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Introduction

Acyclic directed mixed graphs (ADMGs)

▶ ADMGs have directed edges ( ), bidirected edges ( ), and no directed cycles.

▶ They were first used by Sewall Wright a century ago for genetics. Stayed popular in
economics (e.g. instrumental variable methods) and social science (e.g. LISREL).

▶ They play a critical role in modern theory for causal modeling and identification (work by
Pearl, Verma, Spirtes, Richardson, Tian, Shpitser, Robins, . . . ).

This talk
▶ Share some useful things I found while learning this theory.

▶ Main message:

Use ADMGs, not DAGs (for skeptical causal reasoning).



Outline

1. Matrix algebra: Understand and describe the “semantics” of ADMGs.
▶ Qingyuan Zhao (2024a). A Matrix Algebra for Graphical Statistical Models. arXiv:

2407.15744 [math, stat].

2. Statistical models: Discuss various interpretations of ADMGs and highlight one of them.
▶ Qingyuan Zhao (2024b). On Statistical Models Associated with Acyclic Directed Mixed

Graphs. (working draft available upon request).

3. Confounder selection: A new interactive algorithm via iterative graph expansion.
▶ F. Richard Guo and Qingyuan Zhao (2023). Confounder Selection via Iterative Graph

Expansion. arXiv: 2309.06053 [math, stat].

https://arxiv.org/abs/2407.15744
https://arxiv.org/abs/2309.06053
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Where it starts

Folklore in the community
Many results for nonparametric graphical models have their origins in (Gaussian) linear SEMs.

▶ Examples: (global) identifiability (Drton 2018); nested Markov property; proximal causal
inference; sufficient and efficient adjustment sets.

▶ This is also explored in Spirtes et al. (1993) and also Judea Pearl (May 2013). “Linear
Models: A Useful “Microscope” for Causal Analysis”. In: Journal of Causal Inference 1.1,
pp. 155–170.

This work
▶ I realized 2 years ago that the single most useful observation in linear SEMs is

[(I − A)−1]jk = [I + A+ A2 + . . . ]jk = δjk +# {directed walks from j to k},

where A is the adjacency matrix of a directed graph.

▶ Matrix abstractly: Matrix multiplication is just composition of relations.

▶ Goal: Develop a matrix algebra for ADMGs using the matrix algebra for linear SEMs.



Gaussian linear systems

▶ Real-valued random vector V = (V1, . . . ,Vd).

▶ β,Λ ∈ Rd×d , Λ is positive semi-definite.

▶ V follows a Gaussian linear system if V = βT + E where E ∼ N(0,Λ).

▶ If β is non-singular, V = (I − β)−TE ∼ N(0,Σ), where Σ = (I − β)−TΛ(I − β)−1.

▶ Marginalization of Gaussian variables: take subvectors of mean and submatrices of
covariance matrix.

▶ Unconditional independence: VJ ⊥⊥ VK ⇐⇒ ΣJ ,K = 0.

▶ Conditional independence: Vj ⊥⊥ Vk | V[d ]\{j,k} ⇐⇒ (Σ−1)jk = 0.



Basic edge matrices

▶ W [V V ] with (j , k)-entry given by W [Vj Vk ] = {Vj Vk} or ∅.
▶ Similarly for W [V V ].

Example

V1 V4

V3 V5

V2

W [V V ] =


∅ ∅ {V1 V3} ∅ ∅
∅ ∅ {V2 V3} ∅ {V2 V5}
∅ ∅ ∅ {V3 V4} {V2 V5}
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅





Basic edge matrices

▶ W [V V ] with (j , k)-entry given by W [Vj Vk ] = {Vj Vk} or ∅.
▶ Similarly for W [V V ].

Example

V1 V4

V3 V5

V2

W [V V ] =


{V1 V1} ∅ ∅ {V1 V4} {V1 V5}

∅ {V2 V2} ∅ ∅ ∅
∅ ∅ {V3 V3} ∅ ∅

{V4 V1} ∅ ∅ {V4 V4} ∅
{V5 V1} ∅ ∅ {V5 V4} {V5 V5}

 .



Matrix algebra for walks on directed mixed graphs

▶ Binary operations on (sets of) walks: set union (+), concatenation (·), transpose (T ).

Examples

{V2 V5}+ {V2 V3 V5} = {V2 V5, V2 V3 V5}.

{V2 V2}·{V2 V5, V2 V3 V5} = {V2 V2 V5, V2 V2 V3 V5}.

{V2 V5, V2 V3 V5}T = {V5 V2, V5 V3 V2}.

▶ Matrix addition, multiplication, and transpose are defined accordingly:

(W +W ′)[Vj ,Vk ] = W [Vj ,Vk ] +W ′[Vj ,Vk ],

(W ·W ′)[Vj ,Vk ] =
∑
Vl∈V

W [Vj ,Vl ] ·W ′[Vl ,Vk ],

(W T )[Vj ,Vk ] = (W [Vk ,Vj ])
T = {wT : w ∈ W [Vk ,Vj ]},

▶ Let I denote the identity matrix for multiplication (diagonal of “empty walks”).



Remarks

This matrix algebra is a “dioid” in the terminology of Gondran and Minoux (2008):

1. + is a commutative monoid (associative with identity element ∅);
2. · is a monoid (associative with identity element Id);

3. · is distributive with respect to +;

4. The pre-order defined by + (W ⪯ W ′ if and only if W ′ = W +W ′′ for some W ′′) is
anti-symmetric: W ⪯ W ′ and W ′ ⪯ W imply that W = W ′.

Dioids vs. rings

▶ In rings, + is a commutative group (e.g. square matrices).

▶ In dioids, + is an ordered monoid (e.g. nonnegative square matrices).

▶ Dioids are extensively studied in formal languages/algebraic combinatorics (I am a novice).

▶ What’s likely “new” are probabilistic concepts such as marginalization and conditioning.



“Words” in ADMGs—Special matrices

Notation
▶ Squiggly line means “arcs” (no collider).

▶ Endpoint arrowheads are important

Arcs

▶ (Right-)Directed walks: W [V V ] =
∞∑
q=1

(W [V V ])q.

▶ Left-directed walks: W [V V ] = (W [V V ])T .

▶ Treks (t-connected, exactly one bidirected edge):

W [V
t

V ] = (I +W [V V ]) ·W [V V ] · (I +W [V V ]).

▶ d-connected (no bidirected edge):

W [V
d

V ] = W [V V ] +W [V V ] +W [V V V ].

▶ Arc (m-connected): W [V V ] = W [V
t

V ] +W [V
d

V ].



Trek and covariance

W [V
t

V ] = (I +W [V V ]) ·W [V V ] · (I +W [V V ]).

▶ The name “trek” is due to Spirtes et al. (1993).

▶ This comes up due to the trek rule: recall Σ = (I − β)−TΛ(I − β)−1.

▶ Formally, let σ be the weight function generated by

β = σ(W [V V ]) and Λ = σ(W [V V ]).

▶ Example: σ({V1 V4,V1 V1 V3 V4}) = λ14 + λ11β13β34.

Theorem (Trek rule)
For any Vj ,Vk ∈ V in a Gaussian linear system, if β is non-singular, then

not Vj
t

Vk in G =⇒ Vj ⊥⊥ Vk under P .

If β is stable, then

CovP(V ) = σ(W [V
t

V in G]).



Marginalization
▶ This is essential but not emphasized enough in the literature.

▶ Partition the linear system by Ṽ ⊂ V and U = V \ Ṽ :

Ṽ = βT
Ṽ Ṽ

Ṽ + βT
UṼ

U + EṼ , U = βT
ṼU

Ṽ + βT
UUU + EU .

▶ By eliminating U, we obtain

Ṽ =
{
βT
Ṽ Ṽ

+ βT
UṼ

(Id− βUU)
−TβT

ṼU

}
Ṽ +

{
βT
UṼ

(Id− βUU)
−TEU + EṼ

}
= σ[Ṽ Ṽ | Ṽ ] Ṽ +

{
σ[Ṽ U | Ṽ ]EU + EṼ

}
,

where [· · · | Ṽ ] collects all such walks without non-endpoints in Ṽ .

Theorem (Marginalization of linear systems)
If all principal submatrices of β are stable, Ṽ is a Gausslian linear system wrt G̃ = marginṼ (G):

β̃ = σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ Ṽ | Ṽ in G]),

Λ̃ = σ̃(W [Ṽ Ṽ in G̃]) = σ(W [Ṽ
t

Ṽ | Ṽ in G]).



Conditional independences

▶ We have Σ−1 = (Id− β)Λ−1(Id− β)T , so

(Σ−1)jk =
∑

Vl ,Vm∈V

(δjl − βjl)(Λ
−1)lm(δkm − βkm)

▶ A sufficient condition for (Σ−1)jk = 0 is when all RHS summands vanish.

▶ Key observation: not Vl ∗ Vm in G =⇒ (Λ−1)lm = 0.

Proposition
If β is non-singular and Λ is positive definite, then for any Vj ̸= Vk ,

not Vj ∗ Vk in G =⇒ Vj ⊥⊥ Vk | V \ {Vj ,Vk} under P .

Challenge
How can this be extended when just some variables are conditioned on?



Blocking

▶ We say a walk is (ancestrally) blocked by L ⊆ V if it contains a collider Vm ̸∈ L (Vm ̸∈ L
and Vm ̸ L) or a non-colliding non-enpoint Vm ∈ L.
▶ The Bayes ball algorithm (Shachter 1998).

▶ Let W [Vj ∗ Vk | L in G] denote all walks from Vj to Vk not blocked by L:

W [V ∗ V | L] = W [V V | L]+W [V L | L]·
{
Id+

∞∑
q=1

(W [L L | L])q
}
·W [L V | L].

▶ Wildcard character ∗ means arbitrary number of colliders.

Example

V1 V3 V2

V4

▶ V1 V3 V2 is blocked (but not ancestrally blocked) by V4.

▶ Nevertheless, V1 ∗ V2 | V4 because V1 V3 V4 V3 V2.



Presevation of “words” by marginalization

Fundamental Lemma 1
For any directed mixed graph G (possibly cyclic and any bidirected loops) and L ⊆ Ṽ ⊆ V ,

marginṼ

W

Ṽ
 t

t
∗

t

 Ṽ | L in G


 = W

Ṽ
 t

t
∗

t

 Ṽ | L in marginṼ (G)

 ,

Fundamental Lemma 2
Consider any disjoint {Vj}, {Vk}, L ⊂ V . If G is canonical (contains all bidirected loops), then

(i) Vj
t

∗
t

Vk | L ⇐⇒ (ii) Vj ∗ Vk | L ⇐⇒ (iii) P[j ∗ k |a L] ̸= ∅.

Furthermore, if G is canonically directed (no other bidirected edges), then

(i), (ii), (iii) ⇐⇒ (iv) Vj
d

∗
d

Vk | L ⇐⇒ (v) P[Vj
d

∗
d

Vk |a L] ̸= ∅.

Here P[· · · |a L] collects all such paths not ancestrally blocked by L.



Graph separation and conditional independence

Proposition (from 3 slides ago)
If β is non-singular and Λ is positive definite, then for any Vj ̸= Vk ,

not Vj ∗ Vk in G =⇒ Vj ⊥⊥ Vk | V \ {Vj ,Vk} under P .

Theorem (m-separation implies CI in Gaussian linear systems)
If β is non-singular and Λ is positive definite, then for all disjoint J,K , L ⊆ V , we have

not J ∗ K | L in G =⇒ J ⊥⊥ K | L under P .

Proof. Because conditional independence is compositional for Gaussian variables, it suffices to
consider J = Vj and K = Vk . Let G̃ = margin{Vj ,Vk}∪L(G), then

not Vj ∗ Vk | L in G ⇐⇒ not Vj ∗ Vk in G̃

=⇒ Vj ⊥⊥ Vk | L under P .



Remarks

▶ This result was obtained (independently) by Koster (1996) and Spirtes (1995) in (cyclic)
DAGs. A full proof using directed mixed graphs is given in Koster (1999).

▶ What’s different: we do not just prove d/m-separation implies conditional independence,
but derive these graphical criteria from scratch.

▶ The paper further shows how to derive the generalized backdoor criterion in Shpitser
et al. (2010) and, gives a visual proof of the moralization/augmentation criterion.

Other “words” in (canonical) ADMGs

1. ∗ : Markov blanket/background (Richardson et al. 2023).

2.
d

∗
d
: δ-connection (Didelez 2008).

3. ∗ : µ-connection (Mogensen and Hansen 2020).

4. : confounding arc (Guo and Zhao 2023).

5. ∗ : confounding path/symmetric backdoor (Guo and Zhao 2023).
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Introduction

Some interpretations of canonical ADMGs

1. Latent DAG: ADMG represents a unspecified DAG with latent variables.
▶ Implicit in Pearl’s writing.
▶ See also Richardson et al. (2023, Sec. 4.1).

2. Nonparametric SEM: ADMG represents a nonparametric system with correlated noise.
▶ Used by Pearl and his followers, with some ambiguity about the meaning of bidirected edges.
▶ Sometimes called the semi-Markovian model.

3. Specific expansion of bidirected edges.

4. Global Markov.

5. Nested Markov.

Challenges

▶ These interpretations are generally not the same.

▶ Complicated inequality constraints in the latent variable interpretations.

▶ Statistical model vs causal model.



Main thesis

By default, we should use the nonparametric system of equations (E model below).

Definition
The E model collects all distributions P of V such that

Vj = fj(Vpa(j),Ej), for all Vj ∈ V .

▶ f1, . . . , fd are some functions. pa(j) = {k : Vk Vj in G}.
▶ The distribution of E = (E1, . . . ,Ed) ∈ [0, 1]d is Markov wrt bidirected part of G:

VJ ̸ VK in G =⇒ EJ ⊥⊥ EK.

▶ This corresponds to a noise expansion of the ADMG.

Why should this be the default?
Two common ways to define “natural” mathematical concepts: Equivalence and Completion.



Equivalence fails for general ADMGs

The following implications/equivalences hold for any (canonical) ADMG.

Pairwise expansion (PE)

Clique expansion (CE)

Noise expansion (NE) Nonparametric equation (E)

Nested Markov (NM)

Ordered local Markov (LM) Global Markov (GM) Augmentation (A)

Unconditional Markov (UM)

The reverse implications don’t hold in general.



Equivalence works for simpler subclasses

DAGs

PE CE NE E Factorization (F) NM LM GM A

UM

Bidirected graphs

PE

CE

NE E NM LM GM A UM



A definition of completeness

▶ An “interpretation” of a ADMG is a collection P(G) of probability distributions.

▶ Denote expandV ′(G) =
{
G′ is ADMG with vertex set V ′ : marginV (G

′) = G
}
.

▶ For each vertex set V , let G0(V ) be a subclass of ADMGs.

Definition
We say a collection of models P(G) for different ADMGs G is complete (wrt G0) if

P(G) =
⋃

V ′⊃V

⋃
G′

marginV (P(G
′)),

where the second union is over G′ ∈ expandV ′(G) ∩G0(V
′).



Why using the E model?

▶ Denote the set of exogenous vertices in G as E = {Vj ∈ V : Vk ̸ Vj for all Vk ∈ V }.
▶ An ADMG is called unconfounded if

Vj Vk in G =⇒ Vj ,Vk ∈ E , for all Vj ,Vk ∈ V ,Vj ̸= Vk .

Unconfounded ADMGs generalize DAGs and bidirected graphs

PE

CE

NE E Exogenous Factorization (EF) NM LM GM A

UM

Theorem
When G0(V ) is all unconfounded ADMGs, only CE, E, NE, and UM models are complete.



A visualization of Equivalence + Completion

PE PE

CE CE

NE E NE E EF NM LM GM A

NM

LM GM A

UM UM

General
ADMGs

Unconfounded
ADMGs

Completion

Completion

Completion

▶ So the latent DAG/CE interpretation does not consider bidirected/unconfounded graphs
as interesting objects.



Causal model associated with ADMGs

▶ The potential outcome schedule is the collection of all potential outcomes:

V (·) = (Vj(vI) : j ∈ [d ], I ⊆ [d ], vI ∈ VI).

Definition (Causal Markov model)
We say a distribution P of the potential outcome schedule of V is causal Markov wrt G if

1. The potential outcomes are consistent:

Vj(vI) = Vj(vpa(j)∩I ,Vpa(j)\I(vI)), for all j ∈ [d ], I ⊆ [d ], v ∈ V.

2. The distribution of basic potential outcomes are Markov wrt bidirected part of G:

VJ ̸ VK in G =⇒ VJ (v) ⊥⊥ VK(v) under P for all v ∈ V.

▶ This definition does not rely on structural equations.

▶ means direct causal infeluence and means exogenous correlation.



Causal identification and Nested Markov (NM) property
▶ Vj is called fixable if there exists no Vk such that Vj Vk and Vj ∗ Vk .

▶ NM requires that if Vj is fixable, the next distribution is global Markov wrt GV−j :

(fixVj=vj (p))(v−j) =
p(v)

p(vj | vmbgG(j)
)
,

and this needs to hold recursively. (This is the basic step in the do-calculus/ID algorithm.)

▶ Richardson et al. (2023, Sec. 4.1) give a proof of CE ⇒ NM in general ADMGs.

A more intuitive proof sketch for E/NE ⇒ NM

▶ Consider PV ∈ E model. There exists causal Markov P on V (·) s.t. marginV (P) = PV .

▶ It can be shown that if Vj is fixable, then

fixVj=vj (PV ) = marginV−j (vj )(P).

▶ A natural generalization of SWIGs (Richardson and Robins 2013) from DAGs to ADMGs
shows that the RHS is global Markov wrt GV−j .

▶ Repeatedly applying this shows that E/NE ⇒ NM.



Use ADMGs, not DAGs

▶ DAG-based theory: ADMG represents a DAG with latent variables.

▶ ADMG-based theory: ADMG is a generalization of DAG.

ADMG-based theory is better because...

▶ No mysterious latent variables.

▶ More convincing in unconfounded graphs.

▶ Fewer (but still some) inequality constraints.

▶ By drawing ADMGs instead of DAGs, practitioners are encouraged to think about the
missing bidirected and directed edges which really drive causal identification.
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Two common heuristics

The conjunction heuristic/common cause principle)
Contrlling for all covariates “related” to both the treatment and the outcome.

▶ Very common in practice (Glymour et al. 2008) and methodological development (Koch
et al. 2020; Shortreed and Ertefaie 2017).

▶ Well known that this may select too few.

The pre-treatment heuristic
Controlling for all covariates that precede the treatment temporally.

▶ Defended in Rubin (2009): “I cannot think of a credible real-life situation where I would
intentionally allow substantially different observed distributions of a true covariate in the
treatment and control groups.”

▶ Counter-examples from graphical models: e.g. M-bias (Greenland et al. 1999).



Graphical approaches

Theorem (Back-door criterion (Pearl 1993, 2009))
Given a treatment X and an outcome Y , a set of covariates S controls for confounding if

1. S contains no descendant of X (not X S);

2. S blocks all back-door paths from X to Y (not X ∗ Y | S).

▶ Basically complete (Shpitser et al. 2010), but requires full structural knowledge.

Theorem (Disjunctive criterion (VanderWeele and Shpitser 2011))
Suppose the causal graph is faithful. If at least one subset of S controls for confounding, then
{Vj ∈ S : Vj X or Vj Y } controls for confounding.

▶ Easy to use, but assumption is almost wishful.



Simplifying the back-door criterion

▶ Let G̃ = marginṼ (G) and G∗ be G without bidirected loops.

▶ Simplified marginalization of ADMGs:

Vj Vk in G̃
∗ ⇐⇒ P[Vj Vk | Ṽ in G∗] ̸= ∅,

Vj Vk in G̃
∗⇐⇒ P[Vj Vk | Ṽ in G∗] ̸= ∅. (confounding arcs)

Definition
▶ C ⊆ V \ {A,B} is an adjustment set for A,B ∈ V if not {A,B} C .

▶ C is sufficient if not A ∗ B | C .

▶ C is minimal sufficient if none of its proper subsets is still sufficient.

Proposition (Symmetric back-door criterion)

▶ If S is a sufficient adjustment set for (X ,Y ), then S satisfies the back-door criterion.

▶ If an adjustment set S satisfies the back-door criterion and X Y , then S is sufficient.



Main idea

▶ Confounder selection/blocking confounding paths is complicated because

not A ∗ B | C ⇏ not A ∗ B | C̃ for C ⊂ C̃ .

▶ But observe that

not A B | C ⇒ not A B | C̃ for C ⊂ C̃ .

▶ This motivates us to block confounding arcs recursively.

Definition
▶ An adjustment set C for A,B is called primary given another adjustment set S if

not A B | S ∪ C

▶ We say C is minimal primary if none of its proper subsets is primary.



Iterative graph expansion (recursive version)

1: procedure ConfounderSelect(X , Y )
2: R = ∅
3: procedure GraphExpand(S , By , Bn)
4: S̄ = S ∪ X ∪ Y
5: if X ∗ Y by edges in By then
6: return
7: else if not X ∗ Y by edges in (S̄ × S̄) \ Bn then
8: R = R∪ {S}
9: return

10: end if
11: (A ↔ B) = SelectEdge(X , Y , S , By , Bn)
12: for C in FindPrimary(A ↔ B, S) do
13: GraphExpand(S ∪ C , By , Bn ∪ {A ↔ B})
14: end for
15: GraphExpand(S , By ∪ {A ↔ B}, Bn)
16: end procedure
17: GraphExpand(∅, ∅, ∅)
18: return R
19: end procedure



Illustration
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Illustration
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Remarks

▶ This procedure is sound (primary ⇒ sufficient) and complete (all minimal primary ⇒ all
minimal sufficient).

▶ Confounder selection only requries thinking about bidirected edges ( ).

▶ Primary adjustment sets can be found by a more basic routine.

▶ Try it: https://ricguo.shinyapps.io/InteractiveConfSel/

https://ricguo.shinyapps.io/InteractiveConfSel/


Conclusions

▶ Recap: matrix algebra, statistical models, confounder selection for ADMGs.

▶ Many interesting (possibly open) problems (email me at qyzhao@statslab.cam.ac.uk).

▶ Main take-away:

Use ADMGs, not DAGs.
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