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1. Consider the Bayesian model X | θ ∼ Pois(θ), θ ∈ Θ = [0,∞), and suppose the prior for θ
is a Gamma distribution with parameters α, λ. Show that the posterior distribution θ |X
is also a Gamma distribution and find its parameters.

2. Suppose X | θ ∼ Bin(n, θ) (where n is known) with θ ∈ Θ = [0, 1].

(a) Consider a Beta(a, b) prior for θ. Show that the posterior distribution is Beta(a +
X, b+ n−X) and compute the posterior mean θ̄n = θ̄n(X).

(b) Show that the maximum likelihood estimator for θ is not identical to the posterior
mean with ‘ignorant’ uniform prior θ ∼ U [0, 1].

(c) Now suppose X ∼ Bin(n, θ0) where θ0 ∈ (0, 1) is deterministic. Derive the asymptotic
distribution of

√
n(θ̄n − θ0).

3. Consider the Bayesian model X1, . . . , Xn | θ ∼ N(θ, 1) with prior π such that θ ∼ N(µ, v2).
Writing θ̄n for the posterior mean, for 0 < α < 1, consider the (1−α)-level credible interval

Ĉn =
{
θ ∈ R : |θ − θ̄n| ≤ Rn

}
.

Now suppose X1, . . . , Xn
i.i.d.∼ N(θ0, 1) for a deterministic θ0 ∈ R. Show that, as n → ∞,

Pθ0(θ0 ∈ Ĉn) → 1− α.

4. Consider estimation of θ ∈ Θ = [0, 1] with data X ∼ Bin(n, θ) under quadratic risk.

(a) Find the unique minimax estimator θ̃n of θ and deduce that the maximum likelihood
estimator θ̂n of θ is not minimax for any fixed sample size n ∈ N.

(b) Show, however, that

lim
n→∞

supθ R(θ̂n, θ)

supθ R(θ̃n, θ)
= 1

and moreover that the maximum likelihood estimator dominates θ̃n in the large sample
limit in the sense that

lim
n→∞

R(θ̂n, θ)

R(θ̃n, θ)
< 1 for all θ ∈ [0, 1], θ ̸= 1

2
.

5. Suppose X1, . . . , Xn
i.i.d.∼ N(µ, σ2).

(a) Suppose (µ, σ2) ∈ Θ = R× [0, v] for some v > 0. Show that the sample mean X̄n is
minimax for the risk R(X̄n, (µ, σ

2)) = E[(X̄n − µ)2].

(b) Now suppose it is known that σ2 = 1 but µ ∈ Θ = [0,∞) is unknown. Show that
the sample mean X̄n is inadmissible for quadratic risk, but that it is still minimax.
What happens if Θ = [a, b] for some 0 < a < b < ∞?

6. Consider a Bayesian version of the normal linear model where Y |β ∼ Nn(Xβ, I), X ∈
Rn×p is a fixed matrix of predictors (not necessarily with full column rank) and β has
prior β ∼ Np(0, λ

−1I) for a fixed λ > 0. Find the posterior mean of β.
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7. Consider the Bayesian model X | θ ∼ Np(θ, I) where p ≥ 3 and θ ∈ Rp has prior θ ∼
Np(0, τ

2I) and τ2 is deterministic.

(a) Suppose first that τ2 is known. Show that the posterior mean θ̄ is given by

θ̄(X) := (1− γ)X

where γ := (τ2 + 1)−1.

(b) Now suppose τ2 is unknown. Find the marginal distribution of X (as a function of γ)
and show that

γ̂ :=
p− 2

∥X∥2

satisfies Eγ(γ̂) = γ. [Hint: If Z ∼ χ2
p then E(Z−1) = (p− 2)−1.] What does this have

to do with the James–Stein estimator?

8. Let X ∼ Np(θ, I) with p ≥ 3. Show that the risk of the James–Stein estimator θ̂JS satisfies

R(θ̂JS, θ) ≤ p− (p− 2)2

p− 2 + ∥θ∥2
.

[Hint: Let Z1, Z2, . . .
i.i.d.∼ N(0, 1). If K ∼ Pois(µ2/2) independently of the Zj, then

(Z1 + µ)2 and

1+2K∑
j=1

Z2
j

have the same distribution.]

9. Let X ∼ Np(θ, I) where θ ∈ Θ = Rp, p ≥ 3. Consider estimators

θ̃(c) =

(
1− c

p− 2

∥X∥2

)
X, 0 < c < 2,

for θ, under the risk function R(δ, θ) = Eθ∥δ(X)− θ∥2.

(a) Show that the James–Stein estimator θ̃(1) dominates all estimators θ̃(c), c ̸= 1.

(b) Let θ̂ be the maximum likelihood estimator of θ. Show that, for any 0 < c < 2,

sup
θ∈Θ

R(θ̃(c), θ) = sup
θ∈Θ

R(θ̂, θ).

10. Consider X1, . . . , Xn
i.i.d.∼ N(θ, 1) with θ ∈ Θ = R. The Hodges’ estimator

θ̃n := X̄n1{|X̄n|≥n−1/4},

is equal to the maximum likelihood estimator X̄n of θ whenever |X̄n| ≥ n−1/4 and is zero
otherwise.

(a) Find the asymptotic distribution of
√
n(θ̃n − θ) for each θ ∈ R and show moreover

that when θ = 0,
lim
n→∞

nEθ[(θ̃n − θ)2] = 0.

(b) Show however that
lim
n

sup
θ∈Θ

nEθ[(θ̃n − θ)2] = ∞.
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11. (i) Let ϕ and Φ denote the standard Gaussian pdf and cdf respectively. If Z ∼ N(µ, σ2),
then

E[Z |Z ∈ (a, b)] = µ+
ϕ(α)− ϕ(β)

Φ(β)− Φ(α)
σ

where

α :=
a− µ

σ
and β :=

b− µ

σ
.

[You need not show this.] Suppose now that ζ ∼ N(µ, 1) and a < 0 < b. Explain
why

µ− ϕ(µ)

Φ(−µ)
≤ E[ζ | ζ ∈ (a, b)] ≤ µ+

ϕ(µ)

Φ(µ)
.

[Hint: Use the fact that x 7→ ϕ(x)/Φ(x) is decreasing.]

(ii) In the setting of Question 10 show that the maximum likelihood estimator is “only
asymptotically beatable on arbitrarily small sets of θ-values” in the following sense:
given a < b, any sequence of estimators θ̂n := θ̂n(X1, . . . , Xn) has

lim inf
n→∞

sup
θ∈(a,b)

nEθ[(θ̂n − θ)2] ≥ 1.

[Hint: Consider a π-Bayes estimator for an appropriate prior π. You may find the
fact that

∫∞
−∞ ϕ(x)3/Φ(x)2 dx < ∞ useful.]
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