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1. Consider a classification setting where (X,Y ) ∈ Rp × {0, 1} is a random input–output
pair. Let fj be the conditional density of X given Y = j and let πj = P(Y = j) for
j ∈ {0, 1}. Show that δπ given by

δπ(x) =

{
1 if f1(x)π1

f0(x)π0
> 1

0 otherwise

is a Bayes classifier. Show moreover that if

P
(
f1(X)π1
f0(X)π0

= 1

)
= 0,

then any Bayes classifier δ satisfies P(δ(X) = δπ(X)) = 1.

2. In each of the parts below, we consider the classification setting in Question 1.

(a) Consider first the special case in which X |Y = j ∼ Np(µj ,Σ) where Σ is a known
positive definite matrix and the means µ0, µ1 are known with µ0 ̸= µ1. Show that a
minimax classifier δ, that is one where

max
y∈{0,1}

P(δ(X) ̸= y |Y = y) = inf
δ′

max
y∈{0,1}

P(δ′(X) ̸= y |Y = y),

is obtained by selecting δ(X) = 1 whenever

D :=
1

2
(µ0 + µ1)

⊤Σ−1(µ0 − µ1) +X⊤Σ−1(µ1 − µ0) > 0,

and 0 otherwise. [Hint: First argue that D ∼ N(∆2/2,∆2) when X ∼ Np(µ1,Σ) and
D ∼ N(−∆2/2,∆2) when X ∼ Np(µ0,Σ), where ∆2 := (µ1 − µ0)

⊤Σ−1(µ1 − µ0).]

(b) We now return to a more general setting where the conditional distributions ofX |Y =
j are not necessarily Gaussian. Suppose we have i.i.d. copies (Xi, Yi)

n
i=1 of (X,Y ).

Consider a sample version of linear discriminant analysis involving estimates

µ̂j :=
1

nj

∑
i:Yi=j

Xi and Σ̂ :=
1

n− 2

∑
j=0,1

n∑
i:Yi=j

(Xi − µ̂j)(Xi − µ̂j)
⊤

where nj :=
∑n

i=1 1{Yi=j}, for j ∈ {0, 1}.
(i) Writing Σj := Var(X |Y = j) for j ∈ {0, 1} and π := P(Y = 1), show that as

n → ∞,
Σ̂

p→ Σ := πΣ1 + (1− π)Σ0.

(ii) Suppose that Σ is positive definite and π ∈ (0, 1). Show that the vector β̂ :=

Σ̂−1(µ̂1 − µ̂0) satisfies β̂
p→ β∗ as n → ∞, where β∗ maximises

Var(E(β⊤X |Y ))

E(Var(β⊤X |Y ))

over β ∈ Rp, β ̸= 0. (Thus β∗ has the interpretation of being a direction upon
which the projection of X has the maximal ratio of the “between class variance”
to the “within class variance”.)
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3. Let (Xi, Yi) be i.i.d. copies of a random pair (X,Y ) ∈ R × R. Let γ := Cov(X,Y ),
σ1 :=

√
Var(X), σ2 :=

√
Var(Y ) and let v := Var((X − E(X))(Y − E(Y ))), with all of

these quantities assumed to be finite and non-zero.

(i) Show that the sample covariance

γ̂ :=
1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

satisfies
√
n(γ̂ − γ)

d→ N(0, v).

(ii) Now let ρ be the correlation af X and Y . Find the distributional limit of
√
n(ρ̂− ρ)

where ρ̂ is the sample correlation, in the case where X and Y are independent.

4. Let F : R → [0, 1] be a probability distribution function and let F−1 : (0, 1) → R be the
quantile function F−1(p) := inf{t : F (t) ≥ p}.

(a) Show that for p ∈ (0, 1) and t ∈ R,

F−1(p) ≤ t ⇐⇒ p ≤ F (t).

Conclude that if U ∼ U [0, 1], then F−1(U) ∼ F .

[Hint: F is always right continuous, that is F (t+ an) ↓ F (t) for all an ↓ 0.]

(b) Now suppose F is continuous and strictly increasing, and Fn for n ∈ N are probability
distribution functions such that Fn(t) → F (t) for all t ∈ R. Show that then F−1

n (p) →
F−1(p) for all p ∈ (0, 1). [Hint: Consider (for example) F (F−1

n (p)).]

5. Suppose X1, X2, . . . are i.i.d. and θ̂n := Tn(X1, . . . , Xn) is an estimate of a parameter

θ ∈ R. Denoting the true parameter by θ0, suppose
√
n(θ̂n − θ0)

d→ F where F is some
continuous and strictly increasing distribution function. Suppose we have an estimate
F̂n of F , e.g. coming from the bootstrap, satisfying supt∈R |F̂n(t) − F (t)| a.s.→ 0. Given

α ∈ (0, 1), let l̂n := F̂−1
n (α/2) and ûn := F̂−1

n (1−α/2). Show that the confidence interval

Ĉn := {θ : l̂n ≤
√
n(θ̂n − θ) ≤ ûn}

satisfies
P(θ0 ∈ Ĉn) → 1− α.

[Hint: Recall that P(A ∩B) = P(A) + P(B)− P(A ∪B).]

6. Let f, g : R → [0,∞) be bounded probability density functions such that f(x) ≤ Mg(x)
for all x ∈ R and some constant M > 0. Suppose you can simulate a random variable
X of density g and a random variable U ∼ U [0, 1]. Consider the following ‘accept–reject’
algorithm:

Step 1. Draw X ∼ g, U ∼ U [0, 1].

Step 2. Accept Y = X if U ≤ f(X)/(Mg(X)), and return to Step 1 otherwise.

Show that Y has density f .

7. Let U1, U2
i.i.d.∼ U [0, 1] and define

X1 =
√
−2 log(U1) cos(2πU2), X2 =

√
−2 log(U1) sin(2πU2).

Show that X1, X2
i.i.d.∼ N(0, 1).
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8. Consider observationsX1, . . . , Xn from a statistical model {f(·, θ) : θ ∈ Θ},Θ = Rp, p ∈ N,
and denote by Π(·|X1, . . . , Xn) the posterior distribution arising from a Np(0, I) prior π
on Θ. The Markov chain (ϑm : m ∈ N) is started at arbitrary ϑ0 ∈ Rp and generated as
follows:

Step 1. For m ∈ N ∪ {0}, δ ∈ (0, 1/2) and given ϑm, generate ξ ∼ π = Np(0, I)
and set

sm =
√
1− 2δϑm +

√
2δξ.

Step 2. Define

ϑm+1 =

{
sm, with probability ρ(ϑm, sm)

ϑm, with probability 1− ρ(ϑm, sm),

where the acceptance probabilities are given by

ρ(ϑm, sm) = min
{
eℓ(sm)−ℓ(ϑm), 1

}
, ℓ(θ) =

n∑
i=1

log f(Xi, θ).

Step 3. Repeat the above with m 7→ m+ 1.

Show that the posterior distribution Π(·|X1, . . . , Xn) is an invariant distribution for (ϑm :
m ∈ N).
[Hint: Show that the algorithm given is a special case of the Metropolis–Hastings algo-
rithm.]

9. Let X1, . . . , Xn be drawn i.i.d. from a continuous distribution function F : R → [0, 1],
and let F̂n(t) := (1/n)

∑n
i=1 1(−∞,t](Xi) be the empirical distribution function. Use the

Kolmogorov–Smirnov theorem to construct a confidence band for the unknown function
F of the form

{Cn(x) := [F̂n(x)−Rn, F̂n(x) +Rn] : x ∈ R}

that satisfies P(F (x) ∈ Cn(x) ∀x ∈ R) → 1 − α as n → ∞, and where Rn = R/
√
n for

some fixed R > 0.

10. Suppose for real-valued random variables X,X1, X2, . . . we have Xn
d→ X and the dis-

tribution function F of X is continuous. Show that the distribution function Fn of Xn

satisfies
sup
t

|Fn(t)− F (t)| → 0.

[Hint: Argue similarly to the proof of the Glivenko–Cantelli theorem.]

11. Let X1, X2, . . . be i.i.d. and consider estimating some parameter θ ∈ R using θ̂n :=
Tn(X1, . . . , Xn). We wish to use this to test the null hypothesis θ = θ0. We assume
that

Rn :=
√
n(θ̂n − θ0)

d→ G

for some unknown continuous distribution G. Now let mn ∈ N be such that mn → ∞ but
mn/n → 0. Let Bn := ⌊n/mn⌋ and for b = 1, . . . , Bn, define

R(b)
n :=

√
mn{Tmn(X(b−1)mn+1, . . . , Xbmn)− θ0}.

Finally, write Ĝn for the empirical distribution function of {R(1)
n , . . . , R

(Bn)
n }.
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(a) Using the fact that for any Z1, . . . , Zk
i.i.d.∼ F , their empirical distribution F̂k satisfies

P
(
sup
t

|F̂k(t)− F (t)| > ϵ

)
≤ 2e−2kϵ2 ,

show that supt |Ĝn(t)−G(t)| p→ 0.

[Hint: Note that supt |Ĝn(t)−G(t)| ≤ supt |Ĝn(t)−Gn(t)|+supt |Gn(t)−G(t)| where
Gn is the distribution of R

(1)
n .]

(b*) Argue that the test ϕn that rejects (i.e. ϕn = 1) when

√
n(θ̂n − θ0) > Ĝ−1

n (1− α)

has P(ϕn = 1) → α under the null.

[Hint: Use the fact that for any sequence Z1, Z2, . . . of random variables, Zn
p→ Z

if and only if every subsequence of the Zn contains a further subsequence nk where
Znk

a.s.→ Z as k → ∞.]
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