Post-selection inference for effect modification

Qingyuan Zhao

Statistical Laboratory, University of Cambridge

September 4, 2024 @ RSS Conference, Brighton

Acknowledgement

- Qingyuan Zhao, Dylan S. Small, and Ashkan Ertefaie (2022). "Selective Inference for Effect Modification via the Lasso". In: *Journal of the Royal Statistical Society: Series B* (*Statistical Methodology*) 84.2, pp. 382–413. DOI: 10.1111/rssb.12483 (arXiv: 1705.08020).
- Qingyuan Zhao and Snigdha Panigrahi (2019). "Selective Inference for Effect Modification: An Empirical Investigation". In: Observational Studies 5.2, pp. 131–140. DOI: 10.1353/obs.2019.0007.
- ► In hindsight, should be **post-selection inference** instead of **selective inference**.

Effect modification

- A treatment has different effects in different subgroups.
- Central problem in precision medicine/data integration/understanding causal mechanism.
- Common approach: subgroup or regression analysis with treatment-covariate interactions.

Cental problem

Can we make valid inference after post hoc selection of subgroups/interactions?

Example

In a special workshop of the 2018 Atlantic Causal Inference Conferenc, the organizers provided a dataset simulated from the National Study of Learning Mindsets and posed three questions:

- 1. Is the intervention effective in improving student achievement?
- 2. Do two hypothesized covariates (X1 and X2) moderate the treatment effect?
- 3. Are there other covariates moderating the treatment effect?

Problem setup

- We observe i.i.d. variables (X_i, T_i, Y_i) , i = 1, ..., n.
- ▶ We assume a non-parametric model for potential outcomes:

$$Y_i(t) = \eta(\boldsymbol{X}_i) + t \cdot \Delta(\boldsymbol{X}_i) + \epsilon_i(t), \ i = 1, \dots, n,$$

where $E\{\epsilon_i(t) \mid \mathbf{X}_i\} = 0.$

- ▶ When T_i is binary, this model is saturated and $\Delta(\mathbf{x}) = E\{Y_i(1) Y_i(0) \mid X_i = x\}$ is the conditional average treatment effect.
- We make the usual causal identification assumptions: consistency/SUTVA, unconfoundedness, positivity/overlap.

Trading off between model accuracy and interpretability

	Univariate model	Selected submodel	Full linear model	Machine learning
Model of $\Delta(\mathbf{X}_i)$	$lpha_j + X_{ij}eta_j$	$lpha_{\hat{\mathcal{M}}} + oldsymbol{X}_{i,\hat{\mathcal{M}}}^{oldsymbol{\mathcal{T}}}oldsymbol{eta}_{\hat{\mathcal{M}}}$	$\alpha + \boldsymbol{X}_i^{\mathcal{T}} \boldsymbol{\beta}$	e.g. additive trees
Accuracy	Poor	Good	Good	Very good
Interpretability	Very good	Good	Poor	Very poor
Inference	Easy, but many	Need to consider	Semiparametric	Not clear
	false positives	model selection	theory	(new: conformal)

Our solution

1. Use the transformation in Robinson (1988) to eliminate the nuisance parameter $\eta(\mathbf{X}_i)$:

$$Y_i - \mu_y(\boldsymbol{X}_i) = \{T_i - \mu_t(\boldsymbol{X}_i)\} \cdot \Delta(\boldsymbol{X}_i) + \epsilon_i, i = 1, \dots, n_i\}$$

where $\mu_y(\mathbf{X}_i) = E(Y_i \mid \mathbf{X}_i)$ and $\mu_t(\mathbf{X}_i) = E(T_i \mid \mathbf{X}_i)$.

2. Select an effect modification model by solving

$$(\hat{\alpha}, \hat{\boldsymbol{\beta}}) = \underset{\alpha, \boldsymbol{\beta}}{\operatorname{minimize}} \sum_{i=1}^{n} \left[\{ \boldsymbol{Y}_{i} - \hat{\mu}_{y}(\boldsymbol{X}_{i}) \} - \{ \boldsymbol{T}_{i} - \hat{\mu}_{t}(\boldsymbol{X}_{i}) \} \cdot (\boldsymbol{\alpha} - \boldsymbol{X}_{i}^{T} \boldsymbol{\beta}) \right]^{2} + \lambda \|\boldsymbol{\beta}\|_{1}$$

and letting $\hat{\mathcal{M}} = \{j : \hat{\beta}_j \neq 0\}.$

3. Use the pivotal statistic in Lee, Sun, Sun, and Taylor (2016) to obtain post-selection confidence intervals for the projection parameters

$$\boldsymbol{\beta}_{\hat{\mathcal{M}}}^{*} = \boldsymbol{\beta}_{\hat{\mathcal{M}}}^{*}(\mathbf{T}, \mathbf{X}) = \arg\min_{\alpha, \, \beta_{\hat{\mathcal{M}}}} \sum_{i=1}^{n} \left\{ T_{i} - \mu_{t}(\mathbf{X}_{i}) \right\}^{2} \left\{ \Delta(\mathbf{X}_{i}) - \alpha - \mathbf{X}_{i, \hat{\mathcal{M}}}^{T} \boldsymbol{\beta}_{\hat{\mathcal{M}}} \right\}^{2}.$$

Implementation is straightforward using off-the-shelf machine learning packages (to estimate μ_y and μ_t) and existing software for post-selection inference.

Some theory

Theorem

We assume:

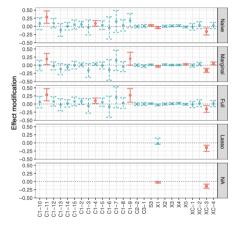
- 1. X_i has bounded support.
- 2. Rate conditions in Robinson (1988): $\|\hat{\mu}_t \mu_t\|_2 = o_p(n^{-1/4}), \|\hat{\mu}_y \mu_y\|_2 = o_p(1), \\ \|\hat{\mu}_t \mu_t\|_2 \cdot \|\hat{\mu}_y \mu_y\|_2 = o_p(n^{-1/2}).$
- 3. Size of the selected model is bounded.
- 4. Lasso selected model is "stable" and not a small probability event.

We then show that the post-selection confidence intervals are asymptotically valid given the selected model.

- 1. Is the intervention effective in improving student achievement? Solution Use the no interaction model $\Delta(\mathbf{x}) = \alpha$.
- 2. Do two hypothesized covariates (X1 and X2) moderate the treatment effect? Solution Use the pre-specified interaction model $\Delta(\mathbf{x}) = \alpha + x_1\beta_1 + x_2\beta_2$.
- 3. Are there other covariates moderating the treatment effect? Solution Use the post-hoc interaction model $\Delta(\mathbf{x}) = \alpha + \mathbf{x}_{\hat{M}}^T \beta_{\hat{M}}$.

Results

▶ (Weighted) average treatment effect is 0.256, with 95% CI [0.235, 0.277].



Methods compared:

- Naive: Linear model with all treatment-covariate interactions.
- Marginal: After Robinson's transformation, fits univariable regressions.
- **Full:** After Robinson's transformation, fits a full linear regression.
- Lasso: The proposed method.
- Snooping (incorrectly labeled as NA): Ignore model selection.

 Conclusion: X1 is an effect modifier, X2 is not, and using the data we discovered another effect modifier XC-3.

Discussion and reflection after 7 years

- The proposed method achieves a good trade-off between accuracy and interpretability. In particular, the final model for effect modification is familiar to applied statisticians.
- ► However, there are many caveats:
 - 1. The whole method is based on Robinson's transformation for partially linear models and post-selection inference for linear models.
 - 2. Inference is made for some (weighted) projection parameters.
 - 3. Some assumptions in the asymptotic theory look strong.
 - 4. A sufficient adjustment set (to control for confounding) is assumed to be given.
- Possible future directions:
 - 1. Genearlize the methodology/theory using semiparametric and post-selection inference.
 - 2. Data-adaptive confounder selection and post-selection inference.
 - 3. Sensitivity analysis.