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Acyclic directed mixed graphs (ADMGs)

» ADMGs have directed edges (—), bidirected edges (<—), and no directed cycles.

> First used by Sewall Wright a century ago in genetics. Stayed popular in economics (e.g.
instrumental variable methods) and social science (e.g. LISREL).
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ADMGs play a critical role in modern causal inference, but a fundamental question is unclear:

What is “’the” ADMG model (statistical or causal)?



What is “the” ADMG model?

This is a tricky question about when we think a mathematical definition is “good"”.
Two general arguments
Equivalence When many definitions motivated by apparently different considerations are
equivalent to each other, they may describe a natural mathematical concept.
» Examples: N, M-matrices, Hammersley-Clifford (factorization < Markov).

Completion When there is a natural definition for a smaller class of objects, we may try to
find a “completion” of that definition to a larger class of objects.

» Examples: R (via Cauchy sequences or Dedekind cuts), Lebesgue measure.



Outline of this talk

—

. A survey of different interpretations of ADMGs and their relations.
> A negative answer solely using the Equivalence argument.

N

. Completeness of graphical statistical models wrt latent variable explanations.
> A positive answer using the Equivalence and Completion arguments.

w

. Causal ADMG model and the nested Markov property.
. Discussion: DAG (model) is a special ADMG (model).

o



Notation

Probability and statistics

» P (a probability distribution), PP (a collection of P, aka a statistical model).
> V=V x-x Vg, a finite-dimensional product measure space.
» P(V): all probability distributions on V (with a density function).

Graphs
» Ga(V): all ADMGs with vertex set V = {V4,..., V4} (acyclic = no directed cycles).
» Gg(V): the subclass of all bidirected graphs.

» Gpa(V): the subclass of all DAGs.

Walks
> - means a walk (sequence of connected edges) with no colliders (like «— V; <—).
» Half arrowhead means unrestricted status: «— = — or <—.
» not J 4~ * 4~ K | L means J and K are m-separated by L (x means > 0 colliders).



Marginalization
Consider J =V; C V.

» Product spaces: margin, (V) =V, = H V;.

JeET
> Probability distributions: margin;(P) returns the marginal distribution of J under P.
» Graphs: margin, : GA(V) — GA(J),G +— G', where

V;— Vi in G < P[V; = Vi | Jin G] # 0,
Vi <= Vi in G < P[V; <~ Vi | Jiin G] # 0,

where P means the set of corresponding paths.

Ancestral subsets
» J C Vs ancestral in G if it contains all its ancestors:

{Vik €V : Vi~ JinG}CJ.

» If Jis ancestral, then margin,(G) = G, is the subgraph of G restricted to J.
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Different interpreations



Ovewview of statistical models associated with ADMG

Global Markov (GM).

Unconditional Markov (UM).

Ordered local Markov (LM): see the paper.

Nested Markov (NM).

Augmentation (A) criterion (generalizes moralization): see the paper.
Pairwise expansion (PE), clique expansion (CE), noise expansion (NE).
Nonparametric equations (E).

N o s~ N

Factorization (F)/exogenous factorization (EF): applies to DAGs/unconfounded ADMGs.



Global Markov (GM) and unconditional Markov (UM)

For G € GA(V), define

Pem(G, V)
={PeP(V):not Jaw ¢~ K|LinG= J L K| L under P for all disjoint J, K, L C V}.

» Every m-separation in G implies a conditional independence in P.

Pum(G, V) ={P € P(V) : not J 4~ K in G=J L K under P for all disjoint J,K C V'}.

» Every unconditional m-separation in G implies a marginal independence in P.



Pairwise (PE), clique (CE), and noise (NE) expansions

For G € GA(V),
» expandp(G) replaces a bidirected edge Vj «— Vi with V; <— Ej — V..
ccv

» expandc(G) replaces a bidirected clique (meaning V; <— V/ for all V;, Vi € C)

with Ec — V;, V; € C.
> expandn(G) replaces a bidirected edge Vj «— Vi with Vj «— Ej «— E — V.
The corresponding statistical models are defined as

Ppe(G, V) = margin,, (IP’GM(expandp(GLV x [0, 1]“3')),

Pce(G, V) = margin,, (PGM(expandc(G),V x [0, 1]‘C(G)‘)),

Pne(G, V) = marginy, (Pom (expandn(G),V x [0, 1]“/‘)).



Nonparametric equations (E)

For G € GA(V), Pe(G, V) collects all P € P(V) such that the following has P-probability 1:

Vj = fj(VpaG(j)y EJ)v JE [d]al (1)
where
> i Viae) x [0,1] = Vj, j € [d];
> (Ei,...,E4) €]0,1]7 has a distribution that is UM wrt the bidirected component of G:
Vg </ Vi in G= E; L Ex under Q, for all disjoint J,K C [d]. (2)
Remarks

» (1) only uses — and (2) only uses <— in G.
» Closely related to Pearl’'s semi-Markovian (causal) model that does not write down (2).

Parent set pag(j) = {k € [d] : Vik —> V; in G}.



Nested Markov (NM)

The nested Markov property means the fixed probability distribution is global Markov wrt
the fixed graph along all fixable sequences (Richardson et al. 2023).

» This is closely related to (nonparametric) causal identification.
> Fixability of a vertex V; € V and the fixing operator fixy, will be defined later.



Relations between ADMG models: the Equivalence argument fails.

Theorem 1.1 (General ADMGs)

For G € GA(V), we have (= means C and < means = for corresponding statistical models)

Pairwise expansion (PE)

!
Clique expansion (CE)

¢

Noise expansion (NE) <= Nonparametric equation (E)

¥
Nested Markov (NM)

¢

Ordered local Markov (LM) <= Global Markov (GM) <—= Augmentation (A)

I
Unconditional Markov (UM)

» Most of these are trivial or known. The most nontrivial is NE = NM (end of talk).
» Top half are generative and bottom half are constraint-based.



Equivalence succeeds for simpler subclasses

Theorem 1.2 (DAGs)
For G € Gpa(V), we have

PE < CE < NE < E < Factorization (F) < NM < LM < GM < A

U

UM

Theorem 1.3 (Bidirected graphs)
For G € BDG(V), we have

PE
3
CE
3
NE < E< NM < LM< GM < A < UM
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Completeness



A definition of completeness

> An “interpretation” of a ADMG is a collection P(G) of probability distributions.

> For G € GA(V) and V' C V, denote expand,,,(G) = {G' € GA(V’) : margin, (G') = G}.

» For each vertex set V, let Go(V) be a subclass of ADMGs.
Definition
A collection of models P(G) for different G € GA(V) is complete (wrt Go) if

B(G) = |J |Jmargin, (B(S)),
VIOV &

where the second union is over G’ € expand,,(G) N Go(V’).

» Roughly speaking, an ADMG means a unspecified expansion of itself in the Gg
subclass (if the model is complete).



Unconfounded ADMGs and completeness
> We say an ADMG is unconfounded (G € G{j5(V)) if

Vi<= Viin G=V, -4V, foralldistinct V;, Vi, V, € V.

» Simple semantics: exogenous variables linked by «<— and endogenous variables by —.

Theorem 1.4 (Unconfounded ADMGs generalize DAGs and bidirected graphs)
For G € G{jp(V), we have

PE

I
CE

4

NE < E < Exogenous Factorization (EF) << NM < LM < GM <= A

U

UM

Theorem 2
When Go(V) = G{jp(V) for all V, only the CE, NE/E, and UM models are complete.



A visualization

of Equivalence + Completion

General Unconfounded
ADMGs ADMGs
PE PE
éllE / Completion (illlE
p I

/ Completion
NE E < NE
4
NM
4
LM <— GM < A
Ul'lvl / Completion UM

A\

E< EF < NM < LM < GM < A

» PE and CE are “intrinsically directed” and UM is “intrinsically bidirected”.
» NE/E seems “just right” if <— is on an “equal footing" with —> .
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Causal model



Causal Markov model

> If E/NE is the “right” statistical model, what is the “right” causal model?
» A causal model means a collection of distributions on the potential outcome schedule:

V() = (V(vz) :j € [d1.Z € [d]. vz € Vz).
Definition

We say a distribution P of V(:) is causal Markov wrt G € GA(V) (write P € CP(G,V)) if

1. The potential outcomes are consistent:
Vj(VI) = Vj(vpa(j)ﬂIa Vpa(j)\I(VI))’ for all j € [d]aI - [d]’ vev. (3)
2. The distribution of basic potential outcomes are Markov wrt bidirected part of G:

Vy < Vicin G= V;(v) L Vi(v) under P for all v € V. (4)

» (3) only uses — (for causality) and (4) only uses <— (for exogenous correlation).



An illustration

Q) X*()m Y*()
Z— X" 3Y  means l l l
Z X Y

> Z7*(:) = (Z(z,x,y) : z,x,y € R) means the basic potential outcomes of Z. Similar for
X*(-) and Y*(+).
» We use basic p.o. as noise in the E model and interpret equations causally by consistency.

» The noise expansion decouples — (causality) and <— (exogenous correlation).



Properties of the causal Markov model

Suppose P € CP(G, V) for some G € G(V).
Proposition 1 (Extended consistency)

For all disjoint V7, V7 C V, we have

P(V(VI7 VI/) = V(VI) | VI/(VI) = VI/) =1.

Definition
Let G(vz) be obtained by removing all edges in Vz — V' and relabeling V} as V(vz).
» Basically SWIG with no fixed vertices.

Proposition 2 (Markov property of potential outcomes)
We have marginy,,)(P) € Pem(G(vz), V) forall Vz C V and v € V.



Nested Markov (NM) property

» Vi, is called fixable if there exists no Vi such that V; ~~ Vi and V; <— x <= V.
> NM requires that if V; is fixable, the next distribution is global Markov wrt Gvﬂ.:

| o)
(fixv=y; (P))(v—)) = P(Vj | Vimbec ()

and this needs to hold recursively.?

» Importantly, this is a property of statistical (not causal) models.
Some remarkable results in Richardson et al. (2023)
» The order of fixing does not matter:
fixy, =y, 0 fiXyy=y, (P) = fixyy=y, o fixy, =y, (p) for P € Pym(G),

as long the sequences (Vi, V5) and (V,, V4) are both fixable.
» CE = NM in general ADMGs. Proof is based on DAG factorization and fairly long.

2In personal communications, Thomas Richardson pointed out that the actual nested Markov model
makes more assumptions (Verma constraints/no directed effects). See his discussion.



NM and causality

Proposition 3 (Causal identification via fixing)
Suppose P € CP(G, V) for some G € GA(V). Then

V; € Vis fixable in G
<= not Vj < * < Viee(j) | Vade()
= not Vj(vj) 4 ey Vaec(5)(v) | Vaae(y)(vi) in G(v;)
= marginy_,)(P) = fixy,=,(Pv).

A simple proof of E/NE = NM (Theorem 3 in the paper)
» Consider Py € Pg(G, V).
> By interpreting the equations causally, there exists P € CP(G, V) s.t. margin, (P) = Py
> By Propositions 2 and 3, if V; is fixiable, then fixy,—, (Pv) € Pou(marginy_ ,y(G(v;)), V)
> Notice that marginy,_ (,)(G(v;)) is isomorphic to Gy_;, so fixy,—,(Pv) € IF’GM(GVﬂ, —j)-
> Now repeatedly apply this argument.
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Understanding ADMG models

» Consider Vz C Vox C V C V.

Consistency

P(G'(vz)) P(G'(vz))

Fixing/Doing
Expansion | | Marginalization Expansion | | Marginalization

P(G(vp)) = P(G(vr))

Fixing/Doing

» When Vz/\ 7 is fixable, this commutative diagram holds for

»> P = Pce (Richardson et al. 2023, Lemma 43);
»> P = Pne (proved above).



Lots of theory, what's the takeaway?

Use ADMGs, not DAGs

» In theory and practice, ADMG is usually treated as unspecified DAG with latent variables.
» But this is counter-intuitive: DAG is a special ADMG.

Time to treat DAG model as a special ADMG model
ADMG-based causal inference is better because:
1. Philosophically, there are no mysterious latent variables or latent causes.
2. Mathematically, the ADMG-native model Png is preferred by Equivalence + Completion.

3. Practically, ADMGs users are instinctively encouraged to think about the missing edges
which really drive causal identification.
» No confounding is about missing <—.
» IV and proximal inference are mainly about missing —.
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