk).
 Top half are generative and bottom half are constraint-based.

Equivalence succeeds for simpler subclasses

Theorem 1.2 (DAGs) For $G \in \mathbb{G}_{DA}^{*}(V)$, we have $\begin{array}{c} \mathsf{PE} \Leftrightarrow \mathsf{CE} \Leftrightarrow \mathsf{NE} \Leftrightarrow \mathsf{E} \Leftrightarrow \mathsf{Factorization} \ (\mathsf{F}) \Leftrightarrow \mathsf{NM} \Leftrightarrow \mathsf{LM} \Leftrightarrow \mathsf{GM} \Leftrightarrow \mathsf{A} \\ \downarrow \\ \mathsf{UM} \end{array}$

Theorem 1.3 (Bidirected graphs) For $G \in BDG(V)$, we have

$$\begin{array}{c} \mathsf{PE} \\ \Downarrow \\ \mathsf{CE} \\ \Downarrow \\ \mathsf{NE} \Leftrightarrow \mathsf{E} \Leftrightarrow \mathsf{NM} \Leftrightarrow \mathsf{LM} \Leftrightarrow \mathsf{GM} \Leftrightarrow \mathsf{A} \Leftrightarrow \mathsf{UM} \end{array}$$

Different interpreations

Completeness

Causal model

Conclusions

A definition of completeness

▶ An "interpretation" of a ADMG is a collection $\mathbb{P}(G)$ of probability distributions.

▶ For $G \in \mathbb{G}^*_A(V)$ and $V' \subseteq V$, denote expand_{V'}(G) = {G' \in \mathbb{G}^*_A(V') : margin_V(G') = G}.

For each vertex set V, let $\mathbb{G}_0(V)$ be a subclass of ADMGs.

Definition

A collection of models $\mathbb{P}(G)$ for different $G \in \mathbb{G}^*_A(V)$ is **complete** (wrt \mathbb{G}_0) if

$$\mathbb{P}(\mathsf{G}) = \bigcup_{V' \supset V} \bigcup_{\mathsf{G}'} \mathsf{margin}_{V}(\mathbb{P}(\mathsf{G}')),$$

where the second union is over $G' \in expand_{V'}(G) \cap \mathbb{G}_0(V')$.

Roughly speaking, an ADMG means a unspecified expansion of itself in the G₀ subclass (if the model is complete).

Unconfounded ADMGs and completeness

▶ We say an ADMG is **unconfounded** ($G \in \mathbb{G}^*_{UA}(V)$) if

 $V_j \longleftrightarrow V_k$ in $G \Longrightarrow V_l \not\rightarrow V_j$, for all distinct $V_j, V_k, V_l \in V$.

> Simple semantics: exogenous variables linked by \leftrightarrow and endogenous variables by \rightarrow .

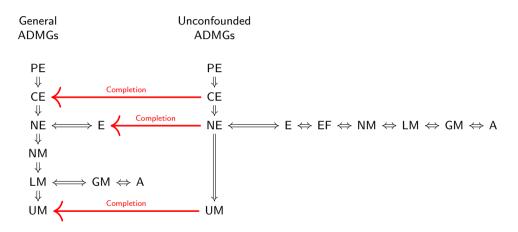
Theorem 1.4 (Unconfounded ADMGs generalize DAGs and bidirected graphs) For $G \in \mathbb{G}^*_{UA}(V)$, we have

 $\begin{array}{c} \mathsf{PE} \\ \Downarrow \\ \mathsf{CE} \\ \Downarrow \\ \mathsf{NE} \\ \Leftrightarrow \\ \mathsf{E} \\ \Leftrightarrow \\ \mathsf{Exogenous} \\ \mathsf{Factorization} \\ \mathsf{(EF)} \\ \Leftrightarrow \\ \mathsf{NM} \\ \Leftrightarrow \\ \mathsf{LM} \\ \Leftrightarrow \\ \mathsf{GM} \\ \Leftrightarrow \\ \mathsf{A} \\ \Downarrow \\ \mathsf{UM} \end{array}$

Theorem 2

When $\mathbb{G}_0(V) = \mathbb{G}_{UA}^*(V)$ for all V, only the CE, NE/E, and UM models are complete.

A visualization of Equivalence + Completion



▶ PE and CE are "intrinsically directed" and UM is "intrinsically bidirected".
 ▶ NE/E seems "just right" if ↔ is on an "equal footing" with → .

Outline

Different interpreations

Completeness

Causal model

Conclusions

Causal Markov model

▶ If E/NE is the "right" statistical model, what is the "right" causal model?

A causal model means a collection of distributions on the **potential outcome schedule**:

 $V(\cdot) = (V_j(v_{\mathcal{I}}) : j \in [d], \mathcal{I} \subseteq [d], v_{\mathcal{I}} \in \mathbb{V}_{\mathcal{I}}).$

Definition

We say a distribution P of $V(\cdot)$ is causal Markov wrt $G \in \mathbb{G}^*_A(V)$ (write $P \in \mathbb{CP}(G, \mathbb{V})$) if

1. The potential outcomes are consistent:

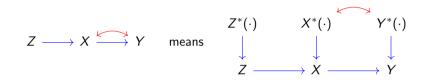
$$V_{j}(v_{\mathcal{I}}) = V_{j}(v_{\mathrm{pa}(j)\cap\mathcal{I}}, V_{\mathrm{pa}(j)\setminus\mathcal{I}}(v_{\mathcal{I}})), \text{ for all } j \in [d], \mathcal{I} \subseteq [d], v \in \mathbb{V}.$$
(3)

2. The distribution of basic potential outcomes are Markov wrt bidirected part of G:

$$V_{\mathcal{J}} \leftrightarrow V_{\mathcal{K}} \text{ in } \mathsf{G} \Longrightarrow V_{\mathcal{J}}(v) \perp V_{\mathcal{K}}(v) \text{ under } \mathsf{P} \text{ for all } v \in \mathbb{V}.$$
 (4)

▶ (3) only uses \rightarrow (for causality) and (4) only uses \leftrightarrow (for exogenous correlation).

An illustration



- ▶ $Z^*(\cdot) = (Z(z, x, y) : z, x, y \in \mathbb{R})$ means the **basic potential outcomes** of Z. Similar for $X^*(\cdot)$ and $Y^*(\cdot)$.
- ▶ We use basic p.o. as noise in the E model and interpret equations causally by consistency.
- ▶ The noise expansion decouples \rightarrow (causality) and \leftrightarrow (exogenous correlation).

Properties of the causal Markov model

Suppose $P \in \mathbb{CP}(G, \mathbb{V})$ for some $G \in \mathbb{G}^*_A(V)$. Proposition 1 (Extended consistency) For all disjoint $V_{\mathcal{I}}, V_{\mathcal{I}'} \subset V$, we have

$$\mathsf{P}(V(v_{\mathcal{I}}, v_{\mathcal{I}'}) = V(v_{\mathcal{I}}) \mid V_{\mathcal{I}'}(v_{\mathcal{I}}) = v_{\mathcal{I}'}) = 1.$$

Definition

Let $G(v_{\mathcal{I}})$ be obtained by removing all edges in $V_{\mathcal{I}} \longrightarrow V$ and relabeling V_j as $V_j(v_{\mathcal{I}})$.

Basically SWIG with no fixed vertices.

Proposition 2 (Markov property of potential outcomes) We have $\operatorname{margin}_{V(v_{\mathcal{I}})}(\mathsf{P}) \in \mathbb{P}_{\mathsf{GM}}(\mathsf{G}(v_{\mathcal{I}}), \mathbb{V})$ for all $V_{\mathcal{I}} \subseteq V$ and $v \in \mathbb{V}$.

Nested Markov (NM) property

- ▶ V_i is called **fixable** if there exists no V_k such that $V_i \rightsquigarrow V_k$ and $V_i \leftrightarrow * \leftrightarrow V_k$.
- NM requires that if V_j is fixable, the next distribution is global Markov wrt $G_{V_{-j}}$:

$$(\mathsf{fix}_{V_j=v_j}(\mathsf{p}))(v_{-j}) = \frac{\mathsf{p}(v)}{\mathsf{p}(v_j \mid v_{\mathsf{mbg}_{\mathsf{G}}(j)})}$$

and this needs to hold recursively.²

Importantly, this is a property of statistical (not causal) models.

Some remarkable results in Richardson et al. (2023)

► The order of fixing does not matter:

$$\mathsf{fix}_{V_1=v_1} \circ \mathsf{fix}_{V_2=v_2}(\mathsf{p}) = \mathsf{fix}_{V_2=v_2} \circ \mathsf{fix}_{V_1=v_1}(\mathsf{p}) \text{ for } \mathsf{P} \in \mathbb{P}_{\mathsf{NM}}(\mathsf{G}),$$

as long the sequences (V_1, V_2) and (V_2, V_1) are both fixable.

 \blacktriangleright CE \Rightarrow NM in general ADMGs. Proof is based on DAG factorization and fairly long.

 $^{^{2}}$ In personal communications, Thomas Richardson pointed out that the actual nested Markov model makes more assumptions (Verma constraints/no directed effects). See his discussion.

NM and causality

Proposition 3 (Causal identification via fixing) Suppose $P \in \mathbb{CP}(G, \mathbb{V})$ for some $G \in \mathbb{G}^*_A(V)$. Then

$$V_{j} \in V \text{ is fixable in G}$$

$$\iff \text{not } V_{j} \leftrightarrow * \leftrightarrow V_{\deg(j)} \mid V_{\operatorname{nd}_{G}(j)}$$

$$\iff \text{not } V_{j}(v_{j}) \iff * \rightsquigarrow V_{\deg(j)}(v_{j}) \mid V_{\operatorname{nd}_{G}(j)}(v_{j}) \text{ in } G(v_{j})$$

$$\implies \operatorname{margin}_{V_{-j}(v_{j})}(\mathsf{P}) = \operatorname{fix}_{V_{j}=v_{j}}(\mathsf{P}_{V}).$$

A simple proof of $E/NE \Rightarrow NM$ (Theorem 3 in the paper)

- Consider $P_V \in \mathbb{P}_E(G, \mathbb{V})$.
- ▶ By interpreting the equations causally, there exists $P \in \mathbb{CP}(G, \mathbb{V})$ s.t. margin_V(P) = P_V.
- ▶ By Propositions 2 and 3, if V_j is fixiable, then $fix_{V_j=v_j}(P_V) \in \mathbb{P}_{GM}(margin_{V_{-i}(v_j)}(G(v_j)), \mathbb{V})$
- ▶ Notice that $\operatorname{margin}_{V_{-i}(v_i)}(\mathsf{G}(v_j))$ is isomorphic to $\mathsf{G}_{V_{-j}}$, so $\operatorname{fix}_{V_j=v_j}(\mathsf{P}_V) \in \mathbb{P}_{\mathsf{GM}}(\mathsf{G}_{V_{-j}}, \mathbb{V}_{-j})$.
- Now repeatedly apply this argument.

Outline

Different interpreations

Completeness

Causal model

Conclusions

Understanding ADMG models

• Consider
$$V_{\mathcal{I}} \subset V_{\mathcal{I}'} \subseteq V \subset V'$$
.

When V_{I' \ I} is fixable, this commutative diagram holds for

 P = P_{CE} (Richardson et al. 2023, Lemma 43);

 P = P_{NE} (proved above).

Lots of theory, what's the takeaway?

Use ADMGs, not DAGs

- ▶ In theory and practice, ADMG is usually treated as unspecified DAG with latent variables.
- But this is counter-intuitive: DAG is a special ADMG.

Time to treat DAG model as a special ADMG model

ADMG-based causal inference is better because:

- 1. Philosophically, there are no mysterious latent variables or latent causes.
- 2. Mathematically, the ADMG-native model \mathbb{P}_{NE} is preferred by Equivalence + Completion.
- 3. Practically, ADMGs users are instinctively encouraged to **think about the missing edges** which really drive causal identification.
 - No confounding is about missing \leftrightarrow .
 - ▶ IV and proximal inference are mainly about missing —>.