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Effect modification

▶ A treatment has different effects in different subgroups.

▶ Central problem in precision medicine/data integration/understanding causal mechanism.

▶ Common approach: subgroup or regression analysis with treatment-covariate interactions.

Cental problem
Can we make valid inference after post hoc selection of subgroups/interactions?

Example
In a special workshop of the 2018 Atlantic Causal Inference Conferenc, the organizers provided
a dataset simulated from the National Study of Learning Mindsets and posed three questions:

1. Is the intervention effective in improving student achievement?

2. Do two hypothesized covariates (X1 and X2) moderate the treatment effect?

3. Are there other covariates moderating the treatment effect?



Problem setup

▶ We observe i.i.d. variables (Xi ,Ti ,Yi ), i = 1, . . . , n.

▶ We assume a non-parametric model for potential outcomes:

Yi (t) = η(Xi ) + t ·∆(Xi ) + ϵi (t), i = 1, . . . , n,

where E{ϵi (t) | Xi} = 0.

▶ When Ti is binary, this model is saturated and ∆(x) = E{Yi (1)− Yi (0) | Xi = x} is the
conditional average treatment effect.

▶ We make the usual causal identification assumptions: consistency/SUTVA,
unconfoundedness, positivity/overlap.



Trading off between model accuracy and interpretability

Univariate model Selected submodel Full linear model Machine learning

Model of ∆(Xi ) αj + Xijβj αM̂ + XT
i,M̂βM̂ α+ XT

i β e.g. additive trees

Accuracy Poor Good Good Very good

Interpretability Very good Good Poor Very poor

Inference
Easy, but many Need to consider Semiparametric Not clear
false positives model selection theory (new: conformal)



Our solution
1. Use the transformation in Robinson (1988) to eliminate the nuisance parameter η(Xi ):

Yi − µy (Xi ) = {Ti − µt(Xi )} ·∆(Xi ) + ϵi , i = 1, . . . , n,

where µy (Xi ) = E (Yi | Xi ) and µt(Xi ) = E (Ti | Xi ).

2. Select an effect modification model by solving

(α̂, β̂) = minimize
α,β

n∑
i=1

[
{Yi − µ̂y (Xi )} − {Ti − µ̂t(Xi )} · (α− XT

i β)
]2

+ λ∥β∥1

and letting M̂ = {j : β̂j ̸= 0}.
3. Use the pivotal statistic in Lee, Sun, Sun, and Taylor (2016) to obtain post-selection

confidence intervals for the projection parameters

β∗
M̂ = β∗

M̂(T,X) = argmin
α,βM̂

n∑
i=1

{
Ti − µt(Xi )

}2{
∆(Xi )− α− XT

i,M̂βM̂
}2

.

▶ Implementation is straightforward using off-the-shelf machine learning packages (to
estimate µy and µt) and existing software for post-selection inference.



Some theory

Theorem
We assume:

1. Xi has bounded support.

2. Rate conditions in Robinson (1988): ∥µ̂t − µt∥2 = op(n
−1/4), ∥µ̂y − µy∥2 = op(1),

∥µ̂t − µt∥2 · ∥µ̂y − µy∥2 = op(n
−1/2).

3. Size of the selected model is bounded.

4. Lasso selected model is “stable” and not a small probability event.

We then show that the post-selection confidence intervals are asymptotically valid given the
selected model.



Back to the Mindset Study

1. Is the intervention effective in improving student achievement?

Solution Use the no interaction model ∆(x) = α.

2. Do two hypothesized covariates (X1 and X2) moderate the treatment effect?

Solution Use the pre-specified interaction model ∆(x) = α+ x1β1 + x2β2.

3. Are there other covariates moderating the treatment effect?

Solution Use the post-hoc interaction model ∆(x) = α+ xT
M̂βM̂.



Results

▶ (Weighted) average treatment effect is 0.256, with 95% CI [0.235, 0.277].

Methods compared:

▶ Naive: Linear model with all
treatment-covariate interactions.

▶ Marginal: After Robinson’s
transformation, fits univariable
regressions.

▶ Full: After Robinson’s transformation,
fits a full linear regression.

▶ Lasso: The proposed method.

▶ Snooping (incorrectly labeled as NA):
Ignore model selection.

▶ Conclusion: X1 is an effect modifier, X2 is not, and using the data we discovered another
effect modifier XC-3.



Discussion and reflection after 7 years

▶ The proposed method achieves a good trade-off between accuracy and interpretability. In
particular, the final model for effect modification is familiar to applied statisticians.

▶ However, there are many caveats:

1. The whole method is based on Robinson’s transformation for partially linear models and
post-selection inference for linear models.

2. Inference is made for some (weighted) projection parameters.
3. Some assumptions in the asymptotic theory look strong.
4. A sufficient adjustment set (to control for confounding) is assumed to be given.

▶ Possible future directions:

1. Genearlize the methodology/theory using semiparametric and post-selection inference.
2. Data-adaptive confounder selection and post-selection inference.
3. Sensitivity analysis.


