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Acyclic directed mixed graphs (ADMGs)

▶ ADMGs have directed edges ( ), bidirected edges ( ), and no directed cycles.

▶ First used by Sewall Wright a century ago in genetics. Stayed popular in economics (e.g.
instrumental variable methods) and social science (e.g. LISREL).

Z X Y

ADMGs play a critical role in modern causal inference, but a fundamental question is unclear:

What is “’the” ADMG model (statistical or causal)?



What is “the” ADMG model?

This is a tricky question about when we think a mathematical definition is “good”.

Two general arguments

Equivalence When many definitions motivated by apparently different considerations are
equivalent to each other, they may describe a natural mathematical concept.

▶ Examples: N, M-matrices, Hammersley-Clifford (factorization ⇔ Markov).

Completion When there is a natural definition for a smaller class of objects, we may try to
find a “completion” of that definition to a larger class of objects.

▶ Examples: R (via Cauchy sequences or Dedekind cuts), Lebesgue measure.



Outline of this talk

1. A survey of different interpretations of ADMGs and their relations.
▶ A negative answer solely using the Equivalence argument.

2. Completeness of graphical statistical models wrt latent variable explanations.
▶ A positive answer using the Equivalence and Completion arguments.

3. Causal ADMG model and the nested Markov property.

4. Discussion: DAG (model) is a special ADMG (model).



Notation

Probability and statistics

▶ P (a probability distribution), P (a collection of P, aka a statistical model).

▶ V = V1 × · · · × Vd : a finite-dimensional product measure space.

▶ P(V): all probability distributions on V (with a density function).

Graphs

▶ G∗
A(V ): all ADMGs with vertex set V = {V1, . . . ,Vd} (acyclic = no directed cycles).

▶ G∗
B(V ): the subclass of all bidirected graphs.

▶ G∗
DA(V ): the subclass of all DAGs.

Walks
▶ means a walk (sequence of connected edges) with no colliders (like Vj ).

▶ Half arrowhead means unrestricted status: = or .

▶ not J ∗ K | L means J and K are m-separated by L (∗ means ≥ 0 colliders).



Marginalization

Consider J = VJ ⊆ V .

▶ Product spaces: marginJ(V) = VJ =
∏
j∈J

Vj .

▶ Probability distributions: marginJ(P) returns the marginal distribution of J under P.

▶ Graphs: marginJ : G∗
A(V ) → G∗

A(J),G 7→ G′, where

Vj Vk in G′ ⇐⇒ P[Vj Vk | J in G] ̸= ∅,
Vj Vk in G′ ⇐⇒ P[Vj Vk | J in G] ̸= ∅,

where P means the set of corresponding paths.

Ancestral subsets
▶ J ⊆ V is ancestral in G if it contains all its ancestors:

{Vk ∈ V : Vk J in G} ⊆ J.

▶ If J is ancestral, then marginJ(G) = GJ is the subgraph of G restricted to J.
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Ovewview of statistical models associated with ADMG

1. Global Markov (GM).

2. Unconditional Markov (UM).

3. Ordered local Markov (LM): see the paper.

4. Nested Markov (NM).

5. Augmentation (A) criterion (generalizes moralization): see the paper.

6. Pairwise expansion (PE), clique expansion (CE), noise expansion (NE).

7. Nonparametric equations (E).

8. Factorization (F)/exogenous factorization (EF): applies to DAGs/unconfounded ADMGs.



Global Markov (GM) and unconditional Markov (UM)

For G ∈ G∗
A(V ), define

PGM(G,V)
={P ∈ P(V) : not J ∗ K | L in G =⇒ J ⊥⊥ K | L under P for all disjoint J,K , L ⊂ V }.

▶ Every m-separation in G implies a conditional independence in P.

PUM(G,V) = {P ∈ P(V) : not J K in G =⇒ J ⊥⊥ K under P for all disjoint J,K ⊂ V }.

▶ Every unconditional m-separation in G implies a marginal independence in P.



Pairwise (PE), clique (CE), and noise (NE) expansions

For G ∈ G∗
A(V ),

▶ expandP(G) replaces a bidirected edge Vj Vk with Vj Ejk Vk .

▶ expandC(G) replaces a bidirected clique C ⊆ V (meaning Vj Vk for all Vj ,Vk ∈ C )
with EC Vj , Vj ∈ C .

▶ expandN(G) replaces a bidirected edge Vj Vk with Vj Ej Ek Vk .

The corresponding statistical models are defined as

PPE(G,V) = marginV

(
PGM

(
expandP(G),V× [0, 1]| B |)),

PCE(G,V) = marginV

(
PGM

(
expandC(G),V× [0, 1]|C(G)|

))
,

PNE(G,V) = marginV

(
PGM

(
expandN(G),V× [0, 1]|V |)).



Nonparametric equations (E)

For G ∈ G∗
A(V ), PE(G,V) collects all P ∈ P(V) such that the following has P-probability 1:

Vj = fj(VpaG(j)
,Ej), j ∈ [d ], 1 (1)

where

▶ fj : VpaG(j)
× [0, 1] → Vj , j ∈ [d ];

▶ (E1, . . . ,Ed) ∈ [0, 1]d has a distribution that is UM wrt the bidirected component of G:

VJ ̸ VK in G =⇒ EJ ⊥⊥ EK under Q, for all disjoint J ,K ⊂ [d ]. (2)

Remarks
▶ (1) only uses and (2) only uses in G.

▶ Closely related to Pearl’s semi-Markovian (causal) model that does not write down (2).

1Parent set paG(j) = {k ∈ [d ] : Vk Vj in G}.



Nested Markov (NM)

The nested Markov property means the fixed probability distribution is global Markov wrt
the fixed graph along all fixable sequences (Richardson et al. 2023).

▶ This is closely related to (nonparametric) causal identification.

▶ Fixability of a vertex Vj ∈ V and the fixing operator fixVj will be defined later.



Relations between ADMG models: the Equivalence argument fails.

Theorem 1.1 (General ADMGs)
For G ∈ G∗

A(V ), we have (⇒ means ⊆ and ⇔ means = for corresponding statistical models)

Pairwise expansion (PE)

Clique expansion (CE)

Noise expansion (NE) Nonparametric equation (E)

Nested Markov (NM)

Ordered local Markov (LM) Global Markov (GM) Augmentation (A)

Unconditional Markov (UM)

▶ Most of these are trivial or known. The most nontrivial is NE ⇒ NM (end of talk).

▶ Top half are generative and bottom half are constraint-based.



Equivalence succeeds for simpler subclasses

Theorem 1.2 (DAGs)
For G ∈ G∗

DA(V ), we have

PE CE NE E Factorization (F) NM LM GM A

UM

Theorem 1.3 (Bidirected graphs)
For G ∈ BDG (V ), we have

PE

CE

NE E NM LM GM A UM
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A definition of completeness

▶ An “interpretation” of a ADMG is a collection P(G) of probability distributions.

▶ For G ∈ G∗
A(V ) and V ′ ⊆ V , denote expandV ′(G) =

{
G′ ∈ G∗

A(V
′) : marginV (G

′) = G
}
.

▶ For each vertex set V , let G0(V ) be a subclass of ADMGs.

Definition
A collection of models P(G) for different G ∈ G∗

A(V ) is complete (wrt G0) if

P(G) =
⋃

V ′⊃V

⋃
G′

marginV (P(G
′)),

where the second union is over G′ ∈ expandV ′(G) ∩G0(V
′).

▶ Roughly speaking, an ADMG means a unspecified expansion of itself in the G0

subclass (if the model is complete).



Unconfounded ADMGs and completeness
▶ We say an ADMG is unconfounded (G ∈ G∗

UA(V )) if

Vj Vk in G =⇒ Vl ̸ Vj , for all distinct Vj ,Vk ,Vl ∈ V .

▶ Simple semantics: exogenous variables linked by and endogenous variables by .

Theorem 1.4 (Unconfounded ADMGs generalize DAGs and bidirected graphs)
For G ∈ G∗

UA(V ), we have

PE

CE

NE E Exogenous Factorization (EF) NM LM GM A

UM

Theorem 2
When G0(V ) = G∗

UA(V ) for all V , only the CE, NE/E, and UM models are complete.



A visualization of Equivalence + Completion

General
ADMGs

Unconfounded
ADMGs

PE PE

CE CE

NE E NE E EF NM LM GM A

NM

LM GM A

UM UM

Completion

Completion

Completion

▶ PE and CE are “intrinsically directed” and UM is “intrinsically bidirected”.

▶ NE/E seems “just right” if is on an “equal footing” with .
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Causal Markov model

▶ If E/NE is the “right” statistical model, what is the “right” causal model?

▶ A causal model means a collection of distributions on the potential outcome schedule:

V (·) = (Vj(vI) : j ∈ [d ], I ⊆ [d ], vI ∈ VI).

Definition
We say a distribution P of V (·) is causal Markov wrt G ∈ G∗

A(V ) (write P ∈ CP(G,V)) if
1. The potential outcomes are consistent:

Vj(vI) = Vj(vpa(j)∩I ,Vpa(j)\I(vI)), for all j ∈ [d ], I ⊆ [d ], v ∈ V. (3)

2. The distribution of basic potential outcomes are Markov wrt bidirected part of G:

VJ ̸ VK in G =⇒ VJ (v) ⊥⊥ VK(v) under P for all v ∈ V. (4)

▶ (3) only uses (for causality) and (4) only uses (for exogenous correlation).



An illustration

Z X Y means

Z∗(·) X ∗(·) Y ∗(·)

Z X Y

▶ Z∗(·) = (Z (z , x , y) : z , x , y ∈ R) means the basic potential outcomes of Z . Similar for
X ∗(·) and Y ∗(·).

▶ We use basic p.o. as noise in the E model and interpret equations causally by consistency.

▶ The noise expansion decouples (causality) and (exogenous correlation).



Properties of the causal Markov model

Suppose P ∈ CP(G,V) for some G ∈ G∗
A(V ).

Proposition 1 (Extended consistency)
For all disjoint VI ,VI′ ⊂ V , we have

P(V (vI , vI′) = V (vI) | VI′(vI) = vI′) = 1.

Definition
Let G(vI) be obtained by removing all edges in VI V and relabeling Vj as Vj(vI).

▶ Basically SWIG with no fixed vertices.

Proposition 2 (Markov property of potential outcomes)
We have marginV (vI)(P) ∈ PGM(G(vI),V) for all VI ⊆ V and v ∈ V.



Nested Markov (NM) property
▶ Vj is called fixable if there exists no Vk such that Vj Vk and Vj ∗ Vk .

▶ NM requires that if Vj is fixable, the next distribution is global Markov wrt GV−j :

(fixVj=vj (p))(v−j) =
p(v)

p(vj | vmbgG(j)
)
,

and this needs to hold recursively.2

▶ Importantly, this is a property of statistical (not causal) models.

Some remarkable results in Richardson et al. (2023)

▶ The order of fixing does not matter:

fixV1=v1 ◦ fixV2=v2(p) = fixV2=v2 ◦ fixV1=v1(p) for P ∈ PNM(G),

as long the sequences (V1,V2) and (V2,V1) are both fixable.

▶ CE ⇒ NM in general ADMGs. Proof is based on DAG factorization and fairly long.
2In personal communications, Thomas Richardson pointed out that the actual nested Markov model

makes more assumptions (Verma constraints/no directed effects). See his discussion.



NM and causality

Proposition 3 (Causal identification via fixing)
Suppose P ∈ CP(G,V) for some G ∈ G∗

A(V ). Then

Vj ∈ V is fixable in G

⇐⇒ not Vj ∗ VdeG(j) | VndG(j)

⇐⇒ not Vj(vj) ∗ VdeG(j)(vj) | VndG(j)(vj) in G(vj)

=⇒ marginV−j (vj )(P) = fixVj=vj (PV ).

A simple proof of E/NE ⇒ NM (Theorem 3 in the paper)

▶ Consider PV ∈ PE(G,V).
▶ By interpreting the equations causally, there exists P ∈ CP(G,V) s.t. marginV (P) = PV .

▶ By Propositions 2 and 3, if Vj is fixiable, then fixVj=vj (PV ) ∈ PGM(marginV−j (vj )(G(vj)),V)
▶ Notice that marginV−j (vj )(G(vj)) is isomorphic to GV−j , so fixVj=vj (PV ) ∈ PGM(GV−j ,V−j).

▶ Now repeatedly apply this argument.
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Understanding ADMG models

▶ Consider VI ⊂ VI′ ⊆ V ⊂ V ′.

P(G′(vI′)) P(G′(vI))

P(G(vI′)) P(G(vI))

Consistency

Marginalization

Fixing/Doing

Marginalization

Consistency

Expansion

Fixing/Doing

Expansion

▶ When VI′ \ I is fixable, this commutative diagram holds for
▶ P = PCE (Richardson et al. 2023, Lemma 43);
▶ P = PNE (proved above).



Lots of theory, what’s the takeaway?

Use ADMGs, not DAGs

▶ In theory and practice, ADMG is usually treated as unspecified DAG with latent variables.

▶ But this is counter-intuitive: DAG is a special ADMG.

Time to treat DAG model as a special ADMG model
ADMG-based causal inference is better because:

1. Philosophically, there are no mysterious latent variables or latent causes.

2. Mathematically, the ADMG-native model PNE is preferred by Equivalence + Completion.

3. Practically, ADMGs users are instinctively encouraged to think about the missing edges
which really drive causal identification.
▶ No confounding is about missing .
▶ IV and proximal inference are mainly about missing .
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