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Two problems

1. Explaining a machine

▶ Notational change: Consider Ŷ = f̂ (X ) with two inputs X = (X1,X2).

▶ f̂ is treated as fixed.

2. Explaining the real world

▶ Let Y be original response variable used by the regression algorithm.

▶ Y (x1) is potential outcome under the intervention X1 = x1.

▶ Might be helpful: Y is generated “causally” by Y = f (X1,X2,E ), so Y (x1) = f (x1,X2,E ).



Causal perspective on the PD plot

▶ The partial dependence (PD) plot of Friedman (2001) shows

f̂1,PD(x1) = E[f̂ (x1,X2)] =

∫
f̂ (x1, x2)p2(x2)dx2.

▶ Zhao and Hastie (2021) point out that this coincides with the confounder adjustment
formula in causal inference:

E[Y (x1)] = E{E[Y | X1 = x1,X2]} =

∫
E[Y | X1 = x1,X2 = x2]p2(x2)dx2. (1)

▶ The formula (1) requries some causal identification assumptions:
▶ Most important is no unmeasured confounding or ignorability:

Y (x1) ⊥⊥ X1 | X2.

▶ Alternative graphical condition: back-door criterion (Pearl 1995).
▶ + consistency/SUTVA + positivity/overlap (closely related to the extrapolation problem).

▶ Ignorability is automatically satisfied if Ŷ (x1) = f̂ (x1,X2).



Causal perspective on the ALE plot

▶ The accumulated local effects (ALE) plot shows f̂1,ALE(x1) for which

df̂1,ALE(x1)

dx1
= E

[
df̂ (X1,X2)

dX1
| X1 = x1

]
.

▶ When X1 ∈ {0, 1}, this can be replaced by

f̂1,ALE(1)−f̂1,ALE(0) = E
[
f̂ (1,X2)− f̂ (0,X2) | X1 = 0

]
=

∫
{f̂ (1, x2)−f̂ (0, x2)}p2|1(x2 | 0)dx2.

▶ This coincides with the formula for natural direct effect (Pearl 2001; Robins and
Greenland 1992): let Y (x1, x2) and X2(x1) be potential outcomes and

NDE := E[Y (1,X2(0))−Y (0,X2(0))] = E {E[Y | X1 = 1,X2]− E[Y | X1 = 0,X2] | X1 = 0} .
(2)

▶ For continuous X1, ALE shows the accumulated local natural directed effect.



Identification of the natural direct effect

NDE := E[Y (1,X2(0))− Y (0,X2(0))] = E {E[Y | X1 = 1,X2]− E[Y | X1 = 0,X2] | X1 = 0} .

Main assumptions for this formula

1. No treatment-mediator confounding: X2(x1) ⊥⊥ X1 for all x1.

2. No treatment-outcome confounding: Y (x1, x2) ⊥⊥ X1 for all x1, x2.

3. No mediator-outcome confounding: Y (x1, x2) ⊥⊥ X2(x
′
1) | X1 for all x1, x2, x

′
1.

▶ The last two assumptions are automatically satisfied if Ŷ (x1, x2) = f̂ (x1, x2).

▶ But the first assumption may or may not be true.



Graphs
▶ Directed edge → means direct causal influence.

▶ Bidirected edge ↔ means exogenous correlation.
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Why explanations need to be causal?

Example 1: Multiplication of random signs

▶ X1,X2 are i.i.d. Radamacher random variables: P(X1 = 1) = P(X1 = −1) = 1/2 .

▶ Consider Ŷ = f̂ (X1,X2) = X2.
▶ Surely the “explanability” of X1 to Ŷ should be zero?

▶ Suppose X2 is generated by X2 = X1X
′
2, where X ′

2 is another Radamacher variable

independent of X1. So Ŷ = ĝ(X1,X
′
2) = X1X

′
2.

▶ Surely the “explanability” of X1 to Ŷ should be non-zero?

▶ This paradox arises because same variable does not imply same potential outcome:
Ŷ (x1) = X2 in the first setting and Ŷ (x1) = x1X

′
2 in the second setting.



Why explanations need to be causal?

Example 2: Weatherman and Sun Wukong (the Monkey King)

▶ My little boy watches BBC every day and notices that the rain forecast for London has
been correct in the last 5 days.1

▶ One day, he asked me: daddy, is the weatherman Sun Wukong from Journey to the West?

1If you ever lived in the UK, you will then know that this story is fictional.
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Example 2: Weatherman and Sun Wukong (the Monkey King)

▶ My little boy watches BBC every day and notices that the rain forecast for London has
been correct in the last 5 days.1

▶ One day, he asked me: daddy, is the weatherman Sun Wukong from Journey to the West?
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Sun Wukong
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▶ If weatherman faithfully reports the forecast of the weather model, a PD or ALE plot will
not be able to distinguish their contributions.

1If you ever lived in the UK, you will then know that this story is fictional.



Take-home messages

▶ PD and ALE plots have causal interpretations.

▶ But these causal interpretations requrie additional assumptions about the causal
relationship between the predictors.

▶ Explanations of black-box machine are really meaningful only when they are causal.
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